Mở bài
Công nghệ blockchain đang tạo nên cuộc cách mạng trong lĩnh vực bảo mật dữ liệu y tế toàn cầu, một chủ đề ngày càng phổ biến trong các kỳ thi IELTS Reading gần đây. Chủ đề “Blockchain For Enhancing Global Health Data Privacy” thuộc nhóm Technology và Healthcare – hai lĩnh vực xuất hiện thường xuyên trong đề thi IELTS Academic Reading, đặc biệt từ năm 2020 đến nay.
Bài viết này cung cấp một bộ đề thi IELTS Reading hoàn chỉnh với ba passages có độ khó tăng dần từ Easy (Band 5.0-6.5), Medium (Band 6.0-7.5) đến Hard (Band 7.0-9.0). Bạn sẽ được trải nghiệm 40 câu hỏi đa dạng giống như thi thật, bao gồm Multiple Choice, True/False/Not Given, Yes/No/Not Given, Matching Headings, Summary Completion và nhiều dạng khác.
Sau mỗi passage, bạn sẽ tìm thấy đáp án chi tiết kèm giải thích cụ thể về vị trí thông tin trong bài, cách paraphrase từ câu hỏi sang passage, và chiến lược làm bài hiệu quả. Bộ từ vựng chuyên ngành được tổng hợp đầy đủ với phiên âm, nghĩa tiếng Việt và collocations giúp bạn nâng cao vốn từ học thuật.
Đề thi này phù hợp cho học viên từ band 5.0 trở lên, đặc biệt hữu ích cho những ai đang nhắm đến band điểm 7.0+ với chủ đề công nghệ và y tế.
1. Hướng Dẫn Làm Bài IELTS Reading
Tổng Quan Về IELTS Reading Test
IELTS Reading Test kéo dài 60 phút với 3 passages và tổng cộng 40 câu hỏi. Đây là bài thi yêu cầu khả năng quản lý thời gian chặt chẽ và kỹ năng đọc hiểu đa dạng.
Phân bổ thời gian khuyến nghị:
- Passage 1: 15-17 phút (độ khó Easy, câu hỏi tương đối trực tiếp)
- Passage 2: 18-20 phút (độ khó Medium, yêu cầu hiểu sâu hơn)
- Passage 3: 23-25 phút (độ khó Hard, cần phân tích và suy luận)
Lưu ý dành 2-3 phút cuối để chuyển đáp án vào Answer Sheet, đảm bảo không mắc lỗi chính tả hoặc ghi thiếu câu trả lời.
Các Dạng Câu Hỏi Trong Đề Này
Đề thi mẫu này bao gồm 7 dạng câu hỏi phổ biến nhất trong IELTS Reading:
- Multiple Choice Questions – Câu hỏi trắc nghiệm nhiều lựa chọn
- True/False/Not Given – Xác định thông tin đúng/sai/không đề cập
- Yes/No/Not Given – Xác định quan điểm tác giả
- Matching Headings – Nối tiêu đề với đoạn văn
- Summary Completion – Hoàn thành đoạn tóm tắt
- Matching Features – Nối thông tin với đặc điểm
- Short-answer Questions – Câu hỏi trả lời ngắn
Mỗi dạng câu hỏi đòi hỏi chiến lược làm bài khác nhau, được giải thích chi tiết trong phần đáp án.
2. IELTS Reading Practice Test
PASSAGE 1 – The Basics of Blockchain in Healthcare
Độ khó: Easy (Band 5.0-6.5)
Thời gian đề xuất: 15-17 phút
The healthcare industry worldwide is facing a critical challenge with data security and patient privacy. Traditional systems for storing medical records have proven vulnerable to breaches, with millions of patient records exposed annually through cyberattacks. Blockchain technology, originally developed for cryptocurrencies like Bitcoin, is now emerging as a revolutionary solution to protect sensitive health information while maintaining accessibility for authorized medical professionals.
Blockchain is essentially a digital ledger that records transactions across multiple computers in a way that makes it nearly impossible to alter or hack. Unlike traditional databases stored in a single location, blockchain distributes information across a network of computers, making it highly resistant to tampering. Each “block” of data is linked to the previous one through complex mathematical algorithms, creating an unbreakable chain. When applied to healthcare, this means that patient records, test results, and medical histories can be stored securely while remaining accessible to doctors, hospitals, and patients themselves.
One of the primary advantages of blockchain in healthcare is its ability to give patients greater control over their own medical data. Currently, medical records are typically held by individual hospitals or clinics, making it difficult for patients to access their complete health history when switching doctors or seeking second opinions. With blockchain-based systems, patients can hold a digital key that grants them full access to their records, which they can then share with any healthcare provider of their choice. This patient-centric approach represents a significant shift from traditional models where institutions control medical information.
Interoperability—the ability of different healthcare systems to communicate and exchange data—is another major benefit. Many hospitals and clinics currently use incompatible electronic health record systems, creating what experts call “data silos.” When a patient visits a new doctor, their previous medical history might not be immediately available, leading to redundant tests and potentially dangerous gaps in care. Blockchain provides a standardized platform where different healthcare providers can securely access and update a patient’s complete medical history in real-time, regardless of which system they use.
The technology also offers enhanced security features that address growing concerns about data breaches. In traditional systems, hackers only need to breach a single database to access thousands of patient records. However, blockchain’s decentralized nature means there is no single point of failure. Additionally, every transaction or change to a medical record is permanently recorded with a timestamp and digital signature, creating an immutable audit trail. This makes it immediately apparent if someone attempts to alter or access records without authorization, providing both security and accountability.
Several countries have already begun implementing blockchain solutions for health data management. Estonia, a leader in digital innovation, has used blockchain to secure the health records of its entire population since 2012. The United Arab Emirates launched a blockchain-based system in 2019 that allows patients in Dubai to share their medical records seamlessly across different hospitals. Meanwhile, in the United States, the Food and Drug Administration (FDA) is exploring blockchain for tracking pharmaceutical supply chains to prevent counterfeit medications from entering the market.
Despite these promising developments, challenges remain. The technology is still relatively new, and many healthcare professionals lack familiarity with how it works. Implementation costs can be substantial, particularly for smaller clinics and hospitals with limited budgets. There are also questions about scalability—whether blockchain systems can handle the massive volume of health data generated daily across entire healthcare systems. Regulatory frameworks need to be developed to ensure blockchain-based health records comply with existing privacy laws while taking advantage of the technology’s unique capabilities.
Looking ahead, experts believe blockchain will play an increasingly important role in global health data management. As the technology matures and becomes more cost-effective, its adoption is expected to accelerate. The COVID-19 pandemic has highlighted the need for better systems to share health information quickly and securely across borders, making blockchain solutions more relevant than ever. While it may not be a complete solution to all healthcare data challenges, blockchain represents a significant step forward in protecting patient privacy while improving the quality and efficiency of medical care worldwide.
Questions 1-6
Do the following statements agree with the information given in Passage 1?
Write:
- TRUE if the statement agrees with the information
- FALSE if the statement contradicts the information
- NOT GIVEN if there is no information on this
- Traditional healthcare database systems are frequently targeted by cybercriminals.
- Blockchain technology was initially created specifically for medical record storage.
- In blockchain systems, each block of data is connected to the one before it using mathematical formulas.
- Patients currently find it easy to access their complete medical history when changing healthcare providers.
- Estonia has been using blockchain for health records longer than the United Arab Emirates.
- The implementation of blockchain in healthcare is affordable for all medical facilities.
Questions 7-10
Complete the sentences below.
Choose NO MORE THAN TWO WORDS from the passage for each answer.
- Blockchain distributes information across multiple computers, making it very __ to unauthorized changes.
- The inability of different healthcare systems to share information creates what are known as __.
- Every modification to a medical record in blockchain includes a timestamp and __.
- The FDA in the United States is investigating blockchain to prevent __ from reaching consumers.
Questions 11-13
Choose the correct letter, A, B, C or D.
-
According to the passage, what is the main advantage of blockchain for patients?
- A) Lower healthcare costs
- B) Faster medical treatments
- C) Greater control over their medical data
- D) Access to more doctors
-
What makes blockchain more secure than traditional healthcare databases?
- A) It uses stronger passwords
- B) It has no single point that can be attacked
- C) It employs more security staff
- D) It stores less information
-
What does the passage suggest about the future of blockchain in healthcare?
- A) It will completely replace all current systems
- B) It will become less expensive and more widely used
- C) It will only be used in developed countries
- D) It will be abandoned due to high costs
Công nghệ blockchain bảo vệ dữ liệu y tế bệnh nhân với hệ thống mã hóa phân tán an toàn
PASSAGE 2 – Technical Implementation and Privacy Protocols
Độ khó: Medium (Band 6.0-7.5)
Thời gian đề xuất: 18-20 phút
The technical architecture underlying blockchain-based health information systems represents a sophisticated fusion of cryptography, distributed computing, and healthcare informatics. While the concept of a decentralized ledger may appear straightforward, the practical implementation of blockchain technology in healthcare environments involves navigating complex trade-offs between transparency, privacy, and operational efficiency. Understanding these technical nuances is crucial for healthcare administrators, policymakers, and technology developers working to create systems that can withstand rigorous security standards while remaining clinically practical.
At the foundation of blockchain privacy mechanisms lies cryptographic hashing—a mathematical process that converts medical data into a fixed-length string of characters that appears random. This one-way function ensures that even if someone intercepts the data, they cannot reverse-engineer it to reveal the original information. In healthcare applications, sensitive patient identifiers such as names, birth dates, and social security numbers are typically replaced with pseudonymous identifiers generated through hashing algorithms. The actual medical data may be stored off-chain in traditional encrypted databases, with only the cryptographic hash and access permissions recorded on the blockchain itself. This hybrid approach addresses concerns about storing massive medical imaging files or genomic data directly on the blockchain, which would be computationally prohibitive.
Smart contracts—self-executing programs that run on blockchain networks—play a pivotal role in managing access control and data sharing permissions. These programmable protocols can automatically enforce complex privacy rules without requiring manual intervention. For instance, a smart contract might specify that a patient’s HIV test results can only be accessed by their primary care physician and the laboratory that performed the test, with any additional access requiring explicit patient consent. When a specialist requests access, the smart contract automatically checks whether the conditions are met and either grants or denies permission accordingly. This automated governance reduces human error and ensures consistent application of privacy policies across entire healthcare networks.
The concept of data provenance—tracking the complete history of who has accessed, modified, or shared medical information—is another area where blockchain technology offers substantial advantages over conventional systems. Every interaction with a patient’s health record generates a permanent, timestamped entry on the blockchain, creating an indelible audit trail. This comprehensive logging serves multiple purposes: it enables patients to see exactly who has viewed their medical information and when, it helps healthcare organizations demonstrate regulatory compliance with privacy laws such as HIPAA in the United States or GDPR in Europe, and it provides forensic evidence in the event of suspected unauthorized access or data breaches. The immutability of blockchain records means that even system administrators cannot delete or alter these audit logs, a feature that significantly enhances accountability.
However, the very characteristics that make blockchain appealing for security purposes also create potential privacy paradoxes. The transparency inherent in many blockchain systems—where all participants can view transaction records—conflicts with healthcare’s strict confidentiality requirements. Public blockchains like Bitcoin, where anyone can read all transactions, are clearly unsuitable for medical applications. Instead, healthcare implementations typically employ private or permissioned blockchains, where participation is restricted to vetted organizations and individuals. Even within these controlled environments, sophisticated encryption layers and zero-knowledge proofs—cryptographic methods that verify information without revealing the underlying data—are necessary to prevent participants from accessing information beyond their authorized scope.
Interoperability standards represent another critical technical challenge. The healthcare industry has long struggled with incompatible data formats and communication protocols, and blockchain implementations risk creating yet another silo if not designed with interoperability in mind. Organizations such as HL7 International and the Integrating the Healthcare Enterprise (IHE) initiative have developed standards like Fast Healthcare Interoperability Resources (FHIR) to facilitate data exchange between different systems. Progressive blockchain health platforms are incorporating these standards, enabling seamless integration with existing electronic health record systems rather than requiring a complete replacement of current infrastructure. This pragmatic approach acknowledges that blockchain adoption will necessarily be gradual and incremental rather than revolutionary.
The scalability question looms particularly large in healthcare contexts. A typical hospital generates thousands of patient encounters daily, each producing multiple data points ranging from vital signs to laboratory results to imaging studies. Traditional blockchain networks like Bitcoin can only process a limited number of transactions per second—far below what would be required for real-time clinical operations. Solutions being explored include layer-two protocols that conduct most transactions off the main blockchain and only periodically record summaries, sharding techniques that divide the blockchain into parallel processing segments, and alternative consensus mechanisms that require less computational power than Bitcoin’s energy-intensive proof-of-work system. The development of these scalability solutions will largely determine whether blockchain can transition from pilot projects to enterprise-wide deployment in large healthcare systems.
Regulatory compliance adds another layer of complexity to blockchain health implementations. Healthcare is among the most heavily regulated industries globally, with strict requirements governing data storage locations, retention periods, and cross-border transfers. The decentralized nature of blockchain can create jurisdictional ambiguities: if a patient’s medical data is distributed across servers in multiple countries, which nation’s privacy laws apply? The European Union’s GDPR includes a “right to erasure” allowing individuals to request deletion of their personal data—but how can this be reconciled with blockchain’s fundamental characteristic of immutability? These questions remain subjects of active legal debate, and healthcare organizations must carefully navigate this evolving regulatory landscape when implementing blockchain solutions.
Questions 14-19
Choose the correct letter, A, B, C or D.
-
According to the passage, why is actual medical data often stored off-chain?
- A) It is required by law
- B) Large medical files would be too demanding on blockchain systems
- C) Doctors prefer traditional databases
- D) It is cheaper than blockchain storage
-
What is the primary function of smart contracts in healthcare blockchain systems?
- A) To reduce medical costs
- B) To automatically manage access permissions
- C) To diagnose patient conditions
- D) To replace healthcare administrators
-
The passage suggests that data provenance in blockchain systems helps with:
- A) reducing hospital costs
- B) training new doctors
- C) demonstrating compliance with privacy regulations
- D) eliminating all data breaches
-
Why are public blockchains unsuitable for medical applications?
- A) They are too expensive
- B) They are too slow
- C) They lack sufficient transparency for all participants
- D) They allow anyone to view transaction records
-
What does the passage identify as a major challenge for blockchain scalability in healthcare?
- A) Lack of interested healthcare providers
- B) The high volume of daily patient data generated
- C) Insufficient cryptographic security
- D) Opposition from patients
-
The “right to erasure” in GDPR creates a problem for blockchain because:
- A) blockchain data cannot easily be deleted
- B) it is too expensive to implement
- C) patients do not want their data erased
- D) hospitals refuse to comply
Questions 20-23
Complete the summary below.
Choose NO MORE THAN TWO WORDS from the passage for each answer.
Blockchain technology uses (20) __ to convert medical data into unreadable strings of characters. In healthcare systems, patient names and identification numbers are replaced with (21) __ to protect privacy. The technology creates an (22) __ that shows everyone who has accessed patient records. To work with existing hospital systems, blockchain platforms are incorporating (23) __ like FHIR.
Questions 24-26
Do the following statements agree with the claims of the writer in Passage 2?
Write:
- YES if the statement agrees with the claims of the writer
- NO if the statement contradicts the claims of the writer
- NOT GIVEN if it is impossible to say what the writer thinks about this
- Zero-knowledge proofs allow verification of information without exposing the actual data.
- Most hospitals worldwide have already successfully implemented blockchain systems.
- The adoption of blockchain in healthcare will happen gradually rather than all at once.
PASSAGE 3 – Ethical Dimensions and Global Health Equity Implications
Độ khó: Hard (Band 7.0-9.0)
Thời gian đề xuất: 23-25 phút
The ascendancy of blockchain technology as a potential panacea for healthcare data privacy concerns has generated considerable enthusiasm among technologists and healthcare futurists, yet this optimism must be tempered by a rigorous examination of the ethical implications and potential exacerbation of existing global health inequities. While the technical affordances of distributed ledger systems are indeed formidable, the sociotechnical context within which these systems operate introduces myriad complexities that transcend purely technological considerations. A comprehensive ethical analysis requires examining blockchain health initiatives through multiple lenses: autonomy and informed consent, distributive justice and equitable access, power dynamics and data governance, and the intersection of privacy with public health imperatives.
The principle of patient autonomy—the right of individuals to make informed decisions about their own healthcare and personal information—occupies central importance in biomedical ethics and is frequently invoked as a primary justification for blockchain health implementations. Proponents argue that blockchain-based systems epitomize autonomy by giving patients unprecedented control over their medical records through cryptographic key management. However, this technologically deterministic framing obscures important questions about what meaningful autonomy entails in practice. The concept of a patient maintaining sovereign control over complex cryptographic keys presupposes a level of digital literacy and technical sophistication that remains unevenly distributed across populations. Elderly patients, individuals with cognitive impairments, and populations with limited technological exposure may find themselves effectively disenfranchised by systems designed ostensibly to empower them. Moreover, the irrevocability of blockchain transactions creates problematic scenarios: if patients lose their private keys—the digital equivalent of forgetting a password with no recovery option—they may be permanently locked out of their own medical records, a situation that paradoxically undermines rather than enhances autonomy.
The question of informed consent becomes particularly vexing in blockchain contexts. Traditional informed consent processes, already criticized for their perfunctory nature and patients’ limited comprehension of what they are agreeing to, face additional challenges when the underlying technology is inherently opaque to most people. Can patients meaningfully consent to having their health data managed through systems whose technical architecture they cannot possibly understand? Furthermore, blockchain’s immutability feature, while valuable for data integrity, creates a temporal dimension to consent that deviates from conventional models. When patients provide consent for their data to be recorded on an immutable ledger, they are making a decision with permanent ramifications that cannot easily be rescinded—a characteristic that may conflict with evolving preferences or the “right to be forgotten” increasingly recognized in privacy legislation. The ethical adequacy of consent mechanisms designed for traditional, mutable databases appears questionable when applied to blockchain systems with fundamentally different properties.
From a distributive justice perspective, blockchain health initiatives risk entrenching rather than ameliorating global health disparities. The development and implementation of these systems require substantial financial investment, technical infrastructure, and specialized expertise—resources disproportionately concentrated in wealthy nations and well-funded healthcare institutions. While blockchain advocates often invoke its potential to help underserved populations, the reality is that early adopters are predominantly affluent healthcare systems in developed countries. This pattern risks creating a “blockchain divide” analogous to the digital divide, where populations already advantaged in terms of healthcare access gain an additional benefit—enhanced data privacy and interoperability—while marginalized populations continue struggling with more fundamental healthcare access issues. The opportunity cost consideration is particularly salient in resource-limited settings: would investments in blockchain infrastructure represent the most efficient allocation of scarce healthcare resources, or might these funds generate greater health improvements if directed toward more basic interventions such as vaccination programs, maternal health services, or communicable disease prevention?
The governance architecture of blockchain health systems raises profound questions about power, accountability, and democratic control over health infrastructure. While blockchain’s decentralization is often presented as democratizing, the reality is more nuanced. The design of these systems—which data elements are recorded on-chain versus off-chain, which encryption methods are employed, what smart contract rules govern data access—involves highly consequential decisions typically made by technical developers and early institutional adopters rather than through broad stakeholder participation including patients, community representatives, and public health officials. This technocratic concentration of decision-making authority regarding systems that will affect millions of people’s health information raises legitimacy concerns. Furthermore, the private sector entities dominating blockchain development—technology companies and startups—have their own commercial interests that may not always align with public health objectives or patient welfare. The potential for surveillance capitalism—the commodification of personal data for commercial gain—to infiltrate healthcare through blockchain systems deserves vigilant scrutiny, particularly given the immense economic value of health data for pharmaceutical companies, insurers, and health technology corporations.
The tension between privacy and public health represents another ethically fraught dimension of blockchain health implementations. While much emphasis is placed on blockchain’s privacy-enhancing capabilities, robust public health surveillance systems actually depend on the aggregation and analysis of population-level health data—a goal that can be impeded by excessive privacy protections. Infectious disease monitoring, pharmacovigilance (tracking adverse medication effects), cancer registries, and epidemiological research all require access to health data beyond individual patient-physician relationships. Overly restrictive blockchain systems that maximize individual privacy might inadvertently compromise these essential public health functions. Striking an appropriate balance requires nuanced governance frameworks that protect individual privacy while preserving necessary data flows for collective health protection—a delicate equilibrium that simplistic “blockchain as privacy solution” narratives tend to overlook.
Cross-border data flows introduce additional ethical complexities in an increasingly interconnected global health landscape. Infectious disease outbreaks, antimicrobial resistance, and pandemic preparedness require international data sharing—yet countries maintain divergent privacy regulations and data sovereignty principles. Blockchain systems that enhance privacy protections within national boundaries might simultaneously create barriers to the international collaboration essential for addressing transnational health threats. The normative question of how to balance national data sovereignty with global health solidarity remains unresolved, and blockchain implementations could either facilitate or hinder progress depending on how these systems are designed and governed.
Finally, there exists a meta-ethical concern about the technological solutionism implicit in much blockchain health discourse—the assumption that complex social problems can be resolved through technological means. Health data privacy challenges are not purely technical problems; they are deeply embedded in institutional practices, power relationships, economic structures, and cultural norms surrounding health information. While blockchain may offer valuable technical tools, overreliance on technological solutions risks diverting attention from necessary institutional reforms, policy changes, and broader social determinants of health and privacy. A truly comprehensive approach to enhancing global health data privacy requires not only innovative technologies like blockchain but also strengthened regulatory frameworks, capacity building in healthcare governance, public engagement in health policy, and international cooperation—elements that cannot be encoded in software but require sustained political will and social commitment.
Questions 27-31
Choose the correct letter, A, B, C or D.
-
According to the passage, what is a major problem with patient control through cryptographic keys?
- A) It is too expensive for hospitals
- B) Not all patients have the technical knowledge to manage them
- C) It violates patient privacy
- D) It slows down medical treatment
-
The passage suggests that blockchain’s immutability creates issues with:
- A) data accuracy
- B) hospital efficiency
- C) the ability to change or withdraw consent
- D) medical diagnoses
-
What does the author mean by the “blockchain divide”?
- A) The physical separation of blockchain servers
- B) A new form of inequality between those with and without blockchain access
- C) The division between doctors and patients
- D) Different types of blockchain technology
-
According to the passage, who typically makes important decisions about blockchain health system design?
- A) Patients and community members
- B) Government health departments
- C) Technical developers and institutions
- D) Public health officials exclusively
-
The passage argues that excessive privacy protection in blockchain systems might:
- A) reduce healthcare costs
- B) improve medical treatments
- C) interfere with public health monitoring and research
- D) increase patient satisfaction
Questions 32-36
Complete each sentence with the correct ending, A-H, below.
- Elderly patients and those with limited technology experience may be
- The opportunity cost of investing in blockchain is especially important when
- Surveillance capitalism in healthcare could occur if
- International disease outbreak response may be complicated when
- Technological solutionism can be problematic because it
A. considering where to allocate limited healthcare resources.
B. blockchain systems create barriers between countries.
C. excluded from systems meant to help them.
D. increases the cost of medical care significantly.
E. commercial interests exploit health data for profit.
F. assumes technology alone can solve complex social problems.
G. requires too much training for medical staff.
H. reduces the quality of patient care in hospitals.
Questions 37-40
Answer the questions below.
Choose NO MORE THAN THREE WORDS from the passage for each answer.
- What type of analysis does the author say is needed to properly examine blockchain health initiatives?
- What does the passage call the enormous economic value of health data for companies?
- What type of health function involves tracking negative effects of medications?
- What does the passage say cannot be encoded in software but requires political commitment?
Thách thức về công bằng và bảo mật trong triển khai blockchain y tế toàn cầu
3. Answer Keys – Đáp Án
PASSAGE 1: Questions 1-13
- TRUE
- FALSE
- TRUE
- FALSE
- TRUE
- FALSE
- resistant
- data silos
- digital signature
- counterfeit medications
- C
- B
- B
PASSAGE 2: Questions 14-26
- B
- B
- C
- D
- B
- A
- cryptographic hashing
- pseudonymous identifiers
- audit trail / indelible audit trail
- interoperability standards
- YES
- NOT GIVEN
- YES
PASSAGE 3: Questions 27-40
- B
- C
- B
- C
- C
- C
- A
- E
- B
- F
- comprehensive ethical analysis
- surveillance capitalism
- pharmacovigilance
- institutional reforms / policy changes / international cooperation
4. Giải Thích Đáp Án Chi Tiết
Passage 1 – Giải Thích
Câu 1: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: traditional healthcare database systems, frequently targeted, cybercriminals
- Vị trí trong bài: Đoạn 1, dòng 2-3
- Giải thích: Bài đọc nói rõ “Traditional systems for storing medical records have proven vulnerable to breaches, with millions of patient records exposed annually through cyberattacks” – điều này xác nhận hệ thống truyền thống thường xuyên bị tấn công bởi tội phạm mạng.
Câu 2: FALSE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: originally created, specifically for, medical record storage
- Vị trí trong bài: Đoạn 1, dòng 5-6
- Giải thích: Passage nói “originally developed for cryptocurrencies like Bitcoin” – blockchain được phát triển cho tiền điện tử, không phải cho y tế. Câu này mâu thuẫn với thông tin trong bài.
Câu 3: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: each block, connected, mathematical formulas
- Vị trí trong bài: Đoạn 2, dòng 4-5
- Giải thích: “Each ‘block’ of data is linked to the previous one through complex mathematical algorithms” – paraphrase của “mathematical formulas” chính là “mathematical algorithms”.
Câu 4: FALSE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: patients, easy to access, complete medical history, changing healthcare providers
- Vị trí trong bài: Đoạn 3, dòng 2-4
- Giải thích: Bài nói “making it difficult for patients to access their complete health history when switching doctors” – điều này trái ngược với việc “find it easy”.
Câu 5: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: Estonia, using blockchain, longer than, United Arab Emirates
- Vị trí trong bài: Đoạn 6, dòng 2-4
- Giải thích: Estonia sử dụng từ 2012, UAE từ 2019 – Estonia bắt đầu sớm hơn 7 năm.
Câu 6: FALSE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: implementation, affordable, all medical facilities
- Vị trí trong bài: Đoạn 7, dòng 2-3
- Giải thích: “Implementation costs can be substantial, particularly for smaller clinics and hospitals with limited budgets” – chi phí cao, không phải “affordable for all”.
Câu 7: resistant
- Dạng câu hỏi: Sentence Completion
- Từ khóa: distributes information, multiple computers, unauthorized changes
- Vị trí trong bài: Đoạn 2, dòng 2-3
- Giải thích: “highly resistant to tampering” – tampering nghĩa là unauthorized changes.
Câu 8: data silos
- Dạng câu hỏi: Sentence Completion
- Từ khóa: inability, different healthcare systems, share information
- Vị trí trong bài: Đoạn 4, dòng 2-4
- Giải thích: “creating what experts call ‘data silos'” – đây là thuật ngữ chuyên ngành được đưa ra trong ngoặc kép.
Câu 9: digital signature
- Dạng câu hỏi: Sentence Completion
- Từ khóa: every modification, medical record, blockchain, timestamp
- Vị trí trong bài: Đoạn 5, dòng 4-5
- Giải thích: “permanently recorded with a timestamp and digital signature” – hai yếu tố được liệt kê song song.
Câu 10: counterfeit medications
- Dạng câu hỏi: Sentence Completion
- Từ khóa: FDA, United States, investigating blockchain, prevent
- Vị trí trong bài: Đoạn 6, dòng 5-7
- Giải thích: “prevent counterfeit medications from entering the market” – FDA sử dụng blockchain để ngăn thuốc giả.
Câu 11: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: main advantage, blockchain, patients
- Vị trí trong bài: Đoạn 3, dòng 1-2
- Giải thích: “give patients greater control over their own medical data” – đây là lợi ích chính được nhấn mạnh ở đầu đoạn 3.
Câu 12: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: makes blockchain more secure, traditional databases
- Vị trí trong bài: Đoạn 5, dòng 2-4
- Giải thích: “blockchain’s decentralized nature means there is no single point of failure” – không có điểm duy nhất có thể bị tấn công.
Câu 13: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: future of blockchain, healthcare
- Vị trí trong bài: Đoạn 8, dòng 1-3
- Giải thích: “As the technology matures and becomes more cost-effective, its adoption is expected to accelerate” – sẽ rẻ hơn và được sử dụng rộng rãi hơn.
Passage 2 – Giải Thích
Câu 14: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: actual medical data, stored off-chain, why
- Vị trí trong bài: Đoạn 2, dòng 6-9
- Giải thích: “storing massive medical imaging files or genomic data directly on the blockchain, which would be computationally prohibitive” – các file lớn sẽ quá tải cho blockchain.
Câu 15: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: primary function, smart contracts
- Vị trí trong bài: Đoạn 3, dòng 1-3
- Giải thích: “play a pivotal role in managing access control and data sharing permissions” và “automatically enforce complex privacy rules” – tự động quản lý quyền truy cập.
Câu 16: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: data provenance, helps with
- Vị trí trong bài: Đoạn 4, dòng 4-6
- Giải thích: “helps healthcare organizations demonstrate regulatory compliance with privacy laws” – giúp chứng minh tuân thủ quy định.
Câu 17: D
- Dạng câu hỏi: Multiple Choice
- Từ khóa: public blockchains, unsuitable, medical applications
- Vị trí trong bài: Đoạn 5, dòng 4-5
- Giải thích: “Public blockchains like Bitcoin, where anyone can read all transactions, are clearly unsuitable” – ai cũng có thể xem được là vấn đề.
Câu 18: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: major challenge, blockchain scalability
- Vị trí trong bài: Đoạn 7, dòng 2-3
- Giải thích: “A typical hospital generates thousands of patient encounters daily, each producing multiple data points” – khối lượng dữ liệu lớn mỗi ngày.
Câu 19: A
- Dạng câu hỏi: Multiple Choice
- Từ khóa: right to erasure, GDPR, problem for blockchain
- Vị trí trong bài: Đoạn 8, dòng 5-7
- Giải thích: “how can this be reconciled with blockchain’s fundamental characteristic of immutability?” – dữ liệu blockchain không thể xóa.
Câu 20: cryptographic hashing
- Dạng câu hỏi: Summary Completion
- Từ khóa: uses, convert medical data, unreadable strings
- Vị trí trong bài: Đoạn 2, dòng 1-2
- Giải thích: “cryptographic hashing—a mathematical process that converts medical data into a fixed-length string of characters” – định nghĩa rõ ràng.
Câu 21: pseudonymous identifiers
- Dạng câu hỏi: Summary Completion
- Từ khóa: patient names, identification numbers, replaced with
- Vị trí trong bài: Đoạn 2, dòng 4-5
- Giải thích: “sensitive patient identifiers…are typically replaced with pseudonymous identifiers” – thay thế trực tiếp.
Câu 22: audit trail / indelible audit trail
- Dạng câu hỏi: Summary Completion
- Từ khóa: creates, shows everyone, accessed patient records
- Vị trí trong bài: Đoạn 4, dòng 3-4
- Giải thích: “creating an indelible audit trail” – ghi lại lịch sử truy cập.
Câu 23: interoperability standards
- Dạng câu hỏi: Summary Completion
- Từ khóa: work with existing hospital systems, incorporating, FHIR
- Vị trí trong bài: Đoạn 6, dòng 5-7
- Giải thích: “blockchain health platforms are incorporating these standards, enabling seamless integration” – các tiêu chuẩn tương thích.
Câu 24: YES
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: zero-knowledge proofs, verification, without exposing data
- Vị trí trong bài: Đoạn 5, dòng 7-9
- Giải thích: “zero-knowledge proofs—cryptographic methods that verify information without revealing the underlying data” – định nghĩa khớp hoàn toàn.
Câu 25: NOT GIVEN
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: most hospitals worldwide, already successfully implemented
- Vị trí trong bài: Không có thông tin
- Giải thích: Bài chỉ nói về pilot projects và challenges, không đề cập đến số lượng bệnh viện đã triển khai thành công.
Câu 26: YES
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: adoption, happen gradually, rather than all at once
- Vị trí trong bài: Đoạn 6, dòng 9-10
- Giải thích: “blockchain adoption will necessarily be gradual and incremental rather than revolutionary” – quan điểm rõ ràng của tác giả.
Passage 3 – Giải Thích
Câu 27: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: major problem, patient control, cryptographic keys
- Vị trí trong bài: Đoạn 2, dòng 5-8
- Giải thích: “presupposes a level of digital literacy and technical sophistication that remains unevenly distributed” – không phải ai cũng có kiến thức kỹ thuật cần thiết.
Câu 28: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: blockchain’s immutability, creates issues
- Vị trí trong bài: Đoạn 3, dòng 4-7
- Giải thích: “immutability feature…creates a temporal dimension to consent that deviates from conventional models” và “permanent ramifications that cannot easily be rescinded” – không thể thay đổi hoặc rút lại sự đồng ý.
Câu 29: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: blockchain divide, means
- Vị trí trong bài: Đoạn 4, dòng 6-9
- Giải thích: “This pattern risks creating a ‘blockchain divide’ analogous to the digital divide, where populations already advantaged…gain an additional benefit…while marginalized populations continue struggling” – một dạng bất bình đẳng mới.
Câu 30: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: who makes decisions, blockchain health system design
- Vị trí trong bài: Đoạn 5, dòng 3-6
- Giải thích: “highly consequential decisions typically made by technical developers and early institutional adopters rather than through broad stakeholder participation” – các nhà phát triển kỹ thuật và tổ chức.
Câu 31: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: excessive privacy protection, might
- Vị trí trong bài: Đoạn 6, dòng 2-5
- Giải thích: “robust public health surveillance systems actually depend on the aggregation and analysis of population-level health data—a goal that can be impeded by excessive privacy protections” – cản trở giám sát sức khỏe cộng đồng.
Câu 32: C
- Dạng câu hỏi: Matching Sentence Endings
- Vị trí trong bài: Đoạn 2, dòng 8-10
- Giải thích: “Elderly patients, individuals with cognitive impairments…may find themselves effectively disenfranchised” – bị loại trừ khỏi hệ thống.
Câu 33: A
- Dạng câu hỏi: Matching Sentence Endings
- Vị trí trong bài: Đoạn 4, dòng 10-13
- Giải thích: “The opportunity cost consideration is particularly salient in resource-limited settings: would investments in blockchain infrastructure represent the most efficient allocation” – khi cân nhắc phân bổ nguồn lực y tế hạn chế.
Câu 34: E
- Dạng câu hỏi: Matching Sentence Endings
- Vị trí trong bài: Đoạn 5, dòng 10-12
- Giải thích: “The potential for surveillance capitalism—the commodification of personal data for commercial gain—to infiltrate healthcare” – khi lợi ích thương mại khai thác dữ liệu sức khỏe.
Câu 35: B
- Dạng câu hỏi: Matching Sentence Endings
- Vị trí trong bài: Đoạn 7, dòng 3-5
- Giải thích: “Blockchain systems that enhance privacy protections…might simultaneously create barriers to the international collaboration” – tạo rào cản giữa các quốc gia.
Câu 36: F
- Dạng câu hỏi: Matching Sentence Endings
- Vị trí trong bài: Đoạn 8, dòng 1-3
- Giải thích: “technological solutionism…the assumption that complex social problems can be resolved through technological means” – cho rằng công nghệ có thể giải quyết vấn đề xã hội phức tạp.
Câu 37: comprehensive ethical analysis
- Dạng câu hỏi: Short-answer Question
- Từ khóa: type of analysis, needed, properly examine
- Vị trí trong bài: Đoạn 1, dòng 4-5
- Giải thích: “A comprehensive ethical analysis requires examining blockchain health initiatives” – loại phân tích cần thiết.
Câu 38: surveillance capitalism
- Dạng câu hỏi: Short-answer Question
- Từ khóa: enormous economic value, health data, companies
- Vị trí trong bài: Đoạn 5, dòng 10-11
- Giải thích: “particularly given the immense economic value of health data” được đề cập trong context của surveillance capitalism.
Câu 39: pharmacovigilance
- Dạng câu hỏi: Short-answer Question
- Từ khóa: health function, tracking negative effects, medications
- Vị trí trong bài: Đoạn 6, dòng 4-5
- Giải thích: “pharmacovigilance (tracking adverse medication effects)” – định nghĩa trong ngoặc đơn.
Câu 40: institutional reforms / policy changes / international cooperation
- Dạng câu hỏi: Short-answer Question
- Từ khóa: cannot be encoded in software, requires political commitment
- Vị trí trong bài: Đoạn 8, dòng 6-9
- Giải thích: “elements that cannot be encoded in software but require sustained political will” – ba ví dụ được liệt kê.
5. Từ Vựng Quan Trọng Theo Passage
Passage 1 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| vulnerable | adj | /ˈvʌl.nər.ə.bəl/ | dễ bị tổn thương, yếu đuối | Traditional systems…have proven vulnerable to breaches | vulnerable to attack/breach |
| revolutionary | adj | /ˌrev.əˈluː.ʃən.er.i/ | mang tính cách mạng | emerging as a revolutionary solution | revolutionary technology/approach |
| ledger | n | /ˈledʒ.ər/ | sổ cái, ghi sổ | a digital ledger that records transactions | distributed ledger |
| resistant | adj | /rɪˈzɪs.tənt/ | kháng, chống lại | highly resistant to tampering | resistant to change/tampering |
| interoperability | n | /ˌɪn.tə.rɒp.ər.əˈbɪl.ə.ti/ | khả năng tương tác | the ability of different healthcare systems to communicate | data interoperability |
| timestamp | n | /ˈtaɪm.stæmp/ | dấu thời gian | permanently recorded with a timestamp | digital timestamp |
| immutable | adj | /ɪˈmjuː.tə.bəl/ | không thể thay đổi | creating an immutable audit trail | immutable record |
| accountability | n | /əˌkaʊn.təˈbɪl.ə.ti/ | trách nhiệm giải trình | providing both security and accountability | ensure/demonstrate accountability |
| counterfeit | adj | /ˈkaʊn.tə.fɪt/ | giả mạo | prevent counterfeit medications | counterfeit drugs/products |
| scalability | n | /ˌskeɪ.ləˈbɪl.ə.ti/ | khả năng mở rộng | questions about scalability | system scalability |
| regulatory | adj | /ˈreɡ.jə.lə.tər.i/ | thuộc về quy định | regulatory frameworks | regulatory compliance/framework |
| cost-effective | adj | /kɒst ɪˈfek.tɪv/ | hiệu quả về chi phí | becomes more cost-effective | cost-effective solution |
Passage 2 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| architecture | n | /ˈɑː.kɪ.tek.tʃər/ | kiến trúc (hệ thống) | The technical architecture underlying blockchain | system/network architecture |
| sophisticated | adj | /səˈfɪs.tɪ.keɪ.tɪd/ | phức tạp, tinh vi | represents a sophisticated fusion | sophisticated technology/system |
| cryptography | n | /krɪpˈtɒɡ.rə.fi/ | mật mã học | a sophisticated fusion of cryptography | public-key cryptography |
| nuance | n | /ˈnjuː.ɑːns/ | sắc thái, chi tiết tinh tế | Understanding these technical nuances | subtle nuance |
| hashing | n | /ˈhæʃ.ɪŋ/ | băm (thuật toán) | cryptographic hashing—a mathematical process | hashing algorithm |
| pseudonymous | adj | /sjuːˈdɒn.ɪ.məs/ | giả danh | replaced with pseudonymous identifiers | pseudonymous identity |
| off-chain | adj | /ɒf tʃeɪn/ | ngoài chuỗi khối | stored off-chain in traditional databases | off-chain storage |
| hybrid | adj | /ˈhaɪ.brɪd/ | lai, kết hợp | This hybrid approach | hybrid system/model |
| pivotal | adj | /ˈpɪv.ə.təl/ | then chốt, quan trọng | play a pivotal role | pivotal role/moment |
| provenance | n | /ˈprɒv.ə.nəns/ | nguồn gốc, xuất xứ | The concept of data provenance | data provenance |
| indelible | adj | /ɪnˈdel.ə.bəl/ | không thể xóa | creating an indelible audit trail | indelible mark/impression |
| immutability | n | /ɪˌmjuː.təˈbɪl.ə.ti/ | tính không thể thay đổi | blockchain’s fundamental characteristic of immutability | data immutability |
| paradox | n | /ˈpær.ə.dɒks/ | nghịch lý | potential privacy paradoxes | inherent paradox |
| permissioned | adj | /pəˈmɪʃ.ənd/ | có cấp phép | private or permissioned blockchains | permissioned network |
| scalability | n | /ˌskeɪ.ləˈbɪl.ə.ti/ | khả năng mở rộng quy mô | The scalability question | address scalability |
Passage 3 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| ascendancy | n | /əˈsen.dən.si/ | sự thống trị, lên ngôi | The ascendancy of blockchain technology | gain ascendancy |
| panacea | n | /ˌpæn.əˈsiː.ə/ | phương thuốc vạn năng | as a potential panacea | universal panacea |
| temper | v | /ˈtem.pər/ | làm dịu, điều hoà | must be tempered by | temper enthusiasm |
| exacerbation | n | /ɪɡˌzæs.əˈbeɪ.ʃən/ | sự làm trầm trọng | potential exacerbation of existing inequities | exacerbation of problems |
| affordance | n | /əˈfɔː.dəns/ | khả năng, tiềm năng | the technical affordances of distributed systems | technological affordances |
| myriad | adj | /ˈmɪr.i.əd/ | vô số | introduces myriad complexities | myriad possibilities/problems |
| autonomy | n | /ɔːˈtɒn.ə.mi/ | quyền tự chủ | The principle of patient autonomy | personal/patient autonomy |
| epitomize | v | /ɪˈpɪt.ə.maɪz/ | tượng trưng, là hiện thân | blockchain-based systems epitomize autonomy | epitomize excellence |
| deterministic | adj | /dɪˌtɜː.mɪˈnɪs.tɪk/ | theo định luận | this technologically deterministic framing | deterministic approach |
| disenfranchise | v | /ˌdɪs.ɪnˈfræn.tʃaɪz/ | tước quyền | may find themselves effectively disenfranchised | disenfranchise voters/groups |
| irrevocability | n | /ɪˌrev.ə.kəˈbɪl.ə.ti/ | tính không thể hủy bỏ | the irrevocability of blockchain transactions | irrevocability of decisions |
| vexing | adj | /ˈvek.sɪŋ/ | gây bực bội, phức tạp | becomes particularly vexing | vexing question/problem |
| perfunctory | adj | /pəˈfʌŋk.tər.i/ | qua loa, chiếu lệ | criticized for their perfunctory nature | perfunctory examination |
| opaque | adj | /əʊˈpeɪk/ | mờ đục, khó hiểu | inherently opaque to most people | opaque system/process |
| ramification | n | /ˌræm.ɪ.fɪˈkeɪ.ʃən/ | hệ quả, tác động | with permanent ramifications | serious ramifications |
| rescind | v | /rɪˈsɪnd/ | hủy bỏ | cannot easily be rescinded | rescind a decision/order |
| entrench | v | /ɪnˈtrentʃ/ | củng cố, ăn sâu | risk entrenching rather than ameliorating | deeply entrenched |
| ameliorate | v | /əˈmiː.li.ə.reɪt/ | cải thiện | rather than ameliorating global health disparities | ameliorate conditions |
| disproportionately | adv | /ˌdɪs.prəˈpɔː.ʃən.ət.li/ | không cân xứng | resources disproportionately concentrated | disproportionately affected |
| salient | adj | /ˈseɪ.li.ənt/ | nổi bật, đáng chú ý | particularly salient in resource-limited settings | salient features/points |
| technocratic | adj | /ˌtek.nəˈkræt.ɪk/ | theo chủ nghĩa chuyên gia | This technocratic concentration | technocratic approach |
| legitimacy | n | /lɪˈdʒɪt.ɪ.mə.si/ | tính hợp pháp | raises legitimacy concerns | political legitimacy |
| commodification | n | /kəˌmɒd.ɪ.fɪˈkeɪ.ʃən/ | sự thương phẩm hóa | the commodification of personal data | commodification of culture |
| infiltrate | v | /ˈɪn.fɪl.treɪt/ | thâm nhập | to infiltrate healthcare | infiltrate organizations |
| vigilant | adj | /ˈvɪdʒ.ɪ.lənt/ | cảnh giác | deserves vigilant scrutiny | remain vigilant |
| pharmacovigilance | n | /ˌfɑː.mə.kəʊˈvɪdʒ.ɪ.ləns/ | giám sát dược phẩm | tracking adverse medication effects | pharmacovigilance system |
| epidemiological | adj | /ˌep.ɪˌdiː.mi.əˈlɒdʒ.ɪ.kəl/ | thuộc dịch tễ học | epidemiological research | epidemiological studies |
| impede | v | /ɪmˈpiːd/ | cản trở | a goal that can be impeded | impede progress |
| equilibrium | n | /ˌiː.kwɪˈlɪb.ri.əm/ | cân bằng | a delicate equilibrium | maintain equilibrium |
| divergent | adj | /daɪˈvɜː.dʒənt/ | khác biệt, phân kỳ | countries maintain divergent privacy regulations | divergent views/approaches |
| antimicrobial | adj | /ˌæn.ti.maɪˈkrəʊ.bi.əl/ | kháng khuẩn | antimicrobial resistance | antimicrobial agents |
| normative | adj | /ˈnɔː.mə.tɪv/ | thuộc chuẩn mực | The normative question | normative framework |
| solutionism | n | /səˈluː.ʃən.ɪ.zəm/ | chủ nghĩa giải pháp | technological solutionism | digital solutionism |
| determinant | n | /dɪˈtɜː.mɪ.nənt/ | yếu tố quyết định | social determinants of health | key determinant |
Kết bài
Chủ đề “Blockchain for enhancing global health data privacy” đại diện cho một trong những xu hướng công nghệ quan trọng nhất trong lĩnh vực y tế hiện đại, và là chủ đề xuất hiện ngày càng nhiều trong các đề thi IELTS Reading gần đây. Bộ đề thi mẫu này đã cung cấp cho bạn trải nghiệm hoàn chỉnh với ba passages có độ khó tăng dần từ Easy đến Hard, phản ánh chính xác cấu trúc và yêu cầu của bài thi IELTS Reading thực tế.
Passage 1 giúp bạn làm quen với các khái niệm cơ bản về blockchain trong y tế với ngôn ngữ dễ tiếp cận. Passage 2 đào sâu vào các khía cạnh kỹ thuật với từ vựng học thuật và cấu trúc câu phức tạp hơn. Passage 3 thách thức khả năng phân tích của bạn với các vấn đề đạo đức và công bằng y tế toàn cầu, yêu cầu hiểu biết sâu sắc và kỹ năng suy luận cao.
Phần đáp án chi tiết không chỉ cung cấp đáp án đúng mà còn giải thích rõ ràng vị trí thông tin trong bài, cách paraphrase từ câu hỏi sang passage, và chiến lược làm bài cho từng dạng câu hỏi. Đây là tài liệu quý giá giúp bạn tự đánh giá năng lực và xác định điểm cần cải thiện.
Bộ từ vựng tổng hợp trên 60 từ và cụm từ chuyên ngành về công nghệ, y tế và bảo mật dữ liệu sẽ giúp bạn nâng cao vốn từ học thuật, đặc biệt hữu ích cho những ai nhắm đến band điểm 7.0 trở lên. Hãy học thuộc những collocations và áp dụng chúng trong phần Writing Task 2 để tăng điểm Lexical Resource.
Để đạt kết quả tốt nhất, hãy làm bài trong điều kiện như thi thật với giới hạn thời gian 60 phút, sau đó so sánh đáp án và phân tích kỹ những câu sai để rút kinh nghiệm. Chúc bạn ôn tập hiệu quả và đạt band điểm mong muốn trong kỳ thi IELTS sắp tới!