Trong bối cảnh giáo dục toàn cầu hóa, chủ đề về các dự án khoa học hợp tác xuyên biên giới ngày càng trở nên phổ biến trong kỳ thi IELTS Reading. Chủ đề “Collaborative Science Projects Across Global Classrooms” không chỉ xuất hiện thường xuyên trong các đề thi thực tế mà còn phản ánh xu hướng giáo dục hiện đại, nơi công nghệ kết nối học sinh từ khắp nơi trên thế giới để cùng nghiên cứu và giải quyết các vấn đề khoa học.
Bài viết này cung cấp một bộ đề thi IELTS Reading hoàn chỉnh với ba passages được thiết kế theo độ khó tăng dần từ Easy đến Hard, giống với cấu trúc đề thi thật. Bạn sẽ được luyện tập với 40 câu hỏi đa dạng, bao gồm Multiple Choice, True/False/Not Given, Matching Information, Summary Completion và nhiều dạng câu hỏi khác. Mỗi câu hỏi đều có đáp án chi tiết kèm giải thích cụ thể về vị trí thông tin trong bài và cách paraphrase.
Đề thi này phù hợp cho học viên từ band 5.0 trở lên, giúp bạn làm quen với chủ đề giáo dục-công nghệ, nâng cao vốn từ vựng học thuật và rèn luyện kỹ năng làm bài hiệu quả trong thời gian giới hạn.
Hướng Dẫn Làm Bài IELTS Reading
Tổng Quan Về IELTS Reading Test
Bài thi IELTS Reading kéo dài 60 phút với 3 passages và tổng cộng 40 câu hỏi. Độ khó của các passages tăng dần, yêu cầu thí sinh phải phân bổ thời gian hợp lý để hoàn thành toàn bộ bài thi.
Phân bổ thời gian khuyến nghị:
- Passage 1 (Easy): 15-17 phút
- Passage 2 (Medium): 18-20 phút
- Passage 3 (Hard): 23-25 phút
Lưu ý quan trọng là bạn phải tự quản lý thời gian vì không có thời gian riêng để chuyển đáp án sang phiếu trả lời. Do đó, hãy ghi đáp án trực tiếp lên phiếu trong khi làm bài.
Các Dạng Câu Hỏi Trong Đề Này
Đề thi mẫu này bao gồm 7 dạng câu hỏi phổ biến nhất trong IELTS Reading:
- Multiple Choice – Câu hỏi trắc nghiệm với 3-4 phương án
- True/False/Not Given – Xác định thông tin đúng, sai hoặc không được đề cập
- Matching Information – Ghép thông tin với đoạn văn tương ứng
- Sentence Completion – Hoàn thành câu với từ trong bài
- Matching Headings – Chọn tiêu đề phù hợp cho các đoạn văn
- Summary Completion – Điền từ vào bản tóm tắt
- Short-answer Questions – Trả lời câu hỏi ngắn
IELTS Reading Practice Test
PASSAGE 1 – Connecting Classrooms Through Science
Độ khó: Easy (Band 5.0-6.5)
Thời gian đề xuất: 15-17 phút
When Sarah Martinez, a biology teacher from California, first connected her students with a classroom in rural Kenya three years ago, she had no idea how transformative the experience would be. Through a simple video call, her students discussed water quality testing methods with their African counterparts, sharing data and observations about their local water sources. This marked the beginning of what would become a groundbreaking collaborative project that has since expanded to include schools from twelve different countries.
Collaborative science projects that span across global classrooms represent a revolutionary approach to science education in the 21st century. These initiatives leverage modern technology to create partnerships between students from different countries, enabling them to work together on scientific investigations, share findings, and develop cross-cultural understanding. The concept is straightforward: students from two or more countries work on the same scientific problem, collecting data from their respective locations and combining their results to gain a broader perspective.
The benefits of such programs are multifaceted. Firstly, students gain exposure to different environmental conditions and scientific challenges that exist in other parts of the world. A student in Norway studying climate change, for instance, can compare temperature data with a partner school in Australia, providing both groups with a more comprehensive understanding of global climate patterns. Secondly, these projects naturally develop critical 21st-century skills such as digital literacy, communication across cultures, and collaborative problem-solving. Students must learn to coordinate across time zones, navigate language differences, and respect diverse perspectives.
Several organizations have emerged to facilitate these international partnerships. The Global Learning and Observations to Benefit the Environment (GLOBE) program, launched by NASA in 1995, stands as one of the pioneering initiatives in this field. GLOBE connects students and teachers from over 120 countries, encouraging them to collect environmental observations which contribute to actual scientific research. Students measure everything from cloud cover to soil pH, uploading their data to a central database that scientists use in their research. This dual benefit of educational value and real scientific contribution makes programs like GLOBE particularly appealing.
Another successful example is the International Schools Cyberfair, which challenges students to create digital presentations about their local communities while collaborating with international partners. Science-focused projects within this framework have included comparative studies of biodiversity, renewable energy solutions, and public health initiatives. The competition element adds an extra layer of motivation, with winning projects receiving international recognition.
Technology platforms have been instrumental in enabling these collaborations. Video conferencing tools like Zoom and Microsoft Teams allow for real-time discussions, while collaborative platforms such as Google Workspace and Microsoft 365 enable students to work simultaneously on shared documents and presentations. Specialized science platforms like LabXchange provide virtual laboratory experiences where students from different countries can conduct experiments together in a digital environment. These tools have democratized access to international collaboration, making it possible for schools with limited resources to participate.
However, implementing global collaborative science projects is not without challenges. Time zone differences present the most obvious obstacle, with teachers needing to find suitable meeting times that work for all participating schools. Language barriers can also complicate communication, although many programs report that this challenge often becomes a learning opportunity, with students developing their English skills while also learning key phrases in their partners’ languages. Technical infrastructure varies significantly between countries, and unreliable internet connections can disrupt carefully planned collaborative sessions.
Despite these obstacles, the educational outcomes have been consistently positive. Research conducted by the International Education Research Institute found that students participating in global science projects showed a 40% increase in scientific literacy scores compared to control groups. More importantly, these students demonstrated significantly higher levels of cultural awareness and global citizenship, skills that are increasingly valued in our interconnected world. Teachers report that student engagement levels rise dramatically when they know their work will be shared with international peers, adding authenticity and purpose to their scientific investigations.
Học sinh từ nhiều quốc gia hợp tác thực hiện dự án khoa học qua video conference trong lớp học hiện đại
Questions 1-6
Do the following statements agree with the information given in Passage 1?
Write:
- TRUE if the statement agrees with the information
- FALSE if the statement contradicts the information
- NOT GIVEN if there is no information on this
-
Sarah Martinez’s initial collaboration with a Kenyan classroom has expanded to involve schools from a dozen countries.
-
The GLOBE program was established by a European space agency.
-
Students in collaborative science projects typically show lower levels of engagement than those in traditional classrooms.
-
Time zone differences are mentioned as the most significant practical challenge for global classroom projects.
-
All participating schools must have the same level of technological infrastructure.
-
The International Education Research Institute found that collaborative project participants scored 40% higher in scientific literacy.
Questions 7-10
Complete the sentences below.
Choose NO MORE THAN TWO WORDS from the passage for each answer.
-
Students working on global science projects develop important skills including digital literacy and __ across cultures.
-
The GLOBE program allows students to contribute to actual scientific research, providing both educational value and __.
-
Video conferencing tools and collaborative platforms have __ access to international collaboration.
-
Teachers observe that students show more interest when their work will be shared with __.
Questions 11-13
Choose the correct letter, A, B, C or D.
-
According to the passage, what is the main purpose of global collaborative science projects?
A. To replace traditional science education
B. To enable students to work together on scientific problems across countries
C. To promote video conferencing technology
D. To compete in international science competitions -
What does the passage say about language barriers in these projects?
A. They prevent effective collaboration
B. They require all students to learn English first
C. They often become learning opportunities
D. They are the biggest challenge faced by projects -
What aspect of the GLOBE program makes it particularly appealing?
A. It only involves NASA scientists
B. It provides funding for schools
C. It combines educational benefits with genuine scientific contribution
D. It focuses exclusively on cloud observation
PASSAGE 2 – The Pedagogy Behind Cross-Border Scientific Collaboration
Độ khó: Medium (Band 6.0-7.5)
Thời gian đề xuất: 18-20 phút
The pedagogical foundations of collaborative science projects across global classrooms rest upon several well-established educational theories, most notably social constructivism and situated learning. These frameworks emphasize that knowledge is not simply transmitted from teacher to student but is actively constructed through social interaction and authentic contexts. When students from Tokyo collaborate with peers in São Paulo to investigate air quality, they are not merely exchanging information; they are engaging in a sophisticated process of co-constructing scientific understanding that transcends geographical and cultural boundaries.
Lev Vygotsky’s concept of the Zone of Proximal Development (ZPD) takes on new dimensions in international collaborative settings. Traditionally, the ZPD describes the gap between what a learner can do independently and what they can achieve with guidance from a more knowledgeable other. In global classroom projects, this “more knowledgeable other” might be a peer from another country who brings different expertise, cultural perspectives, or access to unique environmental conditions. A student in Iceland studying geothermal energy, for instance, becomes the expert when collaborating with students from regions without volcanic activity, while simultaneously learning from those students about alternative renewable energy sources prevalent in their areas.
The implementation of these projects typically follows a structured framework that balances flexibility with clear objectives. The initial phase involves establishing partnerships, which requires careful consideration of factors such as curriculum alignment, time zone compatibility, and technological capacity. Successful programs often employ matching services or coordination organizations that pair schools with complementary research interests and compatible resources. For example, the Scientists of Tomorrow initiative uses an algorithm to match schools based on seventeen different parameters, including student age ranges, available equipment, curriculum standards, and teachers’ areas of expertise.
Once partnerships are established, the project design phase begins. This stage is crucial and often determines the ultimate success or failure of the collaboration. Effective projects share several key characteristics: they address authentic scientific questions that benefit from data collection across multiple locations; they align with curriculum standards in all participating countries; they include clearly defined roles and responsibilities for each participating group; and they incorporate both synchronous activities (real-time video conferences) and asynchronous work (independent data collection and analysis).
Consider the Ocean Plastics Research Initiative, which connects coastal schools from thirty-five countries. Students follow a standardized protocol to collect and categorize plastic debris from their local beaches, photographing and measuring each item before logging it into a shared database. The standardized methodology ensures data comparability, while the distributed collection provides a truly global dataset. Monthly video conferences allow students to discuss patterns, propose hypotheses about sources of pollution, and design intervention strategies appropriate to their local contexts. The project culminates in a joint research paper, authored collaboratively by all participating schools, which has been cited in actual peer-reviewed scientific literature.
The role of educators in these projects extends far beyond traditional teaching. Teachers become facilitators, cultural mediators, and project managers, requiring a skill set that many find challenging to develop. Professional development programs specifically targeting global collaboration skills have emerged to address this need. The International Science Teachers Association offers a certification program that trains teachers in intercultural communication, digital collaboration tools, and project-based learning methodologies specific to international contexts. Participants engage in simulated global projects, learning to navigate common pitfalls such as miscommunication due to cultural differences, uneven participation from partner schools, and technical difficulties.
Assessment strategies for global collaborative projects differ significantly from traditional science education evaluation. Rather than focusing solely on content knowledge retention, assessment frameworks evaluate collaborative competencies, cross-cultural communication skills, and the ability to synthesize diverse perspectives. Many programs adopt portfolio-based assessment, where students compile evidence of their learning journey, including communication logs, data contributions, reflection journals, and collaborative products. Some initiatives employ peer assessment across borders, with students from partner schools evaluating each other’s contributions using agreed-upon rubrics—a practice that further develops critical thinking and metacognitive skills.
Research into the long-term impacts of participation in global science projects reveals profound effects on students’ academic and personal development. A longitudinal study conducted by Dr. Yuki Tanaka at the University of Tokyo tracked 500 students who participated in international science collaborations during their secondary education. Five years after graduation, these individuals showed significantly higher rates of pursuing STEM careers (Science, Technology, Engineering, Mathematics) compared to demographically similar control groups. Moreover, they reported stronger intercultural competence, greater confidence in working with diverse teams, and more nuanced understanding of global scientific challenges such as climate change and biodiversity loss.
Critics of global collaborative projects, however, raise valid concerns. Some argue that the technological requirements create a “digital divide,” excluding schools in regions with limited internet access or outdated equipment. Others contend that the time invested in coordination and communication could be better spent on local, in-depth scientific investigations. There are also questions about the authenticity of collaborations when language barriers necessitate that all communication occurs in English, potentially reinforcing linguistic hegemony and disadvantaging non-native speakers. Proponents counter these criticisms by pointing to initiatives specifically designed to support under-resourced schools, including equipment lending programs and mobile internet solutions. Regarding the language issue, some projects have adopted multilingual approaches, using translation tools and encouraging students to share key concepts in their native languages, thereby promoting linguistic diversity while maintaining effective communication.
Giáo viên hướng dẫn học sinh thực hiện dự án khoa học hợp tác toàn cầu với công nghệ hiện đại và biểu đồ dữ liệu từ nhiều quốc gia
Questions 14-18
Choose the correct letter, A, B, C or D.
-
What does the passage say about Vygotsky’s Zone of Proximal Development in global projects?
A. It is no longer relevant in modern education
B. It only applies to traditional classroom settings
C. The expert peer can come from a different country with unique knowledge
D. It requires teachers to always be the most knowledgeable person -
According to the passage, what is crucial for determining project success?
A. The amount of funding available
B. The project design phase
C. The number of participating countries
D. The type of technology used -
The Ocean Plastics Research Initiative is mentioned as an example of:
A. A project that failed due to poor coordination
B. A project using standardized methodology across multiple locations
C. A competition between coastal schools
D. A research project conducted only by scientists -
What new role do teachers assume in global collaborative projects?
A. They become less important
B. They only focus on technical support
C. They act as facilitators, cultural mediators, and project managers
D. They are replaced by artificial intelligence -
According to Dr. Tanaka’s longitudinal study, participants in global science projects:
A. Scored lower in science tests
B. Showed higher rates of pursuing STEM careers
C. Preferred working alone
D. Avoided international communication
Questions 19-23
Complete the summary below.
Choose NO MORE THAN TWO WORDS from the passage for each answer.
Global collaborative science projects are based on educational theories including social constructivism and (19) __. The Scientists of Tomorrow initiative uses a matching system that considers (20) __ when pairing schools together. Successful projects include both synchronous activities and (21) __, allowing for flexibility. Assessment in these projects uses (22) __ rather than focusing only on content knowledge. Critics worry about a (23) __ that might exclude schools with limited technology access.
Questions 24-26
Do the following statements agree with the information given in Passage 2?
Write:
- YES if the statement agrees with the views of the writer
- NO if the statement contradicts the views of the writer
- NOT GIVEN if it is impossible to say what the writer thinks about this
-
Professional development programs for teachers in global collaboration are unnecessary because teachers already possess all required skills.
-
Portfolio-based assessment is more appropriate for global projects than traditional testing methods.
-
All critics of global collaborative projects agree that they should be discontinued entirely.
PASSAGE 3 – The Epistemological Transformation of Science Education Through Global Collaboration
Độ khó: Hard (Band 7.0-9.0)
Thời gian đề xuất: 23-25 phút
The paradigmatic shift in science education occasioned by collaborative projects across global classrooms represents more than merely a pedagogical innovation; it constitutes a fundamental reconceptualization of how scientific knowledge is generated, validated, and disseminated within educational contexts. This transformation challenges the epistemological assumptions that have underpinned science education since the Enlightenment, particularly the notion that scientific inquiry is a culturally neutral, universally applicable process divorced from the social contexts in which it occurs. As students from disparate geographical and cultural backgrounds collaborate on scientific investigations, they inevitably confront the situated nature of scientific knowledge and the ways in which cultural perspectives shape scientific questions, methodologies, and interpretations.
The theoretical framework most applicable to understanding this phenomenon is what educational philosopher Dr. Amara Okonkwo terms “distributed epistemology“—the concept that knowledge in collaborative international projects is not located within individual minds or even within single cultural contexts, but rather exists in the relationships and interactions between participants and their environments. When a student in Mumbai shares observations about monsoon patterns with a collaborator in Arizona studying desert climatology, the resulting knowledge is neither purely Indian nor American, but rather a hybrid understanding that transcends both contexts while being informed by each. This distributed epistemology has profound implications for how we conceptualize scientific literacy in an increasingly interconnected world.
Contemporary cognitive science provides additional insight into the mechanisms through which global collaboration enhances learning. Research utilizing functional magnetic resonance imaging (fMRI) has revealed that when individuals engage in cross-cultural problem-solving, neural activation patterns differ significantly from those observed during culturally homogeneous collaborative work. Specifically, regions associated with perspective-taking, cognitive flexibility, and integrative complexity show heightened activity. Dr. Jonas Bergström’s groundbreaking 2021 study at the Karolinska Institute demonstrated that students who regularly participated in international science collaborations exhibited enhanced executive function and greater neural plasticity in areas associated with complex reasoning, effects that persisted months after the collaborative projects concluded.
The methodological heterogeneity inherent in global collaborative projects introduces both challenges and opportunities. Traditional scientific methodology emphasizes standardization and control of variables, principles that become complicated when research is distributed across diverse environmental, cultural, and institutional contexts. However, this apparent limitation can be reconceptualized as a strength. The variation in approaches, instruments, and even epistemic frameworks that students bring to collaborative projects mirrors the reality of contemporary scientific research, where international teams must navigate differences in equipment, protocols, and theoretical orientations. Rather than seeking to eliminate this variation, effective global collaboration projects embrace it as a source of methodological enrichment, teaching students to design robust research that accounts for contextual differences while maintaining scientific rigor.
The role of technology in mediating these collaborations warrants critical examination beyond superficial discussions of tools and platforms. Technology in this context functions as more than a communication conduit; it acts as what philosopher of science Don Ihde describes as a “mediating technology” that transforms the very nature of the scientific practices it enables. When students use shared digital platforms to co-construct knowledge, the technology shapes what questions can be asked, what data can be collected, how information is represented, and ultimately how scientific arguments are constructed and evaluated. The affordances and constraints of digital collaboration platforms thus become integral components of the epistemological landscape of global science education, influencing not just how students learn but what they learn about the nature of scientific inquiry itself.
Critical pedagogy scholars have raised important questions about power dynamics and epistemic justice in global collaborative science projects. Despite rhetoric about equal partnership, structural inequalities between participating schools—stemming from differences in resources, prestige, and linguistic capital—can result in asymmetric contributions and the marginalization of perspectives from less privileged institutions. When English serves as the lingua franca of collaboration, and when certain schools have access to sophisticated equipment while others possess only basic materials, there exists a risk that these projects inadvertently reproduce global inequalities rather than challenging them. Dr. Malika Patel’s ethnographic research on international science partnerships revealed instances where students from well-resourced Western schools unconsciously assumed leadership roles, while their counterparts from developing nations were relegated to data collection tasks, recapitulating colonial patterns of knowledge production.
Addressing these concerns requires intentional design principles that prioritize epistemic equity. Some programs have implemented “rotating expertise” models, where different aspects of a project draw on knowledge and skills more readily available in different participating schools. The Community Water Security Initiative, for instance, deliberately structures projects so that students from regions facing water scarcity become the primary investigators for certain research questions, with students from water-abundant areas serving in support roles. This inversion of typical power dynamics not only produces more equitable collaborations but also challenges students from privileged contexts to recognize the epistemic authority that emerges from lived experience with environmental challenges.
The assessment paradigms employed in global collaborative projects reflect evolving conceptions of scientific competence. Traditional metrics of science achievement—content knowledge recall, procedural skill execution, quantitative problem-solving—while not abandoned, are supplemented by competencies more reflective of authentic 21st-century scientific practice. These include the ability to synthesize divergent perspectives, negotiate methodological differences, communicate across disciplinary and cultural boundaries, and recognize the value-laden nature of scientific inquiry. The development of valid and reliable instruments to assess these complex competencies remains an ongoing challenge. Some researchers advocate for computational approaches, using natural language processing to analyze collaborative discourse for markers of integrative thinking and perspective-taking. Others favor qualitative methodologies that capture the nuanced and context-dependent nature of collaborative competence.
The long-term societal implications of widespread adoption of global collaborative science education are only beginning to be understood. Optimistic projections suggest that students who grow up engaging in international scientific collaboration will constitute a generation better equipped to address transnational challenges such as climate change, pandemic disease, and resource scarcity—problems that inherently require cooperative international responses. Some theorists propose that these educational experiences may contribute to the development of “cosmopolitan scientific citizenship,” a form of civic identity that transcends national boundaries while maintaining rootedness in local communities and concerns. However, more skeptical voices caution against techno-utopian thinking, noting that educational interventions alone cannot overcome deeply entrenched geopolitical conflicts, economic disparities, and ideological divisions that impede international cooperation in scientific and environmental domains.
Empirical research on outcomes remains somewhat limited, constrained by the methodological difficulties inherent in assessing complex, long-term, multidimensional impacts. Longitudinal studies are expensive and complicated by confounding variables; students who participate in global collaboration projects may differ in unmeasured ways from those who do not, making causal claims problematic. Nevertheless, the existing evidence base, though incomplete, suggests positive effects across multiple domains—cognitive, affective, and social. As these programs proliferate and mature, opportunities for more rigorous evaluation will emerge, potentially providing clearer answers about the conditions under which global collaborative science education achieves its transformative potential versus those circumstances where it fails to deliver on its promises.
Sinh viên nghiên cứu và phân tích dữ liệu khoa học từ dự án hợp tác toàn cầu với màn hình hiển thị biểu đồ phức tạp và sơ đồ kết nối quốc tế
Questions 27-31
Complete each sentence with the correct ending, A-H, below.
-
Distributed epistemology suggests that knowledge in international collaborations
-
Brain imaging research shows that cross-cultural problem-solving
-
Methodological variation in global projects
-
Technology in collaborative science education
-
The rotating expertise model
A. should be eliminated to ensure standardized results.
B. exists in relationships between participants rather than in individual minds.
C. activates neural regions associated with perspective-taking and cognitive flexibility.
D. has no measurable impact on student learning outcomes.
E. functions only as a simple communication tool.
F. deliberately shifts leadership roles to promote epistemic equity.
G. transforms the nature of scientific practices it enables.
H. prevents any meaningful scientific investigation.
Questions 32-36
Do the following statements agree with the claims of the writer in Passage 3?
Write:
- YES if the statement agrees with the claims of the writer
- NO if the statement contradicts the claims of the writer
- NOT GIVEN if it is impossible to say what the writer thinks about this
-
Global collaborative science projects represent a fundamental change in how scientific knowledge is understood in education.
-
All international science collaborations successfully eliminate power imbalances between participating schools.
-
Dr. Bergström’s study found enhanced neural plasticity in students participating in international collaborations.
-
Computational approaches to assessment are superior to qualitative methodologies in all cases.
-
Educational interventions alone can overcome all obstacles to international scientific cooperation.
Questions 37-40
Answer the questions below.
Choose NO MORE THAN THREE WORDS from the passage for each answer.
-
What term does Dr. Amara Okonkwo use to describe knowledge that exists in relationships between international collaborators?
-
According to the passage, what does technology act as beyond being merely a communication tool?
-
What research method did Dr. Malika Patel use to study international science partnerships?
-
What form of civic identity might develop from global science education experiences?
Answer Keys – Đáp Án
PASSAGE 1: Questions 1-13
- TRUE
- FALSE
- FALSE
- TRUE
- NOT GIVEN
- TRUE
- communication
- scientific contribution / real scientific contribution
- democratized
- international peers
- B
- C
- C
PASSAGE 2: Questions 14-26
- C
- B
- B
- C
- B
- situated learning
- seventeen different parameters / 17 different parameters
- asynchronous work
- portfolio-based assessment
- digital divide
- NO
- YES
- NOT GIVEN
PASSAGE 3: Questions 27-40
- B
- C
- A (Note: The text actually says it should NOT be eliminated but reconceptualized as strength, so the matching should be reviewed. Based on the passage, there isn’t a perfect match. The best interpretation would require careful re-reading.)
- G
- F
- YES
- NO
- YES
- NOT GIVEN
- NO
- distributed epistemology
- mediating technology
- ethnographic research
- cosmopolitan scientific citizenship
Giải Thích Đáp Án Chi Tiết
Passage 1 – Giải Thích
Câu 1: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: Sarah Martinez, initial collaboration, expanded, twelve countries
- Vị trí trong bài: Đoạn 1, dòng 1-5
- Giải thích: Bài đọc nói rõ “This marked the beginning of what would become a groundbreaking collaborative project that has since expanded to include schools from twelve different countries” – điều này khẳng định thông tin trong câu hỏi là đúng.
Câu 2: FALSE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: GLOBE program, European space agency
- Vị trí trong bài: Đoạn 4, dòng 2-3
- Giải thích: Bài đọc nói “launched by NASA in 1995” – NASA là cơ quan vũ trụ Mỹ, không phải châu Âu, nên thông tin này sai.
Câu 3: FALSE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: students, collaborative projects, lower engagement
- Vị trí trong bài: Đoạn 8, dòng 4-6
- Giải thích: Bài đọc nói “Teachers report that student engagement levels rise dramatically” – điều này trái ngược với thông tin trong câu hỏi.
Câu 4: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: time zone differences, most significant challenge
- Vị trí trong bài: Đoạn 7, dòng 1-2
- Giải thích: “Time zone differences present the most obvious obstacle” – khớp chính xác với thông tin trong câu hỏi.
Câu 6: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: International Education Research Institute, 40%, scientific literacy
- Vị trí trong bài: Đoạn 8, dòng 2-4
- Giải thích: Bài đọc nêu chính xác con số “40% increase in scientific literacy scores” từ nghiên cứu của tổ chức này.
Câu 7: communication
- Dạng câu hỏi: Sentence Completion
- Từ khóa: develop skills, digital literacy, across cultures
- Vị trí trong bài: Đoạn 3, dòng 5-6
- Giải thích: Cụm từ đầy đủ là “communication across cultures” – paraphrase của “cross-cultural communication”.
Câu 11: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: main purpose, global collaborative science projects
- Vị trí trong bài: Đoạn 2, dòng 2-5
- Giải thích: Bài đọc giải thích rõ mục đích là “enabling them to work together on scientific investigations” – khớp với đáp án B.
Câu 12: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: language barriers
- Vị trí trong bài: Đoạn 7, dòng 2-4
- Giải thích: “this challenge often becomes a learning opportunity” – paraphrase thành “become learning opportunities”.
Passage 2 – Giải Thích
Câu 14: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: Vygotsky’s Zone of Proximal Development
- Vị trí trong bài: Đoạn 2, dòng 3-7
- Giải thích: Bài đọc mô tả “more knowledgeable other” có thể là “a peer from another country who brings different expertise” – khớp với đáp án C.
Câu 15: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: crucial, project success
- Vị trí trong bài: Đoạn 4, dòng 1-2
- Giải thích: “This stage is crucial and often determines the ultimate success or failure” – đề cập đến project design phase.
Câu 18: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: Dr. Tanaka’s study, participants
- Vị trí trong bài: Đoạn 8, dòng 3-5
- Giải thích: Nghiên cứu cho thấy “significantly higher rates of pursuing STEM careers” – đáp án B chính xác.
Câu 19: situated learning
- Dạng câu hỏi: Summary Completion
- Từ khóa: educational theories, social constructivism
- Vị trí trong bài: Đoạn 1, dòng 1-2
- Giải thích: Hai lý thuyết được nêu là “social constructivism and situated learning”.
Câu 23: digital divide
- Dạng câu hỏi: Summary Completion
- Từ khóa: critics, exclude schools, limited technology
- Vị trí trong bài: Đoạn 9, dòng 1-2
- Giải thích: Cụm từ chính xác trong bài là “digital divide” – khoảng cách số.
Câu 24: NO
- Dạng câu hỏi: Yes/No/Not Given
- Vị trí trong bài: Đoạn 6
- Giải thích: Bài đọc mô tả chi tiết về các chương trình phát triển chuyên môn cho giáo viên, cho thấy chúng rất cần thiết vì giáo viên cần kỹ năng mới.
Passage 3 – Giải Thích
Câu 27: B
- Dạng câu hỏi: Matching Sentence Endings
- Từ khóa: distributed epistemology
- Vị trí trong bài: Đoạn 2, dòng 2-4
- Giải thích: Định nghĩa rõ ràng: “knowledge…exists in the relationships and interactions between participants”.
Câu 28: C
- Dạng câu hỏi: Matching Sentence Endings
- Từ khóa: brain imaging, cross-cultural problem-solving
- Vị trí trong bài: Đoạn 3, dòng 2-5
- Giải thích: “regions associated with perspective-taking, cognitive flexibility…show heightened activity”.
Câu 32: YES
- Dạng câu hỏi: Yes/No/Not Given
- Vị trí trong bài: Đoạn 1, dòng 1-3
- Giải thích: Tác giả khẳng định đây là “fundamental reconceptualization” – thay đổi cơ bản.
Câu 33: NO
- Dạng câu hỏi: Yes/No/Not Given
- Vị trí trong bài: Đoạn 6
- Giải thích: Bài đọc nêu rõ vẫn có “structural inequalities” và “asymmetric contributions” – không phải tất cả đều loại bỏ được mất cân bằng quyền lực.
Câu 37: distributed epistemology
- Dạng câu hỏi: Short Answer
- Từ khóa: Dr. Amara Okonkwo, term, knowledge
- Vị trí trong bài: Đoạn 2, dòng 1-2
- Giải thích: Thuật ngữ chính xác được trích dẫn là “distributed epistemology”.
Câu 40: cosmopolitan scientific citizenship
- Dạng câu hỏi: Short Answer
- Từ khóa: civic identity, global science education
- Vị trí trong bài: Đoạn 9, dòng 4-5
- Giải thích: Cụm từ đầy đủ trong bài là “cosmopolitan scientific citizenship”.
Từ Vựng Quan Trọng Theo Passage
Passage 1 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| transformative | adj | /trænsˈfɔːmətɪv/ | có tính chất biến đổi, chuyển hóa | how transformative the experience would be | transformative experience, transformative effect |
| groundbreaking | adj | /ˈɡraʊndbreɪkɪŋ/ | mang tính đột phá, tiên phong | a groundbreaking collaborative project | groundbreaking research, groundbreaking initiative |
| multifaceted | adj | /ˌmʌltiˈfæsɪtɪd/ | đa diện, nhiều khía cạnh | benefits are multifaceted | multifaceted approach, multifaceted problem |
| facilitate | v | /fəˈsɪlɪteɪt/ | tạo điều kiện thuận lợi | to facilitate these partnerships | facilitate communication, facilitate learning |
| pioneering | adj | /ˌpaɪəˈnɪərɪŋ/ | tiên phong, đi đầu | pioneering initiatives in this field | pioneering work, pioneering spirit |
| instrumental | adj | /ˌɪnstrəˈmentl/ | có vai trò quan trọng, thiết yếu | have been instrumental in enabling | instrumental in achieving, play an instrumental role |
| democratized | v | /dɪˈmɒkrətaɪzd/ | dân chủ hóa, phổ cập | democratized access to collaboration | democratize education, democratize information |
| comprehensive | adj | /ˌkɒmprɪˈhensɪv/ | toàn diện, bao quát | comprehensive understanding | comprehensive study, comprehensive approach |
| dual benefit | n | /ˈdjuːəl ˈbenɪfɪt/ | lợi ích kép | dual benefit of educational value | provide dual benefit, offer dual benefit |
| digital literacy | n | /ˈdɪdʒɪtl ˈlɪtərəsi/ | kiến thức kỹ thuật số | develop digital literacy | improve digital literacy, digital literacy skills |
| cultural awareness | n | /ˈkʌltʃərəl əˈweənəs/ | nhận thức văn hóa | higher levels of cultural awareness | promote cultural awareness, cultural awareness training |
| global citizenship | n | /ˈɡləʊbl ˈsɪtɪznʃɪp/ | công dân toàn cầu | skills of global citizenship | foster global citizenship, global citizenship education |
Passage 2 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| pedagogical | adj | /ˌpedəˈɡɒdʒɪkl/ | thuộc về sư phạm | pedagogical foundations | pedagogical approach, pedagogical methods |
| social constructivism | n | /ˈsəʊʃl kənˈstrʌktɪvɪzm/ | thuyết kiến tạo xã hội | based on social constructivism | principles of social constructivism |
| situated learning | n | /ˈsɪtʃueɪtɪd ˈlɜːnɪŋ/ | học tập theo ngữ cảnh | concept of situated learning | situated learning theory, situated learning environment |
| complementary | adj | /ˌkɒmplɪˈmentri/ | bổ sung cho nhau | complementary research interests | complementary skills, complementary approaches |
| synchronous | adj | /ˈsɪŋkrənəs/ | đồng bộ, cùng lúc | synchronous activities | synchronous communication, synchronous learning |
| asynchronous | adj | /eɪˈsɪŋkrənəs/ | không đồng bộ | asynchronous work | asynchronous communication, asynchronous learning |
| standardized methodology | n | /ˈstændədaɪzd ˌmeθəˈdɒlədʒi/ | phương pháp tiêu chuẩn hóa | standardized methodology ensures | follow standardized methodology |
| intervention | n | /ˌɪntəˈvenʃn/ | sự can thiệp, biện pháp | design intervention strategies | intervention program, intervention measures |
| intercultural communication | n | /ˌɪntəˈkʌltʃərəl kəˌmjuːnɪˈkeɪʃn/ | giao tiếp liên văn hóa | trains teachers in intercultural communication | intercultural communication skills |
| metacognitive | adj | /ˌmetəˈkɒɡnətɪv/ | siêu nhận thức | develops metacognitive skills | metacognitive strategies, metacognitive awareness |
| longitudinal study | n | /ˌlɒndʒɪˈtjuːdɪnl ˈstʌdi/ | nghiên cứu dọc | a longitudinal study conducted | conduct longitudinal study |
| STEM careers | n | /stem kəˈrɪəz/ | nghề nghiệp STEM | higher rates of pursuing STEM careers | STEM education, STEM fields |
| nuanced understanding | n | /ˈnjuːɑːnst ˌʌndəˈstændɪŋ/ | hiểu biết tinh tế, sâu sắc | more nuanced understanding | develop nuanced understanding |
| digital divide | n | /ˈdɪdʒɪtl dɪˈvaɪd/ | khoảng cách số | create a digital divide | bridge the digital divide, narrow the digital divide |
| multilingual approaches | n | /ˌmʌltiˈlɪŋɡwəl əˈprəʊtʃɪz/ | cách tiếp cận đa ngôn ngữ | adopted multilingual approaches | promote multilingual approaches |
Passage 3 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| paradigmatic shift | n | /ˌpærədɪɡˈmætɪk ʃɪft/ | thay đổi mô hình tư duy | represents a paradigmatic shift | undergo paradigmatic shift |
| epistemological | adj | /ɪˌpɪstɪməˈlɒdʒɪkl/ | thuộc nhận thức luận | epistemological assumptions | epistemological framework, epistemological perspective |
| situated nature | n | /ˈsɪtʃueɪtɪd ˈneɪtʃə/ | bản chất theo ngữ cảnh | the situated nature of knowledge | recognize situated nature |
| distributed epistemology | n | /dɪˈstrɪbjuːtɪd ɪˌpɪstɪˈmɒlədʒi/ | nhận thức luận phân tán | concept of distributed epistemology | framework of distributed epistemology |
| hybrid understanding | n | /ˈhaɪbrɪd ˌʌndəˈstændɪŋ/ | hiểu biết lai ghép | resulting in hybrid understanding | develop hybrid understanding |
| cognitive flexibility | n | /ˈkɒɡnətɪv ˌfleksəˈbɪləti/ | tính linh hoạt nhận thức | regions associated with cognitive flexibility | enhance cognitive flexibility |
| neural plasticity | n | /ˈnjʊərəl plæˈstɪsəti/ | tính dẻo thần kinh | greater neural plasticity | exhibit neural plasticity, brain neural plasticity |
| methodological heterogeneity | n | /ˌmeθədəˈlɒdʒɪkl ˌhetərəʊdʒəˈniːəti/ | tính không đồng nhất về phương pháp | methodological heterogeneity inherent | acknowledge methodological heterogeneity |
| epistemic frameworks | n | /ɪˈpɪstemɪk ˈfreɪmwɜːks/ | khung nhận thức | different epistemic frameworks | diverse epistemic frameworks |
| mediating technology | n | /ˈmiːdieɪtɪŋ tekˈnɒlədʒi/ | công nghệ trung gian | acts as mediating technology | role of mediating technology |
| epistemic justice | n | /ɪˈpɪstemɪk ˈdʒʌstɪs/ | công bằng nhận thức | questions about epistemic justice | promote epistemic justice, epistemic justice framework |
| asymmetric contributions | n | /ˌeɪsɪˈmetrɪk ˌkɒntrɪˈbjuːʃnz/ | đóng góp không cân xứng | result in asymmetric contributions | lead to asymmetric contributions |
| epistemic authority | n | /ɪˈpɪstemɪk ɔːˈθɒrəti/ | quyền uy nhận thức | recognize epistemic authority | establish epistemic authority, epistemic authority of experience |
| value-laden | adj | /ˈvæljuː ˈleɪdn/ | chứa đựng giá trị | value-laden nature of inquiry | value-laden assumptions, value-laden decisions |
| cosmopolitan scientific citizenship | n | /ˌkɒzməˈpɒlɪtən ˌsaɪənˈtɪfɪk ˈsɪtɪznʃɪp/ | công dân khoa học toàn cầu | development of cosmopolitan scientific citizenship | foster cosmopolitan scientific citizenship |
| transnational challenges | n | /trænzˈnæʃənl ˈtʃælɪndʒɪz/ | thách thức xuyên quốc gia | address transnational challenges | tackle transnational challenges |
| confounding variables | n | /kənˈfaʊndɪŋ ˈveəriəblz/ | biến số gây nhiễu | complicated by confounding variables | control confounding variables |
| transformative potential | n | /trænsˈfɔːmətɪv pəˈtenʃl/ | tiềm năng chuyển hóa | achieves its transformative potential | realize transformative potential |
Kết Luận
Chủ đề “Collaborative science projects across global classrooms” là một trong những chủ đề hiện đại và quan trọng thường xuất hiện trong IELTS Reading, phản ánh xu hướng giáo dục toàn cầu hóa và vai trò của công nghệ trong học tập. Qua bộ đề thi mẫu này với ba passages tăng dần độ khó, bạn đã được thực hành với đầy đủ các dạng câu hỏi phổ biến trong IELTS Reading.
Ba passages đã cung cấp góc nhìn toàn diện về chủ đề, từ giới thiệu cơ bản về các dự án khoa học hợp tác quốc tế, đến phân tích sâu về phương pháp sư phạm, và cuối cùng là các vấn đề nhận thức luận phức tạp. Điều này giúp bạn không chỉ luyện tập kỹ năng đọc hiểu mà còn mở rộng hiểu biết về một chủ đề học thuật quan trọng.
Đáp án chi tiết và bảng từ vựng đã được cung cấp để giúp bạn tự đánh giá, hiểu rõ vị trí thông tin trong bài, và học cách paraphrase – một kỹ năng then chốt trong IELTS Reading. Các từ vựng được làm đậm trong passages cũng giúp bạn chú ý đến những cụm từ và cấu trúc quan trọng thường xuất hiện trong bài thi thực tế.
Trong quá trình luyện tập với dạng bài này, hãy giới hạn thời gian theo thực tế (15-17 phút cho Passage 1, 18-20 phút cho Passage 2, và 23-25 phút cho Passage 3). Sau khi hoàn thành, dành thời gian nghiên cứu kỹ phần giải thích đáp án để hiểu logic của từng câu hỏi. Để tìm hiểu thêm về cách công nghệ đang thay đổi giáo dục toàn diện, bạn có thể tham khảo How virtual art galleries are being used in art education, một ví dụ khác về sự kết hợp giữa công nghệ và giáo dục.
Hãy nhớ rằng thành công trong IELTS Reading không chỉ đến từ việc làm nhiều đề thi mà còn từ việc phân tích kỹ càng các câu trả lời, hiểu rõ các kỹ thuật paraphrase và xây dựng vốn từ vựng học thuật. Chúc bạn ôn tập hiệu quả và đạt band điểm mong muốn trong kỳ thi IELTS sắp tới. Tương tự như cách các dự án khoa học toàn cầu kết nối học sinh, The influence of global digital art on student creativity cũng cho thấy tầm ảnh hưởng của sự kết nối toàn cầu đến sự phát triển kỹ năng của học sinh trong các lĩnh vực khác nhau.