IELTS Reading: Biến Đổi Khí Hậu Và Nguồn Nước Ngọt – Đề Thi Mẫu Có Đáp Án

Mở bài

Chủ đề “How Climate Change Affects Freshwater Availability” (Biến đổi khí hậu ảnh hưởng đến nguồn nước ngọt như thế nào) là một trong những chủ đề môi trường xuất hiện thường xuyên nhất trong IELTS Reading, đặc biệt từ Cambridge IELTS 12 trở về sau. Với tính cấp thiết của vấn đề toàn cầu này, đề tài về nước ngọt, hạn hán, băng tan và chu trình nước thường xuất hiện ở cả ba passages với nhiều góc độ khác nhau.

Trong bài viết này, bạn sẽ được luyện tập với một đề thi IELTS Reading hoàn chỉnh gồm 3 passages theo đúng format thi thật, bao gồm: Passage 1 về tác động cơ bản của biến đổi khí hậu đến nguồn nước; Passage 2 phân tích sâu hơn về các vùng thiếu nước trên thế giới; và Passage 3 thảo luận về các giải pháp công nghệ và chính sách. Mỗi passage đi kèm với 13-14 câu hỏi thuộc 7 dạng khác nhau như Multiple Choice, True/False/Not Given, Yes/No/Not Given, Matching Headings, Summary Completion và nhiều dạng khác.

Đề thi này phù hợp cho học viên từ band 5.0 trở lên, với độ khó tăng dần giúp bạn làm quen với cấu trúc thực tế của kỳ thi IELTS. Phần đáp án chi tiết kèm giải thích và bảng từ vựng sẽ giúp bạn không chỉ kiểm tra kết quả mà còn nâng cao kỹ năng đọc hiểu một cách bài bản.

Hướng Dẫn Làm Bài IELTS Reading

Tổng Quan Về IELTS Reading Test

IELTS Reading Test kéo dài 60 phút để hoàn thành 3 passages với tổng cộng 40 câu hỏi. Mỗi câu trả lời đúng được tính 1 điểm, không bị trừ điểm khi sai. Điểm số thô sẽ được quy đổi thành band điểm từ 1-9.

Phân bổ thời gian khuyến nghị:

  • Passage 1: 15-17 phút (độ khó thấp nhất)
  • Passage 2: 18-20 phút (độ khó trung bình)
  • Passage 3: 23-25 phút (độ khó cao nhất)

Lưu ý quan trọng: Không có thời gian chuyển đáp án riêng, vì vậy bạn phải ghi đáp án trực tiếp vào phiếu trả lời trong 60 phút.

Các Dạng Câu Hỏi Trong Đề Này

Đề thi mẫu này bao gồm 7 dạng câu hỏi phổ biến nhất trong IELTS Reading:

  1. Multiple Choice – Câu hỏi trắc nghiệm
  2. True/False/Not Given – Xác định thông tin đúng/sai/không đề cập
  3. Matching Information – Nối thông tin với đoạn văn
  4. Sentence Completion – Hoàn thành câu
  5. Yes/No/Not Given – Đồng ý/không đồng ý với quan điểm tác giả
  6. Matching Headings – Nối tiêu đề với đoạn văn
  7. Summary Completion – Hoàn thành đoạn tóm tắt

Hãy đọc kỹ instructions của từng dạng câu hỏi để tránh mất điểm oan.


IELTS Reading Practice Test

PASSAGE 1 – The Water Crisis: Climate Change and Freshwater Resources

Độ khó: Easy (Band 5.0-6.5)

Thời gian đề xuất: 15-17 phút

Water is essential for life, yet its availability is becoming increasingly uncertain due to climate change. Freshwater resources, which constitute only 2.5% of all water on Earth, are under unprecedented pressure as global temperatures rise and weather patterns shift dramatically. Understanding how climate change affects these vital resources is crucial for ensuring water security for future generations.

The most obvious impact of climate change on freshwater availability is through altered precipitation patterns. Many regions that traditionally received regular rainfall are now experiencing either prolonged droughts or intense flooding. The Intergovernmental Panel on Climate Change (IPCC) reports that wet regions are generally becoming wetter, while dry regions are becoming drier. This polarization means that areas already facing water scarcity will likely experience even more severe shortages in the coming decades. For example, the Mediterranean region and parts of sub-Saharan Africa are projected to face significant reductions in freshwater availability by 2050.

Glaciers and snowpack, which act as natural water storage systems, are melting at alarming rates. These frozen reservoirs release water gradually during warmer months, providing a steady supply to rivers and groundwater systems. However, rising temperatures are causing them to melt faster and earlier in the year. The Himalayan glaciers, often called the “Third Pole,” supply water to major rivers like the Ganges, Indus, and Yangtze, which support over 1.5 billion people. Scientists estimate that these glaciers could lose up to two-thirds of their volume by the end of this century if current warming trends continue.

Rising temperatures also increase evaporation rates from lakes, rivers, and soil. When water evaporates more quickly than it can be replenished by precipitation or snowmelt, water bodies shrink. The Aral Sea in Central Asia, once the world’s fourth-largest lake, has lost more than 90% of its volume since the 1960s due to a combination of irrigation practices and increased evaporation. Similarly, Lake Chad in Africa has shrunk by approximately 95% over the past 60 years, affecting millions of people who depend on it for drinking water, agriculture, and fishing.

Groundwater depletion is another critical concern exacerbated by climate change. As surface water becomes less reliable, communities increasingly turn to underground aquifers for their water needs. However, these aquifers are being extracted faster than they can be naturally recharged. The combination of increased demand and reduced recharge rates due to decreased precipitation creates a dangerous situation. India’s groundwater crisis is particularly severe, with studies showing that the country is extracting groundwater at unsustainable rates, threatening the water security of hundreds of millions of people.

The quality of freshwater is also being compromised by climate change. Higher temperatures promote the growth of harmful algae blooms in lakes and reservoirs, making water unsafe for consumption and recreational use. Additionally, extreme weather events such as hurricanes and floods can contaminate water supplies with pollutants, sewage, and saltwater intrusion in coastal areas. The increased frequency and intensity of these events mean that water treatment facilities face greater challenges in maintaining safe drinking water standards.

Ecosystems that depend on freshwater are experiencing significant stress. Wetlands, which act as natural water filters and flood buffers, are disappearing at three times the rate of forests. Rivers are experiencing altered flow patterns, affecting the breeding cycles of fish and other aquatic species. The Colorado River in the United States, for instance, now rarely reaches the ocean due to a combination of overuse and climate-induced drought, causing the collapse of important delta ecosystems in Mexico.

Despite these challenges, there are reasons for cautious optimism. Many countries are implementing water conservation strategies and investing in climate adaptation measures. Technologies such as drip irrigation, rainwater harvesting, and wastewater recycling are becoming more widespread. International cooperation on transboundary water management is improving, recognizing that rivers and aquifers often cross national borders. Scientists are also developing drought-resistant crops and improving water efficiency in industrial processes.

Public awareness about water conservation is growing, particularly among younger generations. Educational programs emphasizing the link between individual actions and water security are helping to change behaviors. Simple measures like fixing leaks, using water-efficient appliances, and reducing water-intensive consumption can collectively make a significant difference. However, systemic changes in water governance, pricing policies, and infrastructure investment are essential to address the scale of the challenge posed by climate change to freshwater availability.

Biến đổi khí hậu đang làm thay đổi nguồn nước ngọt toàn cầu với sông băng tan và hạn hán nghiêm trọngBiến đổi khí hậu đang làm thay đổi nguồn nước ngọt toàn cầu với sông băng tan và hạn hán nghiêm trọng

Questions 1-13

Questions 1-5: Multiple Choice

Choose the correct letter, A, B, C, or D.

  1. According to the passage, what percentage of Earth’s water is freshwater?

    • A. 0.25%
    • B. 2.5%
    • C. 25%
    • D. 52%
  2. The IPCC reports that climate change is causing:

    • A. all regions to become wetter
    • B. all regions to become drier
    • C. wet regions wetter and dry regions drier
    • D. unpredictable changes with no clear pattern
  3. The Himalayan glaciers are important because they:

    • A. are the largest glaciers in the world
    • B. supply water to over 1.5 billion people
    • C. are melting slower than other glaciers
    • D. contain two-thirds of the world’s ice
  4. What has happened to the Aral Sea since the 1960s?

    • A. It has doubled in size
    • B. It has remained stable
    • C. It has lost more than 90% of its volume
    • D. It has become the world’s fourth-largest lake
  5. According to the passage, which technology is mentioned as a water conservation strategy?

    • A. desalination plants
    • B. cloud seeding
    • C. drip irrigation
    • D. hydroelectric dams

Questions 6-9: True/False/Not Given

Do the following statements agree with the information given in the passage? Write:

  • TRUE if the statement agrees with the information
  • FALSE if the statement contradicts the information
  • NOT GIVEN if there is no information on this
  1. The Mediterranean region will experience increased freshwater availability by 2050.
  2. The Colorado River currently flows continuously to the ocean.
  3. Wetlands are disappearing faster than forests.
  4. All countries have signed international agreements on water management.

Questions 10-13: Sentence Completion

Complete the sentences below. Choose NO MORE THAN TWO WORDS from the passage for each answer.

  1. Glaciers and snowpack function as natural __ __ that release water gradually.

  2. Higher temperatures encourage the growth of __ __ __ in water bodies.

  3. India is extracting groundwater at __ __ that threaten water security.

  4. Scientists are developing __ __ to help address water scarcity issues.


PASSAGE 2 – Regional Water Scarcity: A Global Perspective

Độ khó: Medium (Band 6.0-7.5)

Thời gian đề xuất: 18-20 phút

The geographical distribution of freshwater resources has always been inherently uneven, but climate change is amplifying these disparities to critical levels. While some regions grapple with devastating floods, others face crippling water shortages that threaten not only human survival but also economic stability and geopolitical security. This dichotomy presents one of the most pressing challenges of the 21st century, requiring both localized solutions and coordinated international responses.

Sub-Saharan Africa represents perhaps the most acute example of climate-induced water stress. The region is home to approximately 400 million people who lack access to safe drinking water, a figure that could increase dramatically as precipitation patterns continue to shift. The Sahel region, a semi-arid zone spanning the continent from Senegal to Sudan, has experienced recurrent droughts that have decimated agricultural production and forced millions into displacement. What makes this situation particularly precarious is the region’s heavy dependence on rain-fed agriculture, which accounts for over 95% of farming activity. Unlike regions with extensive irrigation infrastructure, these communities have limited capacity to buffer against rainfall variability.

The Middle East and North Africa (MENA) region faces a different but equally formidable challenge. Already the world’s most water-scarce region, MENA countries are experiencing accelerated depletion of their groundwater reserves. The Arabian Aquifer System, one of the world’s largest, is being extracted at rates far exceeding natural recharge. Saudi Arabia, which once prided itself on wheat self-sufficiency through desert agriculture, has been forced to phase out domestic production due to aquifer exhaustion. The country now relies almost entirely on imports and is investing heavily in desalination technology, which currently provides approximately 50% of its drinking water but requires enormous energy inputs and produces environmentally problematic brine waste.

South Asia presents a paradox of water abundance and scarcity. While the region receives substantial monsoon rainfall, it also faces severe water stress due to population density, inefficient water use, and increasing climate variability. The Indus River Basin, shared by Pakistan, India, China, and Afghanistan, exemplifies the complex interplay between climate change and water geopolitics. Glacier melt in the Himalayas initially increases water flow, creating a deceptive abundance. However, as glaciers shrink, this flow will diminish, potentially triggering conflicts over water allocation among countries already in contentious relationships. Bangladesh faces the additional threat of saltwater intrusion from sea-level rise, which is contaminating agricultural land and freshwater sources in the Ganges Delta, one of the world’s most densely populated regions.

Australia’s experience with prolonged drought offers valuable lessons in adaptation. The Millennium Drought (1997-2009) forced the country to reimagine its water management entirely. Major cities implemented stringent water restrictions, invested in large-scale desalination plants, and developed sophisticated recycled water systems. The Murray-Darling Basin, Australia’s agricultural heartland, underwent controversial reforms to reallocate water from agricultural use to environmental flows, recognizing that ecosystem health is integral to long-term water security. While these measures were initially met with resistance, they have proven instrumental in building resilience against climate variability.

In stark contrast, several regions are experiencing increased water availability, though not always in beneficial ways. Parts of East Africa and South America are receiving more rainfall, but often in the form of intense, sporadic events rather than the steady precipitation needed for agriculture. These downpours lead to runoff and flooding rather than groundwater recharge, and the increased sediment load can damage hydroelectric facilities and irrigation infrastructure. The paradox of having “too much water at the wrong time” is becoming increasingly common, requiring new storage solutions and flood management systems.

North America faces multifaceted water challenges across different regions. The Colorado River Basin, which supplies water to 40 million people across seven U.S. states and Mexico, is experiencing its worst megadrought in 1,200 years. Lake Mead and Lake Powell, the basin’s primary reservoirs, have dropped to historically low levels, triggering mandatory water cuts. Meanwhile, the western Canadian provinces are witnessing changes in snowpack dynamics that affect spring runoff patterns, impacting both hydroelectric generation and salmon populations. Conversely, the eastern seaboard has seen increased flooding events, with aging infrastructure struggling to cope with more intense precipitation.

Europe is not immune to these trends. The 2018 and 2022 European heatwaves brought unprecedented drought to typically water-rich countries like Germany, France, and the United Kingdom. The Rhine River, a critical commercial waterway, reached such low levels that barge traffic was severely restricted, disrupting supply chains across the continent. Southern European countries are experiencing Mediterranean-ization, with longer, drier summers and shorter, more intense wet seasons. This shift is fundamentally altering agricultural possibilities, with traditional crops like olives and grapes moving northward while previously fertile areas become less viable.

The socioeconomic implications of these changes are profound. Water scarcity can exacerbate existing inequalities, as wealthier communities can afford alternative water sources while poor populations suffer disproportionately. The concept of “water refugees” – people forced to migrate due to water scarcity – is gaining recognition, with estimates suggesting that by 2030, water scarcity could displace up to 700 million people globally. This movement can strain urban resources, create social tensions, and destabilize entire regions, making water security not just an environmental issue but a matter of international peace and stability.

Questions 14-26

Questions 14-18: Yes/No/Not Given

Do the following statements agree with the views of the writer in the passage? Write:

  • YES if the statement agrees with the claims of the writer
  • NO if the statement contradicts the claims of the writer
  • NOT GIVEN if it is impossible to say what the writer thinks about this
  1. Climate change is making the distribution of freshwater resources more unequal.
  2. The Sahel region has better irrigation infrastructure than most other African regions.
  3. Saudi Arabia’s wheat production program was environmentally sustainable.
  4. Desalination technology is the best long-term solution for water scarcity.
  5. Australia’s water management reforms were initially popular with all stakeholders.

Questions 19-23: Matching Information

The passage has nine paragraphs (1-9). Which paragraph contains the following information? You may use any letter more than once.

  1. A description of how increased rainfall can still cause water problems
  2. An example of a country that had to stop producing a major crop
  3. Information about potential climate-induced migration numbers
  4. A reference to how water scarcity affects different social classes
  5. Details about a river system shared by multiple countries

Questions 24-26: Summary Completion

Complete the summary below. Choose NO MORE THAN TWO WORDS from the passage for each answer.

The Colorado River Basin is experiencing its worst 24. __ in over a millennium, affecting 40 million people. The basin’s main 25. __, Lake Mead and Lake Powell, have reached record low levels. This has resulted in 26. __ __ __ being imposed on water usage.

Bản đồ thế giới thể hiện các khu vực khan hiếm nước nghiêm trọng do biến đổi khí hậu gây raBản đồ thế giới thể hiện các khu vực khan hiếm nước nghiêm trọng do biến đổi khí hậu gây ra


PASSAGE 3 – Innovative Solutions and Policy Frameworks for Water Security

Độ khó: Hard (Band 7.0-9.0)

Thời gian đề xuất: 23-25 phút

The confluence of climate change, population growth, and increasing per capita water consumption has precipitated a global reassessment of how freshwater resources are managed, allocated, and conserved. While the challenges are formidable, they have also catalyzed remarkable innovation in water technology, governance structures, and behavioural frameworks. The transition toward sustainable water management requires not merely incremental improvements but rather paradigm shifts in how societies perceive, value, and steward this most fundamental resource.

Technological interventions represent one critical pillar of the solution architecture. Advanced desalination technologies are evolving beyond traditional thermal and reverse osmosis methods, which are notoriously energy-intensive. Forward osmosis, which exploys natural osmotic pressure rather than applied pressure, reduces energy consumption by up to 90% compared to conventional reverse osmosis. Graphene-based membranes, still in experimental phases, promise even greater efficiency by allowing water molecules to pass while blocking salts and contaminants at the molecular level. Singapore’s NEWater program exemplifies successful large-scale implementation of advanced water reclamation. Through multiple-barrier treatment processes including microfiltration, reverse osmosis, and ultraviolet disinfection, the city-state recycles wastewater to meet 40% of its current water demand, with plans to increase this to 55% by 2060.

Atmospheric water generation (AWG) technology, once relegated to science fiction, is becoming commercially viable. These systems extract water vapor from ambient air through condensation or desiccant-based processes. While current models require significant energy input and perform optimally only in humid conditions, innovations in solar-powered AWG units and metal-organic framework (MOF) materials that can extract water even from arid environments are showing promise. The Massachusetts Institute of Technology has developed MOF-based devices capable of harvesting water in desert conditions with humidity as low as 20%, potentially offering decentralized water solutions for remote communities.

Agricultural water management demands particular attention given that irrigation accounts for approximately 70% of global freshwater withdrawals. Precision agriculture, enabled by satellite imagery, soil moisture sensors, and artificial intelligence algorithms, allows farmers to apply water with unprecedented accuracy. Variable rate irrigation systems can adjust water delivery to specific sections of a field based on real-time crop needs, soil conditions, and weather forecasts, reducing water usage by 20-50% while maintaining or improving yields. Subsurface drip irrigation, which delivers water directly to root zones, minimizes evaporative losses and prevents waterlogging and salinization. Israel, a pioneer in agricultural water efficiency, has achieved remarkable productivity gains by mandating drip irrigation and recycling over 90% of its wastewater for agricultural use, the highest rate globally.

Emerging biotechnologies offer complementary strategies. Genetic modification and selective breeding programs are developing crop varieties with enhanced drought tolerance and water-use efficiency. The introduction of C4 photosynthetic pathways into C3 crops like rice could potentially reduce water requirements by 25-30% while increasing photosynthetic efficiency. Crassulacean acid metabolism (CAM) engineering, which allows plants to open their stomata at night rather than during the day to minimize transpiration losses, represents another promising avenue. However, these biotechnological approaches face significant regulatory hurdles and public skepticism, particularly in regions where genetically modified organisms remain contentious.

Nature-based solutions are gaining recognition as cost-effective complements to engineered infrastructure. Wetland restoration provides natural water filtration, flood attenuation, and groundwater recharge at a fraction of the cost of conventional water treatment facilities. New York City’s watershed protection program, which invested in conservation easements and sustainable forestry practices in the Catskill Mountains rather than building a filtration plant, saves the city approximately $300 million annually while providing superior water quality. Urban green infrastructure – including bioswales, rain gardens, permeable pavements, and green roofs – manages stormwater while reducing urban heat island effects and improving livability. Copenhagen’s Cloudburst Management Plan integrates such features to handle the increasing intensity of rainfall events, transforming potential flood zones into recreational spaces during dry periods.

Policy frameworks and governance mechanisms are equally critical to technological solutions. Effective water management requires transparent allocation systems, appropriate pricing mechanisms, and robust enforcement. The concept of Integrated Water Resources Management (IWRM), promoted by the Global Water Partnership, emphasizes coordinated development of water, land, and related resources to maximize economic welfare and social equity without compromising ecosystem sustainability. Australia’s implementation of water markets in the Murray-Darling Basin has created tradeable water rights separate from land ownership, allowing water to flow to its most economically productive uses while maintaining environmental allocations. Though initially controversial, this approach has improved allocative efficiency and provided economic resilience during droughts.

Transboundary water cooperation presents both challenges and opportunities. Over 260 river basins and numerous aquifer systems cross international boundaries, making unilateral management impossible. The UN Watercourses Convention and regional agreements like the Mekong River Commission provide frameworks for equitable and reasonable utilization of shared resources. The Indus Waters Treaty between India and Pakistan, despite broader political tensions, has survived multiple conflicts and demonstrates how water diplomacy can foster stability. However, upstream-downstream dynamics often create power asymmetries, and as water scarcity intensifies, the potential for “water wars” – though historically rare – cannot be dismissed. Climate change adds complexity by altering river flows and groundwater recharge rates, potentially invalidating agreements based on historical hydrological patterns.

Economic instruments can incentivize conservation and efficiency. Progressive pricing structures that charge higher rates for excessive consumption encourage judicious water use while maintaining affordability for basic needs. Payment for ecosystem services (PES) schemes compensate upstream landowners for practices that protect watershed functions, creating financial incentives for conservation. Water footprint assessments and disclosure requirements increase corporate accountability and consumer awareness about the embedded water in products and supply chains. Companies like Levi Strauss and Microsoft have achieved significant water reductions by mapping their water footprints and implementing targeted interventions at the most water-intensive stages of production.

Ultimately, addressing climate-induced freshwater scarcity requires holistic approaches that integrate technology, policy, economics, and social dimensions. Cultural shifts toward viewing water as a precious rather than abundant resource are essential. Education programs that build water literacy, participatory governance structures that include marginalized voices, and traditional knowledge systems that have sustained communities through past climatic variations all contribute valuable insights. The challenge is immense, but the growing recognition of water security as foundational to human wellbeing and ecological integrity is mobilizing unprecedented collaborative efforts across sectors and borders. Success will depend not on any single silver bullet but on the synergistic implementation of diverse strategies tailored to specific regional contexts while maintaining global solidarity around this shared existential challenge.

Questions 27-40

Questions 27-31: Multiple Choice

Choose the correct letter, A, B, C, or D.

  1. According to the passage, forward osmosis technology:

    • A. uses more energy than reverse osmosis
    • B. is still in the experimental phase
    • C. reduces energy consumption by up to 90%
    • D. is widely used in Singapore
  2. Singapore’s NEWater program aims to meet what percentage of water demand by 2060?

    • A. 40%
    • B. 45%
    • C. 50%
    • D. 55%
  3. The passage suggests that MOF-based water harvesting devices can operate in:

    • A. only humid conditions above 80% humidity
    • B. conditions with as low as 20% humidity
    • C. any atmospheric condition
    • D. temperatures below freezing
  4. According to the passage, what percentage of global freshwater withdrawals does irrigation account for?

    • A. 50%
    • B. 60%
    • C. 70%
    • D. 80%
  5. The Indus Waters Treaty demonstrates that:

    • A. water conflicts are inevitable
    • B. water diplomacy can survive political tensions
    • C. upstream countries have more power
    • D. climate change invalidates water agreements

Questions 32-36: Matching Features

Match the following locations (A-F) with the correct description (32-36). You may use any letter more than once.

Locations:

  • A. Israel
  • B. Singapore
  • C. New York City
  • D. Australia
  • E. Copenhagen
  • F. Massachusetts Institute of Technology
  1. Developed devices that can extract water in very low humidity conditions
  2. Has the highest wastewater recycling rate globally
  3. Implemented a watershed protection program instead of building a filtration plant
  4. Created tradeable water rights separate from land ownership
  5. Designed a plan that transforms flood zones into recreational spaces

Questions 37-40: Short-answer Questions

Answer the questions below. Choose NO MORE THAN THREE WORDS from the passage for each answer.

  1. What type of irrigation system delivers water directly to plant root zones?

  2. What process involves opening stomata at night to reduce water loss?

  3. What term describes the water contained in products throughout their production?

  4. What concept promotes coordinated development of water, land and related resources?

Các công nghệ tiên tiến giúp bảo vệ và tiết kiệm nguồn nước ngọt trước biến đổi khí hậuCác công nghệ tiên tiến giúp bảo vệ và tiết kiệm nguồn nước ngọt trước biến đổi khí hậu


Answer Keys – Đáp Án

PASSAGE 1: Questions 1-13

  1. B
  2. C
  3. B
  4. C
  5. C
  6. FALSE
  7. FALSE
  8. TRUE
  9. NOT GIVEN
  10. water storage / storage systems
  11. harmful algae blooms
  12. unsustainable rates
  13. drought-resistant crops

PASSAGE 2: Questions 14-26

  1. YES
  2. NO
  3. NO
  4. NOT GIVEN
  5. NO
  6. Paragraph 6
  7. Paragraph 3
  8. Paragraph 9
  9. Paragraph 9
  10. Paragraph 4
  11. megadrought
  12. reservoirs
  13. mandatory water cuts

PASSAGE 3: Questions 27-40

  1. C
  2. D
  3. B
  4. C
  5. B
  6. F
  7. A
  8. C
  9. D
  10. E
  11. Subsurface drip irrigation / Drip irrigation
  12. Crassulacean acid metabolism / CAM
  13. Embedded water / Water footprint
  14. Integrated Water Resources / IWRM

Giải Thích Đáp Án Chi Tiết

Passage 1 – Giải Thích

Câu 1: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: percentage, Earth’s water, freshwater
  • Vị trí trong bài: Đoạn 1, dòng 2-3
  • Giải thích: Bài viết nói rõ “Freshwater resources, which constitute only 2.5% of all water on Earth” – nguồn nước ngọt chỉ chiếm 2.5% tổng lượng nước trên Trái Đất.

Câu 2: C

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: IPCC, climate change, causing
  • Vị trí trong bài: Đoạn 2, dòng 3-5
  • Giải thích: IPCC báo cáo rằng “wet regions are generally becoming wetter, while dry regions are becoming drier” – vùng ẩm ướt ngày càng ẩm hơn, vùng khô hạn ngày càng khô hơn.

Câu 3: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: Himalayan glaciers, important
  • Vị trí trong bài: Đoạn 3, dòng 4-6
  • Giải thích: Bài viết khẳng định băng tan Himalaya “supply water to major rivers… which support over 1.5 billion people” – cung cấp nước cho hơn 1.5 tỷ người.

Câu 6: FALSE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: Mediterranean region, increased freshwater availability
  • Vị trí trong bài: Đoạn 2, dòng 7-9
  • Giải thích: Bài viết nói Mediterranean region “are projected to face significant reductions in freshwater availability” – dự báo sẽ giảm đáng kể nguồn nước ngọt, trái ngược với thông tin trong câu hỏi.

Câu 8: TRUE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: Wetlands, disappearing, faster than forests
  • Vị trí trong bài: Đoạn 7, dòng 2-3
  • Giải thích: Bài viết khẳng định “Wetlands… are disappearing at three times the rate of forests” – vùng đất ngập nước đang biến mất với tốc độ gấp ba lần rừng.

Câu 10: water storage / storage systems

  • Dạng câu hỏi: Sentence Completion
  • Từ khóa: Glaciers, snowpack, function, natural
  • Vị trí trong bài: Đoạn 3, dòng 1-2
  • Giải thích: Cụm từ chính xác trong bài là “natural water storage systems” – hệ thống lưu trữ nước tự nhiên.

Passage 2 – Giải Thích

Câu 14: YES

  • Dạng câu hỏi: Yes/No/Not Given
  • Từ khóa: Climate change, distribution, freshwater, more unequal
  • Vị trí trong bài: Đoạn 1, dòng 1-3
  • Giải thích: Tác giả nói rõ “climate change is amplifying these disparities to critical levels” – biến đổi khí hậu đang khuếch đại sự chênh lệch này, tức là làm cho phân bố nước ngọt ngày càng bất bình đẳng hơn.

Câu 15: NO

  • Dạng câu hỏi: Yes/No/Not Given
  • Từ khóa: Sahel region, better irrigation infrastructure
  • Vị trí trong bài: Đoạn 2, dòng 6-8
  • Giải thích: Bài viết nói “Unlike regions with extensive irrigation infrastructure, these communities have limited capacity” – không giống các khu vực có cơ sở hạ tầng tưới tiêu rộng rãi, các cộng đồng này có khả năng hạn chế, nghĩa là Sahel không có cơ sở hạ tầng tốt.

Câu 19: Paragraph 6

  • Dạng câu hỏi: Matching Information
  • Từ khóa: increased rainfall, still cause, water problems
  • Vị trí trong bài: Đoạn 6, toàn đoạn
  • Giải thích: Đoạn 6 mô tả “paradox of having too much water at the wrong time” – nghịch lý có quá nhiều nước vào sai thời điểm, giải thích cách lượng mưa tăng vẫn gây vấn đề do đổ xuống dạng sự kiện cường độ cao thay vì mưa đều.

Câu 24: megadrought

  • Dạng câu hỏi: Summary Completion
  • Từ khóa: Colorado River Basin, worst, over a millennium
  • Vị trí trong bài: Đoạn 7, dòng 2-3
  • Giải thích: Bài viết sử dụng từ “megadrought” – hạn hán cực đại, kéo dài trong 1,200 năm.

Passage 3 – Giải Thích

Câu 27: C

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: forward osmosis, energy
  • Vị trí trong bài: Đoạn 2, dòng 3-5
  • Giải thích: Bài viết nói rõ “reduces energy consumption by up to 90% compared to conventional reverse osmosis” – giảm tiêu thụ năng lượng tới 90%.

Câu 29: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: MOF-based devices, humidity
  • Vị trí trong bài: Đoạn 3, dòng 5-7
  • Giải thích: MIT đã phát triển thiết bị “capable of harvesting water in desert conditions with humidity as low as 20%” – có thể thu hoạch nước ở độ ẩm thấp tới 20%.

Câu 31: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: Indus Waters Treaty, demonstrates
  • Vị trí trong bài: Đoạn 8, dòng 4-6
  • Giải thích: Bài viết khẳng định hiệp ước “has survived multiple conflicts and demonstrates how water diplomacy can foster stability” – đã tồn tại qua nhiều xung đột và cho thấy ngoại giao nước có thể thúc đẩy ổn định.

Câu 37: Subsurface drip irrigation / Drip irrigation

  • Dạng câu hỏi: Short-answer Questions
  • Từ khóa: irrigation system, delivers water, root zones
  • Vị trí trong bài: Đoạn 4, dòng 5-6
  • Giải thích: Bài viết mô tả “Subsurface drip irrigation, which delivers water directly to root zones” – tưới nhỏ giọt dưới bề mặt, cung cấp nước trực tiếp tới vùng rễ.

Câu 40: Integrated Water Resources / IWRM

  • Dạng câu hỏi: Short-answer Questions
  • Từ khóa: concept, coordinated development, water, land, related resources
  • Vị trí trong bài: Đoạn 7, dòng 3-5
  • Giải thích: Khái niệm “Integrated Water Resources Management (IWRM)” nhấn mạnh phát triển phối hợp của nước, đất và các nguồn lực liên quan.

Từ Vựng Quan Trọng Theo Passage

Passage 1 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
unprecedented adj /ʌnˈpres.ɪ.den.tɪd/ chưa từng có, chưa có tiền lệ under unprecedented pressure unprecedented levels/scale/challenges
altered adj /ˈɔːl.təd/ bị thay đổi, biến đổi altered precipitation patterns altered state/form/version
prolonged adj /prəˈlɒŋd/ kéo dài,éo dài prolonged droughts prolonged period/drought/exposure
polarization n /ˌpəʊ.lər.aɪˈzeɪ.ʃən/ sự phân cực This polarization means political/social polarization
alarming adj /əˈlɑː.mɪŋ/ đáng báo động, gây lo ngại melting at alarming rates alarming rate/trend/increase
steady supply n phrase /ˈsted.i səˈplaɪ/ nguồn cung cấp ổn định providing a steady supply maintain/ensure a steady supply
evaporation n /ɪˌvæp.əˈreɪ.ʃən/ sự bốc hơi increase evaporation rates rate of evaporation
snowmelt n /ˈsnəʊ.melt/ nước tuyết tan replenished by snowmelt seasonal snowmelt
exacerbated v (past) /ɪɡˈzæs.ə.beɪ.tɪd/ làm trầm trọng thêm exacerbated by climate change exacerbate the problem/situation
aquifers n /ˈæk.wɪ.fəz/ tầng ngậm nước underground aquifers groundwater aquifers
recharge rates n phrase /ˌriːˈtʃɑːdʒ reɪts/ tốc độ nạp lại reduced recharge rates natural recharge rate
compromised v (past) /ˈkɒm.prə.maɪzd/ bị tổn hại, làm giảm chất lượng being compromised by compromised safety/quality
algae blooms n phrase /ˈæl.dʒiː bluːmz/ sự nở hoa tảo harmful algae blooms toxic algae blooms
contaminate v /kənˈtæm.ɪ.neɪt/ làm ô nhiễm contaminate water supplies contaminate soil/water/food
transboundary adj /trænzˈbaʊn.dər.i/ xuyên biên giới transboundary water management transboundary cooperation/issues

Passage 2 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
geographical distribution n phrase /ˌdʒiː.əˈɡræf.ɪ.kəl ˌdɪs.trɪˈbjuː.ʃən/ phân bố địa lý geographical distribution of freshwater uneven geographical distribution
amplifying v /ˈæm.plɪ.faɪ.ɪŋ/ khuếch đại, phóng đại amplifying these disparities amplify the effects/impact
grapple with v phrase /ˈɡræp.əl wɪð/ vật lộn với, đối mặt với grapple with devastating floods grapple with challenges/problems
crippling adj /ˈkrɪp.lɪŋ/ tàn phá, làm tê liệt crippling water shortages crippling debt/sanctions
geopolitical adj /ˌdʒiː.əʊ.pəˈlɪt.ɪ.kəl/ địa chính trị geopolitical security geopolitical tensions/risks
acute adj /əˈkjuːt/ nghiêm trọng, cấp tính most acute example acute shortage/crisis
recurrent adj /rɪˈkʌr.ənt/ tái diễn, lặp lại recurrent droughts recurrent problem/theme
decimated v (past) /ˈdes.ɪ.meɪ.tɪd/ tàn phá nặng nề decimated agricultural production decimated population/economy
precarious adj /prɪˈkeə.ri.əs/ bấp bênh, không chắc chắn particularly precarious precarious situation/position
rain-fed agriculture n phrase /reɪn fed ˈæɡ.rɪ.kʌl.tʃər/ nông nghiệp phụ thuộc mưa heavy dependence on rain-fed agriculture rain-fed farming system
formidable adj /ˈfɔː.mɪ.də.bəl/ ghê gớm, đáng gờm equally formidable challenge formidable opponent/task
depletion n /dɪˈpliː.ʃən/ sự cạn kiệt accelerated depletion resource depletion
paradox n /ˈpær.ə.dɒks/ nghịch lý presents a paradox apparent paradox
contentious adj /kənˈten.ʃəs/ gây tranh cãi in contentious relationships contentious issue/debate
saltwater intrusion n phrase /ˈsɔːlt.wɔː.tər ɪnˈtruː.ʒən/ xâm nhập mặn threat of saltwater intrusion prevent saltwater intrusion
megadrought n /ˈmeɡ.ə.draʊt/ hạn hán cực đại worst megadrought unprecedented megadrought
multifaceted adj /ˌmʌl.tiˈfæs.ɪ.tɪd/ nhiều mặt, đa diện multifaceted water challenges multifaceted approach/problem
socioeconomic adj /ˌsəʊ.si.əʊ.iː.kəˈnɒm.ɪk/ kinh tế xã hội socioeconomic implications socioeconomic factors/status

Passage 3 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
confluence n /ˈkɒn.flu.əns/ sự hội tụ confluence of climate change confluence of factors/events
precipitated v (past) /prɪˈsɪp.ɪ.teɪ.tɪd/ gây ra, thúc đẩy precipitated a global reassessment precipitate a crisis/change
catalyzed v (past) /ˈkæt.əl.aɪzd/ xúc tác, thúc đẩy catalyzed remarkable innovation catalyze growth/change
paradigm shifts n phrase /ˈpær.ə.daɪm ʃɪfts/ sự thay đổi mô hình tư duy requires paradigm shifts paradigm shift in thinking
steward v /ˈstjuː.əd/ quản lý, chăm sóc steward this resource steward resources/environment
notoriously adv /nəʊˈtɔː.ri.əs.li/ khét tiếng, nổi tiếng xấu notoriously energy-intensive notoriously difficult/unreliable
reverse osmosis n phrase /rɪˌvɜːs ɒzˈməʊ.sɪs/ thẩm thấu ngược traditional reverse osmosis reverse osmosis system
contaminants n /kənˈtæm.ɪ.nənts/ chất gây ô nhiễm blocking contaminants remove/filter contaminants
microfiltration n /ˌmaɪ.krəʊ.fɪlˈtreɪ.ʃən/ lọc vi sinh processes including microfiltration microfiltration membrane
atmospheric adj /ˌæt.məsˈfer.ɪk/ thuộc khí quyển atmospheric water generation atmospheric conditions/pressure
relegated v (past) /ˈrel.ɪ.ɡeɪ.tɪd/ đẩy xuống, hạ thấp once relegated to science fiction relegated to secondary position
desiccant n /ˈdes.ɪ.kənt/ chất hút ẩm desiccant-based processes desiccant material/system
precision agriculture n phrase /prɪˈsɪʒ.ən ˈæɡ.rɪ.kʌl.tʃər/ nông nghiệp chính xác Precision agriculture enabled by precision farming techniques
unprecedented accuracy n phrase /ʌnˈpres.ɪ.den.tɪd ˈæk.jʊ.rə.si/ độ chính xác chưa từng có with unprecedented accuracy achieve unprecedented accuracy
evaporative losses n phrase /ɪˈvæp.ər.ə.tɪv ˈlɒs.ɪz/ mất mát do bốc hơi minimizes evaporative losses reduce evaporative losses
biotechnologies n /ˌbaɪ.əʊ.tekˈnɒl.ə.dʒiz/ công nghệ sinh học Emerging biotechnologies advanced biotechnologies
drought tolerance n phrase /draʊt ˈtɒl.ər.əns/ khả năng chịu hạn enhanced drought tolerance improve drought tolerance
photosynthetic efficiency n phrase /ˌfəʊ.təʊ.sɪnˈθet.ɪk ɪˈfɪʃ.ən.si/ hiệu suất quang hợp increasing photosynthetic efficiency maximize photosynthetic efficiency
transpiration n /ˌtræn.spɪˈreɪ.ʃən/ sự thoát hơi nước minimize transpiration losses rate of transpiration
wetland restoration n phrase /ˈwet.lænd ˌres.təˈreɪ.ʃən/ phục hồi vùng đất ngập nước Wetland restoration provides wetland conservation/protection
flood attenuation n phrase /flʌd əˌten.juˈeɪ.ʃən/ giảm lũ provides flood attenuation flood control/mitigation
bioswales n /ˈbaɪ.əʊ.sweɪlz/ rãnh sinh học including bioswales bioswale design/system
permeable pavements n phrase /ˈpɜː.mi.ə.bəl ˈpeɪv.mənts/ vỉa hè thấm nước permeable pavements and green roofs permeable surface/material
allocative efficiency n phrase /ˈæl.ə.keɪ.tɪv ɪˈfɪʃ.ən.si/ hiệu quả phân bổ improved allocative efficiency maximize allocative efficiency
transboundary cooperation n phrase /trænzˈbaʊn.dər.i kəʊˌɒp.əˈreɪ.ʃən/ hợp tác xuyên biên giới Transboundary water cooperation promote transboundary cooperation
upstream-downstream adj /ˈʌp.striːm ˈdaʊn.striːm/ thượng nguồn-hạ nguồn upstream-downstream dynamics upstream-downstream relationship
payment for ecosystem services n phrase /ˈpeɪ.mənt fər ˈiː.kəʊˌsɪs.təm ˈsɜː.vɪ.sɪz/ chi trả dịch vụ hệ sinh thái PES schemes compensate PES program/mechanism
water footprint n phrase /ˈwɔː.tə ˈfʊt.prɪnt/ dấu chân nước Water footprint assessments calculate/reduce water footprint
embedded water n phrase /ɪmˈbed.ɪd ˈwɔː.tə/ nước tiềm ẩn embedded water in products hidden/virtual/embedded water
synergistic implementation n phrase /ˌsɪn.əˈdʒɪs.tɪk ˌɪm.plɪ.menˈteɪ.ʃən/ thực hiện hiệp đồng synergistic implementation of strategies synergistic effect/approach

Kết bài

Chủ đề “How climate change affects freshwater availability” không chỉ là một đề tài môi trường quan trọng mà còn là chủ đề xuất hiện thường xuyên trong IELTS Reading với nhiều góc độ tiếp cận khác nhau. Qua bài thi mẫu này, bạn đã được trải nghiệm đầy đủ cấu trúc một bài thi IELTS Reading thực tế với ba passages có độ khó tăng dần, từ việc giới thiệu vấn đề cơ bản (Passage 1), phân tích các khu vực bị ảnh hưởng cụ thể (Passage 2), đến việc thảo luận về các giải pháp công nghệ và chính sách phức tạp (Passage 3).

Đề thi bao gồm đầy đủ 40 câu hỏi với 7 dạng khác nhau – từ Multiple Choice, True/False/Not Given, Yes/No/Not Given, đến Matching Information, Sentence Completion, Summary Completion và Short-answer Questions. Mỗi dạng câu hỏi đều được thiết kế theo đúng format của Cambridge IELTS, giúp bạn làm quen với cách thức ra đề và yêu cầu của kỳ thi thực tế.

Phần đáp án chi tiết không chỉ cung cấp kết quả đúng sai mà còn giải thích rõ ràng vị trí thông tin trong bài, cách paraphrase giữa câu hỏi và passage, cũng như lý do tại sao các đáp án khác không chính xác. Điều này giúp bạn hiểu sâu hơn về kỹ thuật làm bài và cải thiện khả năng skimming, scanning và đọc hiểu sâu.

Bảng từ vựng tổng hợp hơn 60 từ và cụm từ quan trọng nhất từ cả ba passages, kèm theo phiên âm, nghĩa tiếng Việt, ví dụ từ bài và collocations thông dụng. Việc học từ vựng trong ngữ cảnh thực tế như thế này sẽ giúp bạn không chỉ ghi nhớ tốt hơn mà còn biết cách sử dụng chúng một cách tự nhiên trong các bài thi Writing và Speaking.

Hãy dành thời gian xem lại những câu trả lời sai, phân tích lý do và rút ra bài học cho bản thân. Luyện tập thường xuyên với các đề thi chất lượng cao như thế này sẽ giúp bạn nâng cao kỹ năng đọc hiểu, quản lý thời gian hiệu quả và tự tin hơn khi bước vào phòng thi IELTS thực tế. Chúc bạn đạt được band điểm mục tiêu!

Previous Article

IELTS Reading: Hồ Sơ Sinh Viên Trong Giáo Dục Đại Học - Đề Thi Mẫu Có Đáp Án Chi Tiết

Next Article

IELTS Speaking: Cách Trả Lời Chủ Đề "Describe a Wildlife Area You Visited" - Bài Mẫu Band 6-9

Write a Comment

Leave a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Đăng ký nhận thông tin bài mẫu

Để lại địa chỉ email của bạn, chúng tôi sẽ thông báo tới bạn khi có bài mẫu mới được biên tập và xuất bản thành công.
Chúng tôi cam kết không spam email ✨