IELTS Reading: How global warming is affecting polar wildlife – Đề thi mẫu có đáp án chi tiết

Mở bài

Chủ đề How Global Warming Is Affecting Polar Wildlife đang trở thành mối quan tâm toàn cầu và rất thường gặp trong IELTS Reading, đặc biệt ở các bộ Cambridge gần đây với các chủ đề khoa học – môi trường. Đây là chủ đề phù hợp để kiểm tra kỹ năng scanning, nhận diện paraphrase, suy luận, và đọc hiểu dữ liệu. Trong bài viết này, bạn sẽ luyện một đề IELTS Reading hoàn chỉnh gồm 3 passages (Easy → Medium → Hard) xoay quanh tác động của biến đổi khí hậu đến hệ động vật vùng cực. Bạn sẽ học được cách xử lý các dạng câu hỏi giống thi thật, nhận đáp án chi tiết có giải thích từng bước, kèm theo bảng từ vựng học thuật trọng tâm và kỹ thuật làm bài hiệu quả. Bài tập này được thiết kế cho học viên từ band 5.0 trở lên, muốn tăng tốc độ đọc, nâng cao độ chính xác và làm quen với chủ đề thường gặp trong IELTS Reading test. Hãy bắt đầu luyện tập nghiêm túc để cải thiện điểm số và kỹ năng đọc học thuật một cách bền vững.

1. Hướng dẫn làm bài IELTS Reading

Tổng Quan Về IELTS Reading Test

  • Thời gian: 60 phút cho 3 passages
  • Tổng số câu hỏi: 40 câu
  • Phân bổ thời gian khuyến nghị:
    • Passage 1: 15-17 phút
    • Passage 2: 18-20 phút
    • Passage 3: 23-25 phút

Tips nhanh:

  • Đọc câu hỏi trước, gạch chân từ khóa, suy đoán paraphrase.
  • Dùng kỹ thuật “predict–scan–verify”: đoán vị trí thông tin, quét nhanh, rồi kiểm chứng bằng chi tiết.
  • Quản lý thời gian nghiêm ngặt; không “mắc kẹt” hơn 60–90 giây cho một câu.

Các Dạng Câu Hỏi Trong Đề Này

  • Multiple Choice
  • True/False/Not Given
  • Sentence Completion
  • Yes/No/Not Given
  • Matching Headings
  • Summary/Note Completion
  • Matching Sentence Endings
  • Short-answer Questions

2. IELTS Reading Practice Test

Bộ đề này mô phỏng sát cấu trúc và độ khó bài thi thật, xoay quanh chủ đề: How global warming is affecting polar wildlife. Hãy bấm giờ theo gợi ý dưới mỗi passage, tập trung vào kỹ năng xác định từ đồng nghĩa, câu bẫy và trình tự thông tin.

Hình minh họa chủ đề How global warming is affecting polar wildlife trong IELTS ReadingHình minh họa chủ đề How global warming is affecting polar wildlife trong IELTS Reading

PASSAGE 1 – Melting Margins: Early Signals from the Arctic Coast

Độ khó: Easy (Band 5.0-6.5)

Thời gian đề xuất: 15-17 phút

The Arctic coastline is changing fast. In recent decades, summer sea ice has retreated earlier and returned later, leaving animals that depend on ice with less time to feed, breed, and rest. For many species, ice is not just a surface; it is a living platform, with microscopic algae growing on its underside and forming the first link of a fragile food web. When the ice thins and melts, this entire system shifts, sometimes so quickly that animals cannot adjust in time.

Polar bears are emblematic of this transformation. They hunt seals on sea ice, using holes that seals make to breathe. With fewer stable ice floes, bears must swim longer distances, spend more energy, and may find fewer hunting opportunities. This can lead to lower body weight, reduced cub survival, and, in some places, more contact with human settlements as bears search for food on land. Although some bears can switch temporarily to bird eggs or beached carcasses, such resources are not reliable and do not replace the calories from seals.

Ringed seals, in turn, rely on snow-covered sea ice to build birth lairs that protect their pups from predators and cold winds. Warmer springs bring thinner snow and earlier melt, exposing pups too soon. Even if adult seals can dive deeper for fish, their young are at risk. Walruses also face trouble when sea ice retreats from shallow feeding grounds. They may haul out on crowded beaches, where stampedes can kill calves. As a result, the timing and safety of resting and breeding are being rearranged by the warming climate.

Yet the changes do not move in a single direction. In some years, algae growing beneath the ice can bloom earlier, boosting tiny drifting animals called zooplankton. This may briefly benefit some fish and seabirds. But when the timing of food availability is out of sync with the arrival of chicks or the migration of whales, the benefits are lost. Scientists call this phenological mismatch, which means that the usual calendar of nature no longer fits.

Seabird colonies show both resilience and vulnerability. Some birds shift their routes to find new feeding grounds. Others, like little auks, depend on cold-loving zooplankton that decline when warm currents appear. If such prey become scarce, adult birds must fly farther, spending extra energy, and chicks may be left hungry. These trade-offs add up over time: a few poor seasons can reduce population growth.

Under the ice, change is equally complex. Ice algae contribute to the diet of krill in the Antarctic and to other plankton in the Arctic. When ice breaks up earlier, more sunlight reaches the water, which can increase open-water blooms. However, if winds create turbulence, these microscopic organisms may be scattered, reducing the efficient transfer of energy to higher levels of the food web. In other words, productivity does not automatically mean more food for animals like fish, seals, and whales.

Human communities that have lived with ice for generations also observe new patterns. Hunters report thinner ice and unpredictable weather, which makes travel riskier. Their knowledge—collected over decades—helps scientists understand where animals still find food and where dangers are growing. This collaboration provides early warnings that can guide conservation. For example, identifying key polynyas—areas of open water surrounded by ice—can support both wildlife and local livelihoods.

The Arctic is a place of extremes, and animals there have long been adapted to seasonal cycles of light and dark, feast and famine. What is new is the speed of change. Because ice is central to how energy moves through the system, changes to ice shape the lives of animals at every level. If warming continues, we are likely to see more flexible species do better than specialists that cannot easily change their diets or behaviors. While some species may find temporary refuges, the broader pattern points to increased stress, lower reproductive success, and greater uncertainty.

Scientists are cautious: ecosystems can surprise us. But the evidence is clear that across the Arctic, warming is re-writing the rules for wildlife. The next decades will reveal which species can adapt, which can move, and which will need our protection to survive.

Yêu cầu:

  • Nội dung dễ hiểu, từ vựng không quá phức tạp
  • Cấu trúc câu đơn giản đến trung bình
  • Thông tin rõ ràng, dễ xác định
  • Làm đậm các từ vựng khó và cụm từ quan trọng
  • Làm đậm các cấu trúc ngữ pháp đáng chú ý

Questions 1-13

Q1–Q5 Multiple Choice
Choose the correct letter, A, B, C or D.

  1. What is the main function of sea ice for many Arctic species?
    A A place to avoid human contact
    B A platform supporting a food web
    C A barrier against ocean currents
    D A source of freshwater

  2. Why do polar bears face more difficulties in hunting?
    A Their prey has moved to deeper waters
    B Sea ice offers fewer stable platforms
    C They are competing with more whales
    D They cannot detect seal breathing holes

  3. What risk increases for walruses when sea ice retreats?
    A Disease spread in cold conditions
    B Starvation due to lack of clams
    C Stampedes at haul-out sites
    D Predation by polar bears

  4. “Phenological mismatch” refers to
    A the total loss of sea ice in summer
    B a lack of nutrients in Arctic waters
    C the timing of food not matching animal needs
    D the migration of birds to warmer regions

  5. According to the passage, increased open-water blooms may
    A always boost fish stocks
    B reduce turbulence in the water
    C not necessarily lead to more food for predators
    D reduce sunlight reaching the water

Q6–Q10 True/False/Not Given
Do the following statements agree with the information in the passage?
Write TRUE if the statement agrees with the information
FALSE if the statement contradicts the information
NOT GIVEN if there is no information on this

  1. Polar bears can permanently replace seal hunting with bird eggs.
  2. Ringed seal pups are exposed earlier because of thinner snow.
  3. Little auks thrive when warm currents appear.
  4. Hunters’ observations have been ignored by scientists.
  5. Specialists may struggle more than flexible species in a warming Arctic.

Q11–Q13 Sentence Completion
Complete the sentences below.
Choose NO MORE THAN TWO WORDS from the passage for each answer.

  1. Ringed seals depend on snow-covered sea ice to build __ that protect their pups.
  2. Areas of open water surrounded by ice are known as __.
  3. The passage says warming is __ the rules for wildlife.

PASSAGE 2 – Trophic Cascades on Thin Ice

Độ khó: Medium (Band 6.0-7.5)

Thời gian đề xuất: 18-20 phút

A
In polar seas, the retreat and thinning of sea ice are reorganizing energy pathways from microscopic producers to apex predators. Although productivity can rise locally when more light penetrates the upper ocean, the structure of that productivity—and its timing—can shift in ways that propagate instability through the food web.

B
Sea-ice phenology—the seasonal cycle of advance and retreat—governs when and where ice algae bloom. These communities, attached to the ice underside, seed early food pulses that historically sustained ice-associated zooplankton. When melt arrives earlier, open-water phytoplankton may dominate. Yet the resultant carbon is often exported differently, with less contact time for grazers. Thus, even if total production increases, the trophic transfer efficiency can decline.

C
For birds and mammals, the challenge is synchrony. Many seabirds time breeding so that chick-rearing coincides with peak prey availability. As warmer waters alter prey life history, adults face a sharper foraging–parenting trade-off: fly farther to feed or remain to guard the nest. The result is a higher variance in chick growth and survival, a hallmark of ecological systems under phenological disruption.

D
Apex predators display both plasticity and constraint. Polar bears exhibit dietary flexibility, scavenging on carcasses and raiding bird colonies. However, such opportunistic feeding is energetically insufficient relative to seal hunting. Similarly, some toothed whales extend their range poleward, tracking prey assemblages reconfigured by temperature and circulation shifts. These predators are not passive victims but are bounded by bioenergetic ceilings.

E
Warming also relaxes barriers to pathogens and parasites. As isotherms move poleward, hosts encounter novel disease dynamics. In dense haul-outs, walruses and seals experience amplified transmission risk, compounded by stress from overcrowding. Disease surveillance remains patchy, leaving a diagnostic blind spot in population assessments.

F
Conservation strategies increasingly focus on spatial refugia: polynyas, recurrent ice edges, and bathymetric features that concentrate prey. Temporally dynamic protected areas, anchored by oceanographic forecasts, aim to safeguard critical functions rather than fixed places alone. This shift recognizes that in a mobile seascape, management must be anticipatory, not merely reactive.

G
Uncertainty persists. Models still struggle with fine-scale mixing, ice mechanics, and behavioral thresholds of key species. Nevertheless, convergent lines of evidence—satellite records, bio-logging, Indigenous knowledge—indicate that climate-driven re-timing can trigger trophic cascades, where disruptions at low levels reverberate upward, reconfiguring entire communities.

Yêu cầu:

  • Nội dung phức tạp hơn, yêu cầu hiểu sâu
  • Từ vựng học thuật, collocations
  • Cấu trúc câu đa dạng, có câu phức
  • Thông tin cần suy luận, paraphrase nhiều
  • Làm đậm từ vựng nâng cao
  • Làm đậm cấu trúc ngữ pháp phức tạp

Questions 14-26

Q14–Q18 Yes/No/Not Given
Do the following statements agree with the claims of the writer?
Write YES if the statement agrees with the claims
NO if it contradicts the claims
NOT GIVEN if it is impossible to say

  1. Increased light in the upper ocean always increases food for grazers.
  2. Earlier melt can change how carbon reaches higher trophic levels.
  3. Seabirds can avoid trade-offs by delaying breeding indefinitely.
  4. Some apex predators can adjust diet but remain limited by energy needs.
  5. Disease monitoring in polar pinnipeds is comprehensive and consistent.

Q19–Q23 Matching Headings
Choose the correct heading for sections B–F from the list of headings below.
Write the correct number, i–ix, next to each section.

List of Headings
i Evidence converging from multiple sources
ii Disease risks in crowded marine mammals
iii The role of sea-ice timing in structuring food pulses
iv A guaranteed increase in predator food supply
v Managing moving targets: dynamic conservation
vi Foraging constraints during breeding
vii Limits of ecological models
viii Plasticity and bioenergetic limits in top predators
ix Carbon export versus grazer access

Sections:
19. Section B
20. Section C
21. Section D
22. Section E
23. Section F

Q24–Q26 Summary Completion
Complete the summary below.
Choose NO MORE THAN TWO WORDS from the passage for each answer.

In polar seas, changes in sea-ice timing can trigger re-timing throughout the food web, producing potential 24 __. While some predators show flexibility, they are restricted by 25 __. Conservation increasingly targets 26 __ that persist or recur, supported by forecasts to protect shifting ecological functions.


PASSAGE 3 – Thresholds, Feedbacks, and the Future of Polar Biomes

Độ khó: Hard (Band 7.0-9.0)

Thời gian đề xuất: 23-25 phút

Polar wildlife now inhabits a biome approaching ecological thresholds, where incremental warming precipitates disproportionate biological responses. Because ice governs light, habitat, and energetics, its loss initiates a cascade of feedbacks: lowered albedo accelerates regional heating; freshwater from melt intensifies stratification, isolating nutrients from the euphotic zone; and altered circulation restructures prey fields. These physical dynamics intersect with life-history traits, creating outcomes that are neither linear nor easily reversible.

Consider breeding success in ice-obligate pinnipeds. Many species evolved to synchronize pupping with predictable ice stability. As thinner, more mobile ice proliferates, breeding platforms fragment and drift, exposing pups to storm surge and predation. Some colonies attempt relocation to coastal ledges, but such sites are finite and frequently entail elevated disturbance. Across multiple populations, the statistical signature is rising interannual variance—an indicator that systems are approaching critical transitions.

At higher trophic levels, predators exhibit constrained plasticity. Polar bears may diversify diets, yet their morphology, hunting strategy, and digestive physiology remain tuned to lipid-rich prey. A bioenergetic mismatch emerges: alternative foods fail to offset energetic expenditure associated with longer swims and terrestrial travel. Over time, sublethal effects—reduced body condition, altered hormone profiles—can depress fecundity before mortality escalates. The typical management bias toward visible die-offs thus underestimates earlier demographic erosion.

Evolutionary responses are possible but contingent. Selection can favor individuals with traits conducive to altered phenologies or habitats—e.g., broader prey spectra, modified timing of breeding. However, the rate of environmental change can exceed the pace of adaptation, especially in long-lived mammals with low reproductive turnover. Plasticity buys time, yet if climatic forcing persists, populations may encounter maladaptation, where formerly adaptive behaviors (e.g., ice-dependent hunting) become liabilities.

Predicting these dynamics requires integrative tools. Telemetry and bio-logging quantify movement, dive behavior, and energetics with unprecedented resolution. Coupled with remote sensing of ice and productivity, researchers can parameterize models that link physical forcing to demographic outcomes. Bayesian hierarchical frameworks explicitly model uncertainty and partial observability, assimilating disparate data streams—including Indigenous and local knowledge—to infer latent processes such as juvenile survival. Despite advances, key processes—fine-scale prey patchiness, under-ice turbulence—remain obstinately unresolved in Earth-system models.

Management under deep uncertainty must therefore hedge against multiple futures. Rather than fixed protected areas alone, “dynamic ocean management” designates ephemeral features—ice edges, fronts, polynyas—as conservation targets that shift in space and time. Scenario planning, stress-testing interventions against extreme years, and adaptive triggers (e.g., automatic closures upon exceeding haul-out crowding thresholds) are emerging. Assisted colonization is debated: relocating at-risk populations toward projected refugia could avert extirpation, yet carries genetic, ecological, and ethical risks. The precautionary principle recommends tightening bycatch controls, reducing vessel noise, and safeguarding key foraging corridors while evidence accumulates.

Crucially, food-web resilience hinges on maintaining functional redundancy—multiple species performing similar roles. If cold-adapted zooplankton decline, can sub-Arctic taxa compensate energetically for predators? Empirical results are mixed: higher turnover may preserve biomass but erode caloric density, leaving predators in energetic deficit. Consequently, thresholds may be dietary, not merely numeric. Detecting such transitions requires targeted metrics—fat content, chick growth, lactation success—rather than abundance alone.

Ultimately, the question is not whether change is occurring but how close systems are to tipping points beyond which recovery is improbable on management timescales. In this context, success means minimizing foregone options: identifying and protecting climate refugia, preserving movement capacity, and curbing non-climatic stressors. While uncertainty is irreducible, it is not paralyzing. A portfolio of measures—responsive, evidence-weighted, and socially legitimate—offers the best chance of sustaining polar wildlife as the cryosphere recedes.

Yêu cầu:

  • Nội dung học thuật, trừu tượng
  • Từ vựng tinh vi, chuyên ngành
  • Cấu trúc câu phức tạp, dài
  • Yêu cầu phân tích, suy luận cao
  • Làm đậm từ vựng chuyên ngành
  • Làm đậm các cấu trúc ngữ pháp nâng cao

Questions 27-40

Q27–Q31 Multiple Choice
Choose the correct letter, A, B, C or D.

  1. Which physical change intensifies water-column stratification?
    A Increased wind mixing
    B Freshwater input from melt
    C Reduced nutrient upwelling
    D Higher salinity

  2. The passage suggests that visible die-offs
    A accurately represent total population health
    B are unlikely in polar systems
    C may occur before any demographic changes
    D can obscure earlier declines in reproduction

  3. What limits the effectiveness of dietary diversification in polar bears?
    A Competition with other predators
    B Legal restrictions on feeding
    C A bioenergetic mismatch with alternative foods
    D Lack of access to coastal areas

  4. Which modeling approach is highlighted for integrating diverse data?
    A Deterministic single-species models
    B Agent-based models without uncertainty
    C Bayesian hierarchical frameworks
    D Purely empirical correlations

  5. The author’s stance on assisted colonization is best described as
    A unconditional support
    B cautious consideration of risks
    C outright rejection
    D indifference to ethical issues

Q32–Q36 Matching Sentence Endings
Complete each sentence with the correct ending, A–G, below.
Write the correct letter, A–G.

  1. Fragmenting breeding platforms in pinnipeds
  2. Rising interannual variance in reproductive success
  3. Functional redundancy in food webs
  4. Sub-Arctic zooplankton replacing cold-adapted taxa
  5. Adaptive management triggers

Sentence endings
A indicate proximity to critical transitions
B ensure abundance metrics remain stable
C can fail to meet predators’ caloric needs
D can drift and increase pup mortality risk
E automatically initiate protective measures
F eliminate the need for scenario planning
G reduces ethical concerns of conservation

Q37–Q40 Short-answer Questions
Answer the questions below.
Choose NO MORE THAN THREE WORDS AND/OR A NUMBER.

  1. What kind of refugia does the passage recommend identifying and protecting?
  2. Which under-ice process is still unresolved in Earth-system models?
  3. Name one stressor, other than climate, that should be reduced.
  4. What demographic parameter do Bayesian frameworks help infer despite limited direct data?

3. Answer Keys – Đáp Án

PASSAGE 1: Questions 1-13

  1. B
  2. B
  3. C
  4. C
  5. C
  6. FALSE
  7. TRUE
  8. FALSE
  9. FALSE
  10. TRUE
  11. birth lairs
  12. polynyas
  13. re-writing

PASSAGE 2: Questions 14-26

  1. NO
  2. YES
  3. NO
  4. YES
  5. NO
  6. iii
  7. vi
  8. viii
  9. ii
  10. v
  11. trophic cascades
  12. bioenergetic ceilings
  13. spatial refugia

PASSAGE 3: Questions 27-40

  1. B
  2. D
  3. C
  4. C
  5. B
  6. D
  7. A
  8. B
  9. C
  10. E
  11. climate refugia
  12. under-ice turbulence
  13. bycatch (or vessel noise)
  14. juvenile survival

4. Giải Thích Đáp Án Chi Tiết

Passage 1 – Giải Thích

Câu 2: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: polar bears; difficulties; hunting; sea ice
  • Vị trí: Đoạn 2, câu 2-4
  • Giải thích: Bài nêu “fewer stable ice floes” khiến gấu phải bơi xa hơn, tốn năng lượng, cơ hội săn mồi giảm. Paraphrase với “sea ice offers fewer stable platforms”.

Câu 4: C

  • Dạng: Multiple Choice
  • Từ khóa: phenological mismatch
  • Vị trí: Đoạn 4
  • Giải thích: Mismatch là “timing of food availability is out of sync” → “the timing of food not matching animal needs”.

Câu 6: FALSE

  • Từ khóa: permanently replace
  • Vị trí: Đoạn 2
  • Giải thích: Văn bản nói “switch temporarily… not reliable and do not replace” → phủ định ý “permanently replace”.

Câu 10: TRUE

  • Từ khóa: specialists vs. flexible species
  • Vị trí: Đoạn cuối
  • Giải thích: “more flexible species do better than specialists” → khẳng định đúng.

Câu 12: polynyas

  • Dạng: Sentence Completion
  • Vị trí: Đoạn 6
  • Giải thích: Định nghĩa rõ “areas of open water surrounded by ice—polynyas”.

Passage 2 – Giải Thích

Câu 14: NO

  • Từ khóa: always
  • Vị trí: A-B
  • Giải thích: Bài nói dù ánh sáng tăng, “transfer efficiency can decline” → không phải lúc nào cũng tăng thức ăn.

Câu 17: YES

  • Vị trí: D
  • Giải thích: “dietary flexibility… energetically insufficient… bounded by bioenergetic ceilings”.

Câu 19: iii

  • Vị trí: B
  • Giải thích: “Sea-ice phenology… seed early food pulses” → vai trò thời điểm băng biển trong cấu trúc nhịp thức ăn.

Câu 23: v

  • Vị trí: F
  • Giải thích: “Temporally dynamic protected areas… anticipatory” → quản lý mục tiêu di động, bảo tồn động.

Câu 24: trophic cascades

  • Vị trí: G
  • Giải thích: “re-timing can trigger trophic cascades”.

Passage 3 – Giải Thích

Câu 28: D

  • Dạng: Multiple Choice
  • Vị trí: Đoạn 3
  • Giải thích: Văn bản nói quản lý thường thiên về “visible die-offs” và đánh giá thấp suy giảm sinh sản trước đó → die-offs có thể che khuất suy giảm sớm.

Câu 30: C

  • Vị trí: Đoạn 5
  • Giải thích: “Bayesian hierarchical frameworks… assimilating disparate data streams” → đáp án C.

Câu 33: A

  • Dạng: Matching Sentence Endings
  • Vị trí: Đoạn 2
  • Giải thích: “rising interannual variance… indicator that systems are approaching critical transitions”.

Câu 37: climate refugia

  • Dạng: Short-answer
  • Vị trí: Đoạn cuối
  • Giải thích: “identifying and protecting climate refugia”.

Câu 40: juvenile survival

  • Vị trí: Đoạn 5
  • Giải thích: Frameworks infer “latent processes such as juvenile survival”.

5. Từ Vựng Quan Trọng Theo Passage

Passage 1 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
retreat v /rɪˈtriːt/ rút lui, thu hẹp sea ice has retreated earlier retreat of sea ice
microscopic algae n /ˌmaɪkrəˈskɒpɪk ˈældʒiː/ tảo hiển vi microscopic algae growing on its underside algae bloom
fragile food web n /ˈfrædʒaɪl/ mạng lưới thức ăn mong manh forming the first link of a fragile food web fragile ecosystem
haul out v/n /hɔːl aʊt/ kéo lên bờ/điểm nghỉ bãi They may haul out on crowded beaches walrus haul-out
phenological mismatch n /ˌfiːnəˈlɒdʒɪkəl ˈmɪsˌmætʃ/ lệch pha mùa vụ Scientists call this phenological mismatch seasonal mismatch
resilience n /rɪˈzɪliəns/ khả năng phục hồi Seabird colonies show both resilience and vulnerability ecological resilience
turbulence n /ˈtɜːbjələns/ nhiễu loạn if winds create turbulence ocean turbulence
polynyas n /ˌpɒlɪˈnjɑːz/ vùng nước mở trong băng identifying key polynyas coastal polynyas
specialists n /ˈspɛʃəlɪsts/ loài chuyên biệt specialists that cannot easily change habitat specialists
re-writing v /ˌriːˈraɪtɪŋ/ viết lại/thay đổi hoàn toàn warming is re-writing the rules re-write the rules
birth lairs n /bɜːθ leəz/ hang sinh sản build birth lairs lair construction
unpredict-able adj /ʌnprɪˈdɪktəbl/ khó đoán unpredictable weather highly unpredictable

Passage 2 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa Ví dụ từ bài Collocation
phenology n /fɪˈnɒlədʒi/ chu kỳ mùa vụ Sea-ice phenology governs… phenology shift
trophic transfer efficiency n /ˈtrəʊfɪk/ hiệu suất chuyển bậc dinh dưỡng transfer efficiency can decline efficient transfer
foraging–parenting trade-off n /ˈfɒrɪdʒɪŋ/ đánh đổi kiếm ăn–nuôi con sharper trade-off manage trade-offs
phenological disruption n /dɪsˈrʌpʃən/ gián đoạn mùa vụ hallmark of phenological disruption severe disruption
plasticity n /plæˈstɪsɪti/ tính linh hoạt predators display plasticity and constraint behavioral plasticity
bioenergetic ceilings n /ˌbaɪəʊˌɛnəˈdʒetɪk ˈsiːlɪŋz/ trần năng lượng sinh học bounded by bioenergetic ceilings energetic ceiling
isotherms n /ˈaɪsəʊθɜːmz/ đường đẳng nhiệt As isotherms move poleward shifting isotherms
haul-outs n /hɔːl aʊts/ bãi nghỉ (hải cẩu/hải mã) in dense haul-outs crowded haul-outs
diagnostic blind spot n /ˌdaɪəɡˈnɒstɪk/ điểm mù chẩn đoán leaving a diagnostic blind spot blind spot in data
spatial refugia n /ˈrefruːdʒə/ nơi trú ẩn không gian focuses on spatial refugia climate refugia
anticipatory adj /ænˈtɪsɪpətəri/ mang tính đón đầu management must be anticipatory anticipatory management
convergent lines of evidence n /kənˈvɜːdʒənt/ bằng chứng hội tụ indicate… convergent lines of evidence convergent evidence
apex predators n /ˈeɪpeks/ động vật săn mồi đỉnh apex predators display apex predator diet
carbon export n /ˈkɑːbən/ xuất thải carbon carbon is exported differently export flux
circulation shifts n /ˌsɜːkjʊˈleɪʃən/ thay đổi dòng chảy reconfigured by temperature and circulation shifts ocean circulation

Passage 3 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa Ví dụ từ bài Collocation
albedo n /ælˈbiːdəʊ/ suất phản chiếu lowered albedo accelerates heating albedo feedback
stratification n /ˌstrætɪfɪˈkeɪʃən/ phân tầng intensifies stratification water-column stratification
euphotic zone n /juːˈfəʊtɪk/ tầng sáng isolating nutrients from the euphotic zone euphotic depth
life-history traits n /laɪf ˈhɪstəri/ đặc tính lịch sử sống intersect with life-history traits life-history strategy
critical transitions n /ˈkrɪtɪkl trænˈzɪʃənz/ chuyển pha tới hạn approaching critical transitions early-warning signals
bioenergetic mismatch n /ˌbaɪəʊˌɛnəˈdʒetɪk/ lệch pha năng lượng a bioenergetic mismatch emerges energetic mismatch
sublethal effects n /ˌsʌbˈliːθl/ tác động dưới ngưỡng chết sublethal effects depress fecundity sublethal stress
maladaptation n /ˌmælæðæpˈteɪʃn/ thích nghi lệch populations may encounter maladaptation evolutionary maladaptation
parameterize v /pəˈræmətraɪz/ tham số hóa parameterize models parameterize behavior
Bayesian hierarchical frameworks n /ˈbeɪziən haɪəˈrɑːkɪkl/ mô hình Bayes phân cấp highlighted for integrating data hierarchical Bayesian model
partial observability n /ˈpɑːʃl əbˌzɜːvəˈbɪləti/ quan sát không đầy đủ model uncertainty and partial observability partially observed
dynamic ocean management n /daɪˈnæmɪk/ quản lý đại dương linh hoạt designates ephemeral features dynamic closures
assisted colonization n /əˈsɪstɪd ˌkɒlənaɪˈzeɪʃən/ di trú hỗ trợ debated strategy assisted migration
functional redundancy n /ˈfʌŋkʃənl rɪˈdʌndənsi/ dư thừa chức năng maintaining functional redundancy redundancy in roles
energetic deficit n /ˌɛnəˈdʒɛtɪk ˈdɛfɪsɪt/ thiếu hụt năng lượng leaving predators in energetic deficit caloric deficit
climate refugia n /ˈklaɪmɪt rɪˈfjuːdʒə/ nơi trú ẩn khí hậu identifying and protecting climate refugia resilient refugia
bycatch n /ˈbaɪkætʃ/ đánh bắt ngoài ý muốn tightening bycatch controls reduce bycatch
telemetry n /təˈlɛmɪtri/ đo đạc từ xa Telemetry and bio-logging quantify movement animal telemetry

Kết bài

Chủ đề How global warming is affecting polar wildlife không chỉ “đinh” về nội dung khoa học – môi trường trong IELTS Reading test mà còn là bối cảnh lý tưởng để bạn luyện kỹ năng paraphrase, suy luận và đọc nhanh theo trình tự. Bộ đề gồm 3 passages tăng dần độ khó giúp bạn làm quen từ mức Band 5.0 lên tới các yêu cầu học thuật cao. Đáp án kèm giải thích đã chỉ ra vị trí, từ khóa, và cách chuyển nghĩa, giúp bạn tự đánh giá và hoàn thiện kỹ thuật xử lý câu hỏi. Hãy lưu bộ đề này như một bài tập IELTS Reading practice quan trọng, ôn lại từ vựng chuyên đề, và áp dụng chiến lược thời gian – thứ tự làm bài để tối ưu band điểm IELTS Reading.

Previous Article

IELTS Reading: Xe Điện Chuyển Đổi Mạng Lưới Giao Thông Toàn Cầu - Đề Thi Mẫu Có Đáp Án Chi Tiết

Next Article

IELTS Reading: Vai trò của AI trong quản lý thảm họa thiên nhiên - Đề thi mẫu có đáp án chi tiết

Write a Comment

Leave a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Đăng ký nhận thông tin bài mẫu

Để lại địa chỉ email của bạn, chúng tôi sẽ thông báo tới bạn khi có bài mẫu mới được biên tập và xuất bản thành công.
Chúng tôi cam kết không spam email ✨