Mở Bài
Trong bài viết này, bạn sẽ được trải nghiệm một bộ đề thi IELTS Reading hoàn chỉnh với ba passages có độ khó tăng dần từ Easy (Band 5.0-6.5), Medium (Band 6.0-7.5) đến Hard (Band 7.0-9.0). Mỗi passage được thiết kế dựa trên cấu trúc và độ khó của các đề thi thực tế từ Cambridge IELTS, kèm theo 40 câu hỏi đa dạng về dạng bài và mức độ thử thách.
Bạn sẽ học được cách xử lý các dạng câu hỏi phổ biến như True/False/Not Given, Multiple Choice, Matching Information, Summary Completion và nhiều dạng khác. Đặc biệt, phần giải thích đáp án chi tiết sẽ giúp bạn hiểu rõ cách paraphrase, định vị thông tin và áp dụng kỹ thuật scanning/skimming hiệu quả. Bài viết này phù hợp cho học viên có trình độ từ Band 5.0 trở lên và đang trong quá trình chuẩn bị cho kỳ thi IELTS Academic.
1. Hướng Dẫn Làm Bài IELTS Reading
Tổng Quan Về IELTS Reading Test
IELTS Reading Test là một phần thi đòi hỏi kỹ năng đọc hiểu và quản lý thời gian chặt chẽ. Toàn bộ bài thi kéo dài 60 phút và bao gồm 3 passages với tổng cộng 40 câu hỏi. Điểm đặc biệt quan trọng là bạn không có thời gian thêm để chuyển đáp án sang answer sheet, do đó phải vừa làm bài vừa điền luôn.
Phân bổ thời gian khuyến nghị:
- Passage 1 (Easy): 15-17 phút (13 câu hỏi)
- Passage 2 (Medium): 18-20 phút (13 câu hỏi)
- Passage 3 (Hard): 23-25 phút (14 câu hỏi)
Lưu ý rằng đây chỉ là khuyến nghị – một số thí sinh có thể làm nhanh hơn ở Passage 1 để dành thêm thời gian cho Passage 3. Điều quan trọng là phải hoàn thành cả 40 câu hỏi trong thời gian cho phép.
Các Dạng Câu Hỏi Trong Đề Này
Đề thi mẫu này bao gồm 8 dạng câu hỏi phổ biến nhất trong IELTS Reading:
- Multiple Choice – Câu hỏi trắc nghiệm nhiều lựa chọn
- True/False/Not Given – Xác định tính đúng/sai/không được đề cập
- Matching Information – Ghép thông tin với đoạn văn
- Yes/No/Not Given – Xác định quan điểm của tác giả
- Matching Headings – Chọn tiêu đề phù hợp cho đoạn văn
- Summary Completion – Hoàn thành đoạn tóm tắt
- Matching Features – Ghép đặc điểm với danh mục
- Short-answer Questions – Trả lời câu hỏi ngắn
Mỗi dạng câu hỏi yêu cầu chiến lược làm bài khác nhau, và bạn sẽ thấy rõ điều này qua các ví dụ thực tế trong đề thi.
2. IELTS Reading Practice Test
PASSAGE 1 – Climate Change and Food Production: Early Warning Signs
Độ khó: Easy (Band 5.0-6.5)
Thời gian đề xuất: 15-17 phút
The relationship between climate and agriculture has always been fundamental to human civilization. Throughout history, farmers have relied on predictable weather patterns to determine when to plant and harvest crops. However, recent decades have witnessed significant changes in these patterns, with rising temperatures emerging as one of the most pressing challenges facing global food production.
Global temperatures have increased by approximately 1.2 degrees Celsius since the pre-industrial era, according to data from the World Meteorological Organization. While this might seem like a modest increase, the impact on agriculture has been substantial. Different crops respond differently to temperature changes, with some species being more vulnerable than others. For instance, wheat production is particularly sensitive to heat stress during the flowering stage, where even a small temperature rise can reduce grain formation significantly.
In many temperate regions, farmers initially welcomed slightly warmer temperatures, as they extended the growing season and allowed for earlier planting dates. Some areas that were previously too cold for certain crops became viable agricultural zones. However, these initial benefits have been overshadowed by negative consequences. Higher temperatures increase evapotranspiration rates, meaning crops lose more water through their leaves, requiring more irrigation. In regions where water is already scarce, this creates additional pressure on limited resources.
Crop yields in tropical and subtropical regions have been particularly hard hit by rising temperatures. Research conducted across multiple continents shows that for every degree Celsius increase in average growing season temperature, yields of major staple crops like rice and maize decline by approximately 3-7%. This is because these crops are already grown near their optimal temperature range, and any additional heat pushes them beyond their tolerance threshold.
The timing of temperature increases throughout the growing season also matters considerably. Heat waves during critical reproductive phases can cause catastrophic yield losses. For example, a study in India found that when temperatures exceeded 35 degrees Celsius during the flowering period of rice, yields dropped by up to 90% in affected fields. Such extreme events are becoming more frequent as the climate warms, creating unpredictability for farmers who have developed their practices over generations.
Biểu đồ thể hiện tác động của nhiệt độ tăng lên năng suất cây trồng chính ở các vùng khí hậu khác nhau
Another concerning aspect is the interaction between temperature and other climate factors. Higher temperatures often coincide with changes in precipitation patterns, creating either drought conditions or excessive rainfall. Both scenarios are detrimental to crop production. Droughts reduce soil moisture necessary for plant growth, while excessive rain can lead to waterlogging, nutrient leaching, and increased susceptibility to fungal diseases.
Livestock farming faces similar challenges. Animals experience heat stress when temperatures rise beyond their comfort zone, leading to reduced feed intake, lower milk production in dairy cattle, and decreased reproductive success. In extreme cases, mortality rates increase during prolonged heat waves. Farmers must invest in cooling systems, shade structures, and modified feeding schedules to help animals cope, adding to production costs.
Scientists and agricultural researchers are working on various adaptation strategies to help farming systems cope with rising temperatures. These include developing heat-resistant crop varieties through both traditional breeding and modern genetic techniques, implementing conservation agriculture practices that improve soil health and water retention, and using precision agriculture technologies to optimize resource use. Additionally, adjusting planting schedules to avoid temperature extremes during sensitive growth stages has shown promise in some regions.
The economic implications are substantial. Agricultural economists estimate that without significant adaptation measures, global crop production could decline by 20-30% by 2050 compared to a scenario without climate change. This would not only affect food security but also impact commodity prices, trade patterns, and the livelihoods of billions of people who depend on agriculture. Developing countries, where agriculture employs a larger proportion of the workforce and contributes more significantly to GDP, are especially vulnerable.
Looking forward, addressing the impact of rising temperatures on agriculture requires a multi-faceted approach. This includes continued research into climate-resilient crops, investment in agricultural infrastructure such as irrigation systems, support for farmers to adopt sustainable practices, and broader efforts to mitigate climate change by reducing greenhouse gas emissions. The challenge is urgent and requires coordinated action at local, national, and international levels.
Questions 1-13
Questions 1-5: Multiple Choice
Choose the correct letter, A, B, C or D.
1. According to the passage, global temperatures have increased since pre-industrial times by approximately:
- A) 0.5 degrees Celsius
- B) 1.2 degrees Celsius
- C) 2.0 degrees Celsius
- D) 3.5 degrees Celsius
2. Wheat production is most vulnerable to heat stress during:
- A) the planting stage
- B) the flowering stage
- C) the harvesting stage
- D) the germination stage
3. In temperate regions, farmers initially welcomed warmer temperatures because:
- A) it reduced water requirements
- B) it eliminated the need for fertilizers
- C) it extended the growing season
- D) it prevented fungal diseases
4. For every degree Celsius increase in temperature, yields of major staple crops decline by:
- A) 1-2%
- B) 3-7%
- C) 10-15%
- D) 20-25%
5. The study in India found that rice yields dropped significantly when temperatures during flowering exceeded:
- A) 30 degrees Celsius
- B) 32 degrees Celsius
- C) 35 degrees Celsius
- D) 40 degrees Celsius
Questions 6-9: True/False/Not Given
Do the following statements agree with the information given in the passage? Write:
- TRUE if the statement agrees with the information
- FALSE if the statement contradicts the information
- NOT GIVEN if there is no information on this
6. All crops respond to temperature increases in the same way.
7. Higher temperatures cause crops to lose more water through their leaves.
8. Tropical crops are grown near their optimal temperature range.
9. Farmers in Europe have completely stopped growing wheat due to heat stress.
Questions 10-13: Sentence Completion
Complete the sentences below. Choose NO MORE THAN TWO WORDS from the passage for each answer.
10. Animals experience _____ when temperatures exceed their comfort zone.
11. Scientists are developing heat-resistant crops using both traditional breeding and modern _____.
12. Without adaptation measures, global crop production could decline by 20-30% by the year _____.
13. Addressing temperature impacts requires a _____ approach involving research, infrastructure, and policy support.
PASSAGE 2 – Physiological Mechanisms: How Heat Affects Plant Development
Độ khó: Medium (Band 6.0-7.5)
Thời gian đề xuất: 18-20 phút
Understanding the physiological mechanisms through which elevated temperatures affect plant growth and development is crucial for developing effective adaptation strategies. At the cellular and molecular levels, heat stress triggers a complex cascade of responses that can either help plants survive temporary temperature spikes or lead to irreversible damage when stress becomes chronic or extreme.
A. Photosynthesis and Respiration
The process of photosynthesis, through which plants convert sunlight into chemical energy, is highly temperature-dependent. Each plant species has an optimum temperature range for photosynthetic activity, typically between 20-30 degrees Celsius for most temperate crops and slightly higher for tropical species. When temperatures rise above this optimal range, the efficiency of photosynthetic enzymes, particularly Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase), begins to decline. This enzyme is responsible for carbon fixation, the first major step of photosynthesis, and its activity drops sharply at temperatures above 35 degrees Celsius.
Simultaneously, plant respiration rates increase exponentially with temperature. While photosynthesis produces energy and biomass, respiration consumes them for maintenance functions. Under heat stress, the balance shifts unfavorably: respiration accelerates faster than photosynthesis can compensate, leading to a net loss of carbon assimilation. This explains why plants may wilt or cease growing during heat waves even when water and nutrients are adequate. The phenomenon is particularly detrimental during grain filling in cereal crops, when the plant needs maximum energy reserves to develop seeds.
B. Water Relations and Stomatal Behavior
Heat stress profoundly affects plant-water relations. Higher temperatures increase the vapor pressure deficit between leaf tissue and the surrounding air, driving greater transpirational water loss. Plants respond by regulating their stomata – tiny pores on leaf surfaces that control gas exchange. In moderate heat stress, stomata may partially close to conserve water, but this creates a dilemma: reducing stomatal aperture also limits carbon dioxide uptake, further suppressing photosynthesis.
The situation becomes critical when heat stress coincides with drought. Plants must balance the competing demands of cooling themselves through transpiration and conserving scarce water. Research using thermal imaging has revealed that different crop varieties exhibit varying strategies. Some maintain open stomata longer to maximize cooling, making them more productive but vulnerable in water-limited environments. Others close stomata more readily, sacrificing immediate productivity for survival. Plant breeders are increasingly focusing on identifying genotypes that optimize this trade-off for specific environmental conditions.
C. Reproductive Disruption
Perhaps the most economically significant impact of heat stress occurs during reproductive development. Pollen viability is extremely sensitive to temperature, with most crop species showing reduced pollen germination and tube growth at temperatures above 30-35 degrees Celsius. In rice, for example, exposure to 35 degrees Celsius for just one hour during anthesis (the flowering period) can reduce pollen fertility by over 50%. Since fertilization must occur within a narrow time window, this dramatically reduces the number of grains that develop.
Female reproductive structures are also affected, though generally less severely than pollen. High temperatures can cause embryo abortion, reduce ovule viability, or disrupt the precise timing required for successful fertilization. In maize, heat stress around flowering causes asynchrony between pollen shed and silk emergence, the two events that must coincide for pollination. Even a few degrees of warming can shift these events out of sync, resulting in ears with many unfertilized kernels.
The molecular basis of reproductive heat sensitivity is an active area of research. Studies have identified heat shock proteins (HSPs) that help protect cellular structures from damage, but these protective mechanisms appear less effective in reproductive tissues than in vegetative parts. Some researchers hypothesize that the high metabolic activity required during rapid cell division and differentiation in developing flowers makes these tissues especially vulnerable to disruption.
Sơ đồ minh họa cơ chế sinh lý tác động của nhiệt độ cao lên quá trình quang hợp và sinh sản của cây trồng
D. Biochemical Stress Responses
At the biochemical level, heat stress induces the production of reactive oxygen species (ROS), highly reactive molecules that can damage proteins, lipids, and DNA. Plants possess antioxidant systems including enzymes like superoxide dismutase, catalase, and various peroxidases that neutralize ROS. However, under severe or prolonged heat stress, ROS production can overwhelm these defenses, leading to oxidative damage.
Heat stress also disrupts membrane integrity. Cell membranes become more fluid at higher temperatures, potentially allowing electrolyte leakage and loss of compartmentalization. Plants respond by altering membrane lipid composition, incorporating more saturated fatty acids that help maintain stability at higher temperatures. The speed and effectiveness of this adjustment varies among species and varieties, contributing to differences in heat tolerance.
E. Acclimation and Recovery
Plants exhibit some capacity for thermal acclimation when temperature increases are gradual rather than sudden. This involves gene expression changes that enhance thermotolerance, including increased production of heat shock proteins, adjustments to metabolic pathways, and modifications to cellular structures. However, acclimation has limits, and the mechanisms operate most effectively within a certain temperature range.
Recovery from heat stress depends on its severity and duration. Brief exposure to temperatures just above optimal may cause temporary reductions in growth with full recovery once conditions improve. However, prolonged exposure or extremely high temperatures can cause permanent damage to photosynthetic apparatus, particularly photosystem II, requiring days or weeks for repair and regeneration. During critical growth stages like flowering, even temporary stress can have lasting impacts on yield that no amount of subsequent recovery can compensate for.
Understanding these physiological and biochemical responses provides the foundation for developing heat-tolerant crop varieties. By identifying the specific mechanisms limiting performance under heat stress, researchers can target breeding efforts more effectively, whether through conventional selection, marker-assisted breeding, or genetic engineering approaches. The challenge lies in pyramiding multiple tolerance mechanisms into single varieties while maintaining other desirable agronomic traits such as yield potential, disease resistance, and grain quality.
Questions 14-26
Questions 14-18: Yes/No/Not Given
Do the following statements agree with the views of the writer in the passage? Write:
- YES if the statement agrees with the views of the writer
- NO if the statement contradicts the views of the writer
- NOT GIVEN if it is impossible to say what the writer thinks about this
14. The Rubisco enzyme becomes less effective at temperatures above 35 degrees Celsius.
15. Plant respiration rates decrease as temperatures rise.
16. All crop varieties use the same stomatal strategy under heat stress.
17. Heat shock proteins are more effective in reproductive tissues than in vegetative parts.
18. Brief exposure to high temperatures always causes permanent damage to plants.
Questions 19-22: Matching Information
Match each statement with the correct section (A-E). You may use any letter more than once.
19. Describes how plants modify their cell membrane structure in response to heat
20. Explains why plants stop growing even with adequate water and nutrients
21. Discusses the time-sensitive nature of pollination in maize
22. Mentions the use of thermal imaging technology in research
Questions 23-26: Summary Completion
Complete the summary below. Choose NO MORE THAN TWO WORDS from the passage for each answer.
Heat stress during the reproductive stage causes significant yield losses. Pollen 23. is extremely sensitive to temperature increases. In rice, even one hour of exposure to 35 degrees Celsius during the flowering period can reduce pollen fertility by more than 24. . High temperatures can also cause problems with female structures, including 25. , which prevents seed development. The sensitivity of reproductive tissues is partly due to their high 26. during rapid cell division.
PASSAGE 3 – Global Agricultural Systems Under Thermal Stress: Adaptation, Economics, and Future Trajectories
Độ khó: Hard (Band 7.0-9.0)
Thời gian đề xuất: 23-25 phút
The confluence of rising temperatures and growing global food demand presents one of the most formidable challenges of the 21st century. While the physiological impacts of heat stress on individual crops are increasingly well documented, the systemic implications for agricultural production systems, rural livelihoods, and global food security involve complex interactions across biophysical, socioeconomic, and institutional domains. Understanding these multidimensional dynamics is essential for crafting effective policy responses and technological innovations that can safeguard food production in a warming world.
Agricultural economists have employed various modeling approaches to project the economic impacts of temperature increases on crop yields. Process-based crop models, such as DSSAT (Decision Support System for Agrotechnology Transfer) and APSIM (Agricultural Production Systems Simulator), simulate crop growth by incorporating mechanistic representations of plant physiology, soil processes, and atmospheric interactions. When coupled with climate projections from General Circulation Models (GCMs), these tools can estimate future yield trajectories under different warming scenarios. A comprehensive meta-analysis of such studies, encompassing over 1,700 published simulations, reveals substantial spatial heterogeneity in projected impacts. While high-latitude regions like Canada and Russia may experience modest yield increases for certain crops due to longer growing seasons and CO2 fertilization effects, tropical and subtropical regions face consistent yield declines, with some areas projected to lose 20-50% of current production capacity by mid-century under business-as-usual emissions scenarios.
The economic ramifications extend far beyond simple production losses. Changes in regional comparative advantages will reshape global commodity flows and trade patterns. Countries currently relying on agricultural exports may face declining competitiveness, while new production zones emerge in previously marginal areas. This geographic redistribution of agricultural potential has profound implications for food price volatility, trade dependencies, and geopolitical stability. Historical analyses demonstrate that abrupt shifts in food prices have catalyzed social unrest and political instability, particularly in import-dependent nations where food expenditure constitutes a large proportion of household budgets. The 2007-2008 global food crisis, triggered partly by weather-related production shortfalls, resulted in civil disturbances in over 30 countries, illustrating the socio-political sensitivity of food security issues.
Adaptation strategies in agriculture can be categorized along several dimensions: incremental versus transformational, autonomous versus planned, and technological versus management-based. Incremental adaptations involve modifications to existing systems—shifting planting dates, adopting improved varieties, implementing irrigation efficiency measures—and have already begun occurring spontaneously as farmers respond to changing conditions. Such autonomous adaptation demonstrates the resilience and adaptive capacity inherent in agricultural systems. However, research suggests that incremental adjustments alone will be insufficient to counteract projected warming, particularly beyond 2 degrees Celsius of global temperature increase.
Bản đồ thế giới thể hiện các chiến lược thích ứng nông nghiệp với biến đổi khí hậu ở các khu vực khác nhau
Transformational adaptations entail fundamental changes to agricultural systems—relocating production to new areas, switching to entirely different crop species or livestock systems, or abandoning agriculture altogether in favor of alternative livelihoods. Such transitions present formidable challenges. Agricultural knowledge and practices are deeply embedded in local cultures and developed over generations; abandoning them involves not just economic costs but cultural losses. Infrastructure investments—irrigation networks, storage facilities, processing plants—are geographically fixed and represent sunk costs that create path dependencies, making system transitions economically painful. Furthermore, transformational change often requires coordinated action across multiple stakeholders and supportive policy frameworks, which may be lacking in regions most vulnerable to climate impacts.
Technological innovation offers promising avenues for enhancing heat tolerance. Conventional plant breeding has achieved notable successes, with new varieties exhibiting improved performance under heat stress through trait selection for characteristics such as stay-green ability, enhanced pollen viability, and deeper root systems. The incorporation of genomic selection and marker-assisted breeding accelerates this process by enabling breeders to identify beneficial genetic variants without extensive field testing. More controversially, genetic engineering and newer gene editing technologies like CRISPR-Cas9 offer possibilities for introducing or modifying specific genes associated with thermotolerance. However, regulatory hurdles, public acceptance concerns, and intellectual property issues constrain the deployment of such technologies, particularly in developing countries where climate impacts are most severe.
Beyond crop improvement, precision agriculture technologies—including satellite imagery, remote sensing, automated irrigation systems, and variable rate application of inputs—enable more judicious resource management and site-specific optimization. These tools can help farmers anticipate and respond to heat stress by monitoring crop conditions in real-time and adjusting management practices accordingly. However, the capital intensity and technical expertise required for implementing precision agriculture create accessibility barriers for smallholder farmers, who constitute the majority of agricultural producers in developing countries and are often most vulnerable to climate impacts.
The concept of “climate-smart agriculture” has gained traction in policy circles as a framework for integrating productivity, adaptation, and mitigation objectives. Practices such as conservation tillage, agroforestry, cover cropping, and integrated crop-livestock systems can simultaneously enhance resilience to climate stress, maintain or increase yields, and sequester carbon, thereby contributing to emissions reduction. Yet uptake of such practices remains limited, constrained by factors including labor requirements, short-term yield penalties during transition periods, insecure land tenure that discourages long-term investments, and inadequate extension services to support farmer learning.
Policy interventions play a pivotal role in facilitating adaptation. Agricultural research and development, traditionally underfunded relative to its social returns, requires sustained investment to generate the innovations necessary for climate resilience. Safety net programs and agricultural insurance schemes can help farmers manage climate-related risks without resorting to maladaptive coping strategies such as selling productive assets. Infrastructure investments in irrigation, rural roads, and market facilities enhance farmers’ capacity to access inputs, implement new technologies, and market their products. Importantly, policies must be tailored to local contexts, as one-size-fits-all approaches rarely succeed given the diversity of agroecological conditions, farming systems, and socioeconomic circumstances.
Looking toward future trajectories, the agricultural sector faces twin imperatives: adapting to unavoidable climate change already locked into the system while contributing to mitigation efforts that limit the extent of future warming. The intergovernmental discourse on climate and agriculture, exemplified by the Koronivia Joint Work on Agriculture under the United Nations Framework Convention on Climate Change (UNFCCC), seeks to address both dimensions. However, translating international agreements into concrete actions at national and local levels remains an ongoing challenge, requiring enhanced financial resources, technology transfer mechanisms, and capacity building initiatives, particularly for developing countries.
The magnitude and complexity of the challenge should not obscure the agency and ingenuity of farming communities worldwide. Throughout history, agriculture has demonstrated remarkable adaptability to changing conditions. Contemporary challenges, while unprecedented in their rapidity and global scope, are not insurmountable. Success will depend on mobilizing scientific knowledge, technological capabilities, farmer innovation, and political will in a coordinated effort to ensure that agricultural systems can continue fulfilling their fundamental role of nourishing humanity while operating within planetary boundaries. The window for action, while narrowing, remains open—but the urgency for decisive measures grows with each passing year and each increment of warming.
Questions 27-40
Questions 27-31: Multiple Choice
Choose the correct letter, A, B, C or D.
27. According to the passage, process-based crop models simulate crop growth by:
- A) using historical yield data exclusively
- B) incorporating mechanistic representations of plant and soil processes
- C) relying solely on farmer surveys
- D) predicting weather patterns independently
28. The meta-analysis mentioned in the passage examined:
- A) over 500 published simulations
- B) exactly 1,000 published simulations
- C) over 1,700 published simulations
- D) more than 2,500 published simulations
29. The 2007-2008 global food crisis resulted in:
- A) civil disturbances in over 10 countries
- B) political changes in 20 countries
- C) civil disturbances in over 30 countries
- D) economic reforms in 50 countries
30. Transformational adaptations are challenging because:
- A) they require minor adjustments only
- B) agricultural knowledge is deeply embedded in local cultures
- C) they are easy to implement quickly
- D) farmers always welcome major changes
31. The uptake of climate-smart agriculture practices remains limited due to:
- A) excessive government support
- B) guaranteed short-term profits
- C) labor requirements and short-term yield penalties
- D) secure land tenure for all farmers
Questions 32-36: Matching Features
Match each adaptation strategy (32-36) with the correct category (A-D). You may use any letter more than once.
Adaptation Categories:
- A) Incremental technological adaptation
- B) Transformational systemic change
- C) Policy intervention
- D) Precision agriculture technology
32. Shifting planting dates to avoid temperature extremes
33. Relocating production to entirely new geographic areas
34. Using satellite imagery for real-time crop monitoring
35. Implementing agricultural insurance schemes
36. Abandoning agriculture in favor of alternative livelihoods
Questions 37-40: Short-answer Questions
Answer the questions below. Choose NO MORE THAN THREE WORDS AND/OR A NUMBER from the passage for each answer.
37. What type of agriculture framework integrates productivity, adaptation, and mitigation objectives?
38. Which gene editing technology is mentioned as offering possibilities for introducing thermotolerance genes?
39. What international work program under the UNFCCC addresses climate and agriculture issues?
40. According to the passage, high-latitude regions like Canada and Russia may benefit partly from what effect related to increased atmospheric carbon dioxide?
3. Answer Keys – Đáp Án
PASSAGE 1: Questions 1-13
- B
- B
- C
- B
- C
- FALSE
- TRUE
- TRUE
- NOT GIVEN
- heat stress
- genetic techniques
- 2050
- multi-faceted
PASSAGE 2: Questions 14-26
- YES
- NO
- NO
- NO
- NO
- D
- A
- C
- B
- viability
- 50% / fifty percent
- embryo abortion
- metabolic activity
PASSAGE 3: Questions 27-40
- B
- C
- C
- B
- C
- A
- B
- D
- C
- B
- climate-smart agriculture
- CRISPR-Cas9
- Koronivia Joint Work
- CO2 fertilization effects
4. Giải Thích Đáp Án Chi Tiết
Passage 1 – Giải Thích
Câu 1: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: global temperatures, increased, pre-industrial
- Vị trí trong bài: Đoạn 2, dòng 1-2
- Giải thích: Câu trong bài viết rõ ràng “Global temperatures have increased by approximately 1.2 degrees Celsius since the pre-industrial era”. Đây là paraphrase trực tiếp với từ khóa “approximately” tương ứng với câu hỏi.
Câu 2: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: wheat production, vulnerable, heat stress
- Vị trí trong bài: Đoạn 2, dòng 5-7
- Giải thích: Bài đọc nói “wheat production is particularly sensitive to heat stress during the flowering stage”. Từ “sensitive” được paraphrase thành “vulnerable” trong câu hỏi.
Câu 3: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: temperate regions, farmers, welcomed, warmer temperatures
- Vị trí trong bài: Đoạn 3, dòng 1-3
- Giải thích: Câu “farmers initially welcomed slightly warmer temperatures, as they extended the growing season” trả lời trực tiếp câu hỏi này.
Câu 6: FALSE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: all crops, respond, temperature increases, same way
- Vị trí trong bài: Đoạn 2, dòng 3-5
- Giải thích: Bài viết nói “Different crops respond differently to temperature changes”, điều này trực tiếp mâu thuẫn với nhận định “all crops respond in the same way”, do đó đáp án là FALSE.
Câu 7: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: higher temperatures, crops, lose more water, leaves
- Vị trí trong bài: Đoạn 3, dòng 5-6
- Giải thích: Câu “Higher temperatures increase evapotranspiration rates, meaning crops lose more water through their leaves” khẳng định chính xác nội dung của câu hỏi.
Câu 10: heat stress
- Dạng câu hỏi: Sentence Completion
- Từ khóa: animals, experience, temperatures, comfort zone
- Vị trí trong bài: Đoạn 7, dòng 2-3
- Giải thích: Câu trong bài “Animals experience heat stress when temperatures rise beyond their comfort zone” cung cấp đáp án trực tiếp là “heat stress”.
Câu 13: multi-faceted
- Dạng câu hỏi: Sentence Completion
- Từ khóa: addressing, temperature impacts, requires, approach
- Vị trí trong bài: Đoạn 10, dòng 1
- Giải thích: Câu mở đầu đoạn cuối “addressing the impact of rising temperatures on agriculture requires a multi-faceted approach” cho đáp án “multi-faceted”.
Passage 2 – Giải Thích
Câu 14: YES
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: Rubisco enzyme, less effective, 35 degrees
- Vị trí trong bài: Section A, đoạn 2, dòng 5-7
- Giải thích: Bài viết nói “its activity drops sharply at temperatures above 35 degrees Celsius” khi đề cập đến enzyme Rubisco, điều này đồng nghĩa với việc nó trở nên kém hiệu quả hơn.
Câu 15: NO
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: plant respiration rates, decrease, temperatures rise
- Vị trí trong bài: Section A, đoạn 3, dòng 1
- Giải thích: Bài viết khẳng định “plant respiration rates increase exponentially with temperature”, điều này trái ngược hoàn toàn với nhận định respiration rates decrease, do đó đáp án là NO.
Câu 16: NO
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: all crop varieties, same stomatal strategy
- Vị trí trong bài: Section B, đoạn 3, dòng 3-6
- Giải thích: Bài đọc nói “different crop varieties exhibit varying strategies”, rõ ràng phủ nhận nhận định tất cả varieties dùng cùng một chiến lược.
Câu 19: D
- Dạng câu hỏi: Matching Information
- Giải thích: Section D thảo luận về “membrane integrity” và “altering membrane lipid composition”, đề cập cụ thể đến việc thay đổi cấu trúc màng tế bào để ứng phó với nhiệt.
Câu 20: A
- Dạng câu hỏi: Matching Information
- Giải thích: Section A giải thích về sự mất cân bằng giữa quang hợp và hô hấp, dẫn đến “plants may wilt or cease growing during heat waves even when water and nutrients are adequate”.
Câu 23: viability
- Dạng câu hỏi: Summary Completion
- Vị trí trong bài: Section C, đoạn 2, dòng 1
- Giải thích: Câu “Pollen viability is extremely sensitive to temperature” cung cấp từ “viability” cho chỗ trống.
Câu 26: metabolic activity
- Dạng câu hỏi: Summary Completion
- Vị trí trong bài: Section C, đoạn 4, dòng 4-5
- Giải thích: Bài viết đề cập “the high metabolic activity required during rapid cell division” là nguyên nhân khiến mô sinh sản dễ bị tổn thương.
Passage 3 – Giải Thích
Câu 27: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: process-based crop models, simulate
- Vị trí trong bài: Đoạn 2, dòng 2-4
- Giải thích: Bài viết mô tả rõ ràng “simulate crop growth by incorporating mechanistic representations of plant physiology, soil processes, and atmospheric interactions”.
Câu 28: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: meta-analysis, examined
- Vị trí trong bài: Đoạn 2, dòng 6-7
- Giải thích: Câu “A comprehensive meta-analysis of such studies, encompassing over 1,700 published simulations” cung cấp con số chính xác.
Câu 29: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: 2007-2008 global food crisis, resulted in
- Vị trí trong bài: Đoạn 3, dòng 8-9
- Giải thích: Bài viết nêu rõ “resulted in civil disturbances in over 30 countries”.
Câu 32: A
- Dạng câu hỏi: Matching Features
- Giải thích: Shifting planting dates là một ví dụ điển hình của incremental adaptation được đề cập trong đoạn 4 với cụm từ “shifting planting dates” nằm trong danh sách các “modifications to existing systems”.
Câu 33: B
- Dạng câu hỏi: Matching Features
- Giải thích: Relocating production to new areas được liệt kê trực tiếp trong đoạn 5 như một ví dụ của “transformational adaptations”.
Câu 37: climate-smart agriculture
- Dạng câu hỏi: Short-answer
- Vị trí trong bài: Đoạn 8, dòng 1
- Giải thích: Câu “The concept of ‘climate-smart agriculture’ has gained traction in policy circles as a framework for integrating productivity, adaptation, and mitigation objectives” trả lời trực tiếp câu hỏi.
Câu 38: CRISPR-Cas9
- Dạng câu hỏi: Short-answer
- Vị trí trong bài: Đoạn 6, dòng 5-6
- Giải thích: Bài viết đề cập cụ thể “gene editing technologies like CRISPR-Cas9 offer possibilities for introducing or modifying specific genes associated with thermotolerance”.
Câu 40: CO2 fertilization effects
- Dạng câu hỏi: Short-answer
- Vị trí trong bài: Đoạn 2, dòng 10-12
- Giải thích: Bài đọc nói “high-latitude regions like Canada and Russia may experience modest yield increases for certain crops due to longer growing seasons and CO2 fertilization effects”.
5. Từ Vựng Quan Trọng Theo Passage
Passage 1 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| predictable | adj | /prɪˈdɪktəbl/ | có thể dự đoán được | predictable weather patterns | predictable outcomes, predictable behavior |
| pressing | adj | /ˈpresɪŋ/ | cấp bách, khẩn cấp | pressing challenges | pressing issues, pressing concerns |
| substantial | adj | /səbˈstænʃəl/ | đáng kể, quan trọng | substantial impact | substantial evidence, substantial changes |
| vulnerable | adj | /ˈvʌlnərəbl/ | dễ bị tổn thương | vulnerable to heat stress | vulnerable populations, vulnerable species |
| overshadow | v | /ˌəʊvəˈʃædəʊ/ | làm lu mờ, che khuất | overshadowed by negative consequences | overshadow achievements |
| evapotranspiration | n | /ɪˌvæpəʊˌtrænspəˈreɪʃn/ | sự bốc t증hơi nước | increase evapotranspiration rates | high evapotranspiration, evapotranspiration losses |
| scarce | adj | /skeəs/ | khan hiếm | water is scarce | scarce resources, scarce commodities |
| staple crops | n | /ˈsteɪpl krɒps/ | cây trồng chủ lực | major staple crops like rice | staple foods, staple diet |
| threshold | n | /ˈθreʃhəʊld/ | ngưỡng, giới hạn | tolerance threshold | pain threshold, temperature threshold |
| catastrophic | adj | /ˌkætəˈstrɒfɪk/ | thảm khốc | catastrophic yield losses | catastrophic failure, catastrophic damage |
| detrimental | adj | /ˌdetrɪˈmentl/ | có hại, bất lợi | detrimental to crop production | detrimental effects, detrimental impact |
| multi-faceted | adj | /ˌmʌltiˈfæsɪtɪd/ | đa diện, nhiều khía cạnh | multi-faceted approach | multi-faceted problem, multi-faceted strategy |
Passage 2 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| physiological | adj | /ˌfɪziəˈlɒdʒɪkl/ | thuộc sinh lý học | physiological mechanisms | physiological responses, physiological processes |
| cascade | n | /kæˈskeɪd/ | chuỗi, dây chuyền | complex cascade of responses | cascade of events, cascade effects |
| irreversible | adj | /ˌɪrɪˈvɜːsəbl/ | không thể đảo ngược | irreversible damage | irreversible changes, irreversible loss |
| optimum | adj | /ˈɒptɪməm/ | tối ưu | optimum temperature range | optimum conditions, optimum level |
| exponentially | adv | /ˌekspəˈnenʃəli/ | theo cấp số nhân | increase exponentially | grow exponentially, rise exponentially |
| transpirational | adj | /ˌtrænspəˈreɪʃənl/ | thuộc quá trình thoát hơi nước | transpirational water loss | transpirational cooling |
| stomata | n | /stəʊˈmɑːtə/ | khí khẩu (lỗ khí trên lá) | regulate their stomata | stomatal conductance, stomatal opening |
| genotypes | n | /ˈdʒiːnətaɪps/ | kiểu gen | different genotypes | genotype selection, superior genotypes |
| pollen viability | n | /ˈpɒlən ˌvaɪəˈbɪləti/ | khả năng sống của phấn hoa | reduced pollen viability | pollen viability test, maintain pollen viability |
| anthesis | n | /ænˈθiːsɪs/ | thời kỳ ra hoa | during anthesis | anthesis stage, anthesis period |
| asynchrony | n | /eɪˈsɪŋkrəni/ | sự không đồng bộ | causes asynchrony | temporal asynchrony |
| reactive oxygen species | n | /riˈæktɪv ˈɒksɪdʒən ˈspiːʃiːz/ | các gốc oxy hoạt tính | production of reactive oxygen species | ROS accumulation, ROS scavenging |
| thermotolerance | n | /ˌθɜːməʊˈtɒlərəns/ | khả năng chịu nhiệt | enhance thermotolerance | thermotolerance mechanisms |
| acclimation | n | /ˌækləˈmeɪʃn/ | sự thích nghi | thermal acclimation | temperature acclimation, acclimation capacity |
| photosynthetic apparatus | n | /ˌfəʊtəʊsɪnˈθetɪk ˌæpəˈreɪtəs/ | bộ máy quang hợp | damage to photosynthetic apparatus | photosynthetic machinery |
Passage 3 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| confluence | n | /ˈkɒnfluəns/ | sự hợp lưu, kết hợp | confluence of rising temperatures | confluence of factors, confluence of events |
| formidable | adj | /ˈfɔːmɪdəbl/ | đáng gờm, ghê gớm | formidable challenges | formidable opponent, formidable task |
| systemic | adj | /sɪˈstemɪk/ | mang tính hệ thống | systemic implications | systemic change, systemic issues |
| biophysical | adj | /ˌbaɪəʊˈfɪzɪkl/ | thuộc sinh lý vật lý | biophysical domains | biophysical processes, biophysical constraints |
| mechanistic | adj | /ˌmekəˈnɪstɪk/ | mang tính cơ học | mechanistic representations | mechanistic approach, mechanistic models |
| meta-analysis | n | /ˌmetəəˈnæləsɪs/ | phân tích tổng hợp | comprehensive meta-analysis | conduct meta-analysis, meta-analysis study |
| spatial heterogeneity | n | /ˈspeɪʃl ˌhetərəʊdʒəˈniːəti/ | sự không đồng nhất về không gian | substantial spatial heterogeneity | spatial heterogeneity patterns |
| comparative advantages | n | /kəmˈpærətɪv ədˈvɑːntɪdʒɪz/ | lợi thế so sánh | regional comparative advantages | comparative advantage theory |
| commodity flows | n | /kəˈmɒdəti fləʊz/ | dòng hàng hóa | global commodity flows | commodity flow patterns, trade flows |
| geopolitical | adj | /ˌdʒiːəʊpəˈlɪtɪkl/ | thuộc địa chính trị | geopolitical stability | geopolitical tensions, geopolitical risks |
| incremental | adj | /ˌɪŋkrəˈmentl/ | gia tăng dần | incremental adaptations | incremental changes, incremental improvements |
| transformational | adj | /ˌtrænsfəˈmeɪʃənl/ | mang tính chuyển đổi | transformational adaptations | transformational change, transformational leadership |
| autonomous | adj | /ɔːˈtɒnəməs/ | tự chủ, tự phát | autonomous adaptation | autonomous systems, autonomous decision |
| sunk costs | n | /sʌŋk kɒsts/ | chi phí chìm | represent sunk costs | sunk cost fallacy |
| path dependencies | n | /pɑːθ dɪˈpendənsiz/ | sự phụ thuộc lộ trình | create path dependencies | path dependency theory |
| genomic selection | n | /dʒɪˈnəʊmɪk sɪˈlekʃn/ | chọn lọc gen | incorporation of genomic selection | genomic selection methods |
| marker-assisted breeding | n | /ˈmɑːkə əˈsɪstɪd ˈbriːdɪŋ/ | lai tạo hỗ trợ bằng marker | marker-assisted breeding | marker-assisted selection |
| precision agriculture | n | /prɪˈsɪʒn ˈæɡrɪkʌltʃə/ | nông nghiệp chính xác | precision agriculture technologies | precision farming, precision agriculture tools |
| capital intensity | n | /ˈkæpɪtl ɪnˈtensəti/ | mức độ thâm dụng vốn | capital intensity requirements | capital intensive, high capital intensity |
| climate-smart agriculture | n | /ˈklaɪmət smɑːt ˈæɡrɪkʌltʃə/ | nông nghiệp thông minh khí hậu | concept of climate-smart agriculture | climate-smart practices |
| agroforestry | n | /ˈæɡrəʊˌfɒrɪstri/ | nông lâm kết hợp | practices such as agroforestry | agroforestry systems |
| maladaptive | adj | /ˌmælədˈæptɪv/ | thích nghi sai lầm | maladaptive coping strategies | maladaptive behavior |
| agroecological | adj | /ˌæɡrəʊˌiːkəˈlɒdʒɪkl/ | thuộc nông sinh thái | agroecological conditions | agroecological systems, agroecological approach |
| mitigation | n | /ˌmɪtɪˈɡeɪʃn/ | giảm nhẹ, giảm thiểu | contributing to mitigation efforts | climate mitigation, mitigation strategies |
| intergovernmental | adj | /ˌɪntəˌɡʌvnˈmentl/ | liên chính phủ | intergovernmental discourse | intergovernmental organizations |
Kết Bài
Chủ đề tác động của nhiệt độ tăng đến năng suất nông nghiệp là một trong những chủ đề quan trọng và xuất hiện thường xuyên trong IELTS Reading. Qua bài thi mẫu này, bạn đã được trải nghiệm đầy đủ ba passages với độ khó tăng dần, phản ánh chính xác cấu trúc và yêu cầu của bài thi thực tế.
Passage 1 giới thiệu những tác động cơ bản và dễ quan sát của nhiệt độ tăng lên nông nghiệp, phù hợp với band điểm 5.0-6.5. Passage 2 đi sâu vào các cơ chế sinh lý phức tạp ở cấp độ tế bào và phân tử, yêu cầu khả năng hiểu thông tin chuyên sâu hơn, phù hợp với band 6.0-7.5. Passage 3 phân tích các khía cạnh hệ thống, kinh tế và chính sách ở cấp độ toàn cầu, đòi hỏi kỹ năng đọc hiểu học thuật cao, dành cho band 7.0-9.0.
40 câu hỏi trong đề thi bao gồm đa dạng các dạng bài phổ biến: Multiple Choice, True/False/Not Given, Yes/No/Not Given, Matching Information, Matching Headings, Summary Completion, Matching Features, và Short-answer Questions. Mỗi dạng câu hỏi yêu cầu kỹ thuật làm bài riêng biệt mà bạn đã được thực hành qua các ví dụ cụ thể.
Phần giải thích đáp án chi tiết không chỉ cho bạn biết đáp án đúng mà còn hướng dẫn cách định vị thông tin, nhận diện paraphrase, và hiểu logic của từng câu hỏi. Đây là phần vô cùng quan trọng giúp bạn học được phương pháp làm bài bài bản, không chỉ dựa vào may mắn.
Bộ từ vựng được tổng hợp từ ba passages cung cấp hơn 40 từ và cụm từ quan trọng kèm phiên âm, nghĩa tiếng Việt, ví dụ sử dụng và collocations. Đây là những từ vựng học thuật thường xuất hiện trong IELTS Reading, đặc biệt với chủ đề môi trường và khoa học.
Hãy sử dụng đề thi này như một công cụ luyện tập thực chiến. Lần đầu tiên, hãy làm bài trong điều kiện thi thật với thời gian 60 phút. Sau đó, dành thời gian phân tích kỹ những câu làm sai, hiểu rõ lý do và học từ những sai lầm. Bạn có thể làm lại đề này nhiều lần, mỗi lần tập trung vào một kỹ năng khác nhau: lần này tập trung vào skimming/scanning, lần sau tập trung vào paraphrase, hoặc tập trung vào quản lý thời gian.
Chúc bạn học tập hiệu quả và đạt được band điểm mong muốn trong kỳ thi IELTS sắp tới!