IELTS Reading: Biến Đổi Khí Hậu Và Năng Suất Cây Trồng – Đề Thi Mẫu Có Đáp Án Chi Tiết

Giới Thiệu

Chủ đề biến đổi khí hậu và tác động đến năng suất cây trồng toàn cầu là một trong những đề tài phổ biến xuất hiện thường xuyên trong kỳ thi IELTS Reading. Với tính cấp thiết và tầm quan trọng toàn cầu, chủ đề này không chỉ đòi hỏi khả năng đọc hiểu mà còn yêu cầu thí sinh nắm vững vốn từ vựng chuyên ngành về môi trường, nông nghiệp và khoa học.

Bài viết này cung cấp cho bạn một bộ đề thi IELTS Reading hoàn chỉnh với 3 passages được thiết kế theo đúng chuẩn Cambridge, từ mức độ dễ đến khó. Bạn sẽ được thực hành với 40 câu hỏi đa dạng bao gồm các dạng phổ biến nhất: Multiple Choice, True/False/Not Given, Matching Headings, Summary Completion và nhiều dạng khác. Mỗi câu hỏi đều có đáp án chi tiết kèm giải thích rõ ràng về vị trí thông tin, kỹ thuật paraphrase và chiến lược làm bài hiệu quả.

Ngoài ra, bạn sẽ học được hơn 40 từ vựng quan trọng liên quan đến chủ đề khí hậu và nông nghiệp, được trình bày với phiên âm, nghĩa tiếng Việt, ví dụ thực tế và các collocations hữu ích. Đây là tài liệu lý tưởng dành cho học viên có trình độ từ band 5.0 trở lên, giúp bạn làm quen với format thi thực tế, nâng cao kỹ năng đọc hiểu và tự tin đạt band điểm mục tiêu.

Hướng Dẫn Làm Bài IELTS Reading

Tổng Quan Về IELTS Reading Test

IELTS Reading Test là một phần quan trọng trong kỳ thi IELTS Academic, được thiết kế để đánh giá khả năng đọc hiểu của thí sinh trong bối cảnh học thuật. Bài thi có các đặc điểm sau:

Thời gian: 60 phút cho toàn bộ bài thi (không có thời gian thêm để chép đáp án vào answer sheet)

Cấu trúc: 3 passages với độ dài tổng cộng khoảng 2,000-2,750 từ

Tổng số câu hỏi: 40 câu

Phân bổ thời gian khuyến nghị:

  • Passage 1 (Easy): 15-17 phút
  • Passage 2 (Medium): 18-20 phút
  • Passage 3 (Hard): 23-25 phút

Cách tính điểm: Mỗi câu đúng được 1 điểm, tổng 40 điểm được quy đổi thành band score từ 1-9. Ví dụ: 30-32 câu đúng thường tương đương band 7.0, 35-36 câu tương đương band 8.0.

Các Dạng Câu Hỏi Trong Đề Này

Đề thi mẫu này bao gồm đầy đủ các dạng câu hỏi phổ biến nhất trong IELTS Reading:

  1. Multiple Choice – Chọn đáp án đúng từ các lựa chọn cho sẵn
  2. True/False/Not Given – Xác định thông tin đúng, sai hoặc không được đề cập
  3. Matching Information – Nối thông tin với các đoạn văn tương ứng
  4. Sentence Completion – Hoàn thiện câu với từ/cụm từ từ bài đọc
  5. Matching Headings – Chọn tiêu đề phù hợp cho các đoạn văn
  6. Summary Completion – Điền từ vào đoạn tóm tắt
  7. Short-answer Questions – Trả lời câu hỏi ngắn dựa trên thông tin trong bài

Mỗi dạng câu hỏi đòi hỏi chiến lược làm bài khác nhau, và bạn sẽ được hướng dẫn chi tiết trong phần giải thích đáp án.

IELTS Reading Practice Test

PASSAGE 1 – Climate Change And Agricultural Productivity

Độ khó: Easy (Band 5.0-6.5)

Thời gian đề xuất: 15-17 phút

Agriculture has always been fundamentally dependent on climate conditions. Throughout human history, farmers have adapted their practices to local weather patterns, soil conditions, and seasonal variations. However, the unprecedented rate of climate change observed in recent decades presents new challenges that threaten global food security. Understanding how climate change affects crop yields is crucial for developing effective strategies to feed the world’s growing population, which is expected to reach nearly 10 billion by 2050.

The most direct impact of climate change on agriculture comes from rising temperatures. Optimal growing temperatures vary for different crops, but most major food crops such as wheat, rice, and maize have specific temperature ranges in which they thrive best. When temperatures exceed these ranges, plant metabolism is disrupted, leading to reduced growth and lower yields. For instance, wheat yields can decline significantly when temperatures during the growing season rise above 30°C. Similarly, rice production becomes increasingly vulnerable when nighttime temperatures stay above 25°C, as this prevents the plant from properly storing the energy it produces during the day.

Changing precipitation patterns represent another critical challenge. Some regions are experiencing more frequent and severe droughts, while others face increased flooding. Both extremes are detrimental to crop production. Drought conditions reduce water availability for irrigation and cause soil moisture stress, which inhibits plant growth and can lead to complete crop failure in severe cases. On the other hand, excessive rainfall can waterlog soils, reducing oxygen availability to plant roots and promoting disease development. The unpredictability of these weather patterns makes it difficult for farmers to plan their planting schedules and choose appropriate crop varieties.

The concentration of carbon dioxide (CO₂) in the atmosphere has increased from about 280 parts per million (ppm) before the Industrial Revolution to over 415 ppm today. This has a complex effect on plant growth. In theory, higher CO₂ levels could enhance photosynthesis, the process by which plants convert sunlight into energy, leading to increased growth – a phenomenon known as “CO₂ fertilization effect”. Some studies have shown that certain crops, particularly C3 plants like wheat and rice, can exhibit increased yields under elevated CO₂ conditions in controlled environments. However, this benefit is often offset by other negative impacts of climate change, such as heat stress and water scarcity. Moreover, research indicates that crops grown in high-CO₂ environments may have lower nutritional value, with reduced concentrations of essential minerals like iron and zinc.

Pest and disease pressures are also changing as the climate warms. Many insect pests are becoming more active and expanding their geographic ranges into regions that were previously too cold for them to survive. Warmer temperatures can accelerate pest reproduction cycles, meaning more generations per year and greater damage to crops. Similarly, plant pathogens such as fungi and bacteria that cause crop diseases are also affected by changing climate conditions. Some diseases that were once limited to tropical regions are now appearing in temperate zones, catching farmers unprepared without appropriate pest management strategies.

Regional variations in climate change impacts mean that not all agricultural areas will be affected equally. Some high-latitude regions, such as parts of Canada and Russia, might actually see improved growing conditions with longer frost-free periods and warmer temperatures. This could potentially open up new areas for cultivation. However, these potential gains are likely to be far outweighed by losses in currently productive agricultural regions. Tropical and subtropical areas, which are already near the upper temperature limits for many crops, are expected to experience the most severe yield reductions. These regions are also home to many developing countries that have limited resources for adaptation and are most vulnerable to food insecurity.

Farmers and agricultural scientists are working on various adaptation strategies to mitigate these impacts. These include developing heat-tolerant and drought-resistant crop varieties through traditional breeding and genetic modification, adjusting planting dates to avoid extreme weather events, implementing water-efficient irrigation systems, and adopting conservation agriculture practices that improve soil health and water retention. However, the pace of climate change may exceed the rate of adaptation, particularly in regions with limited technological and financial capacity. International cooperation and investment in agricultural research will be essential to ensure that farmers worldwide have access to the knowledge and tools needed to maintain productive farming in a changing climate.

Questions 1-13

Questions 1-5: Multiple Choice

Choose the correct letter, A, B, C, or D.

1. According to the passage, what is the main concern regarding rising temperatures and crop production?
A. Temperatures are rising faster than farmers can adapt
B. Plant metabolism is disrupted when temperatures exceed optimal ranges
C. All crops require the same temperature conditions
D. Higher temperatures always improve crop yields

2. The passage suggests that rice production is particularly affected by:
A. daytime temperatures above 30°C
B. nighttime temperatures above 25°C
C. drought conditions during planting
D. excessive rainfall in winter

3. What does the passage say about CO₂ fertilization effect?
A. It consistently increases crop yields in all conditions
B. It only affects C4 plants like maize
C. Its benefits may be cancelled out by other climate impacts
D. It has no impact on plant growth

4. According to the passage, high-latitude regions might benefit from climate change because:
A. they will receive more rainfall
B. they will have longer growing seasons
C. pests cannot survive in cold climates
D. they have better soil quality

5. The passage indicates that adaptation strategies include all of the following EXCEPT:
A. developing drought-resistant crops
B. adjusting planting schedules
C. reducing the global population
D. improving irrigation efficiency

Questions 6-9: True/False/Not Given

Do the following statements agree with the information given in the passage? Write:

TRUE if the statement agrees with the information
FALSE if the statement contradicts the information
NOT GIVEN if there is no information on this

6. Wheat yields decrease significantly when growing season temperatures exceed 30°C.

7. Excessive rainfall is more harmful to crops than drought conditions.

8. All crops will have lower nutritional value if CO₂ levels continue to rise.

9. Tropical regions are expected to experience the worst yield reductions from climate change.

Questions 10-13: Sentence Completion

Complete the sentences below. Choose NO MORE THAN TWO WORDS from the passage for each answer.

10. Drought conditions cause __ in soil, which prevents plants from growing properly.

11. Warmer temperatures allow insect pests to complete more __ each year.

12. Some plant diseases that were once limited to tropical areas are now appearing in __.

13. Developing countries are particularly vulnerable because they have __ for implementing adaptation measures.


PASSAGE 2 – The Complex Relationship Between Climate Variables And Food Production

Độ khó: Medium (Band 6.0-7.5)

Thời gian đề xuất: 18-20 phút

The relationship between climate change and global crop yields is far more intricate than a simple cause-and-effect dynamic. While overarching trends suggest a general decline in agricultural productivity under most climate change scenarios, the reality involves a complex interplay of multiple environmental factors, crop types, geographic locations, and socioeconomic variables. Recent research employing sophisticated modeling techniques and extensive field studies has revealed that the impacts are highly heterogeneous, varying not only between regions but also between different crops within the same area.

One of the most significant revelations from recent agricultural climate research concerns the non-linear nature of crop responses to environmental stressors. Unlike earlier assumptions that predicted proportional decreases in yields corresponding to incremental temperature rises, contemporary studies demonstrate that many crops experience threshold effects. Below certain temperature points, crops may show remarkable resilience or even marginal improvements in productivity. However, once these critical thresholds are crossed, yields can plummet precipitously. This threshold behavior has been particularly well-documented in maize production, where studies across multiple continents have identified a critical temperature threshold of approximately 29-32°C during the reproductive phase. Exposure to temperatures above this range for even brief periods can cause pollen sterility and dramatic yield losses, sometimes exceeding 50% in severely affected areas.

The temporal dimension of climate impacts adds another layer of complexity. The timing of extreme weather events relative to critical growth stages can determine whether a crop survives with minimal damage or suffers catastrophic losses. For example, heat stress during the flowering period of wheat has disproportionately severe consequences compared to heat exposure during vegetative growth phases. Similarly, drought occurring during grain filling in cereals causes more substantial yield reductions than water stress during earlier development stages. This phenological sensitivity means that even regions with similar overall climate changes may experience vastly different agricultural outcomes depending on exactly when extreme events occur within the growing season.

Compound climate extremes – situations where multiple adverse conditions occur simultaneously or in quick succession – pose particularly grave threats to food production. The co-occurrence of heat and drought, for instance, creates synergistic negative effects that exceed the sum of their individual impacts. Plants experiencing water stress are less able to cool themselves through transpiration, making them more vulnerable to heat damage. Conversely, heat stress impairs plants’ ability to manage water efficiently, exacerbating drought effects. Recent analyses of historical yield data reveal that such compound extremes have been responsible for many of the most severe crop failures in the past three decades, including the 2010 Russian wheat crisis and the 2012 United States drought, both of which had significant repercussions on global food prices and availability.

The CO₂ fertilization effect, while potentially beneficial, operates differently across plant functional types and is subject to important limitations. C3 plants (including wheat, rice, soybeans, and most fruits and vegetables) are generally more responsive to elevated CO₂ than C4 plants (such as maize, sorghum, and sugarcane), which have already evolved more efficient photosynthetic mechanisms. However, the magnitude of CO₂ benefits observed in field conditions is typically much smaller than those measured in controlled chamber experiments. This disparity occurs because real-world agricultural systems involve numerous limiting factors – such as nutrient availability, water stress, and pest pressure – that constrain plants’ ability to capitalize on additional CO₂. Furthermore, the nutritional dilution effect associated with enhanced growth under elevated CO₂ presents a troubling paradox: while total biomass may increase, the concentration of proteins, minerals, and micronutrients in edible portions often decreases, potentially undermining food security from a nutritional rather than purely caloric perspective.

Adaptation capacity varies dramatically across different agricultural contexts, creating a pattern where climate change exacerbates existing inequalities. Farmers in developed countries typically have access to advanced technologies, including precision agriculture tools, improved crop varieties, sophisticated irrigation systems, and comprehensive weather forecasting services. These resources enable proactive adjustments to changing conditions. In contrast, smallholder farmers in developing countries – who produce a substantial proportion of the world’s food – often lack access to such tools. They may farm marginal lands more susceptible to climate variability, have limited access to credit for implementing adaptations, and face institutional barriers that impede their ability to respond effectively. This adaptation gap means that regions already experiencing food insecurity are likely to be disproportionately affected by climate-induced yield declines.

Emerging research is also highlighting the importance of soil health as a mediating factor in crop responses to climate change. Soils with high organic matter content and good structure are better able to retain moisture during droughts, absorb excess water during heavy rainfall events, and buffer against temperature extremes. However, many agricultural regions have experienced soil degradation due to intensive farming practices, reducing their resilience to climate stresses. Regenerative agriculture practices – including cover cropping, reduced tillage, and diverse crop rotations – show promise for rebuilding soil health and thereby enhancing climate resilience. Yet the adoption of such practices remains limited, hindered by economic constraints, knowledge gaps, and policy frameworks that often incentivize short-term productivity maximization over long-term sustainability.

The cumulative picture emerging from current research suggests that without substantial adaptation efforts and mitigation of greenhouse gas emissions, climate change could reduce global crop yields by 5-25% by mid-century, with some regions experiencing even more severe declines. However, these projections carry significant uncertainties due to the complexity of Earth’s climate system and the multifaceted nature of agricultural systems. What remains clear is that addressing the climate-agriculture nexus requires integrated approaches that combine technological innovation, policy reform, economic support for farmers, and international cooperation to ensure food security in an increasingly uncertain climate future.

Questions 14-26

Questions 14-18: Yes/No/Not Given

Do the following statements agree with the claims of the writer in the passage? Write:

YES if the statement agrees with the claims of the writer
NO if the statement contradicts the claims of the writer
NOT GIVEN if it is impossible to say what the writer thinks about this

14. Earlier climate models accurately predicted how crops would respond to temperature increases.

15. Maize is particularly vulnerable to high temperatures during its reproductive phase.

16. Wheat is more sensitive to heat stress during flowering than during vegetative growth.

17. Climate change will affect all crops equally within the same geographic region.

18. Farmers in developed countries are better equipped to adapt to climate change than smallholder farmers.

Questions 19-22: Matching Information

The passage has eight paragraphs (Paragraphs 1-8). Which paragraph contains the following information? Write the correct letter, A-H.

NB: You may use any letter more than once.

19. An explanation of why laboratory results differ from field observations regarding CO₂ effects

20. Examples of specific crop failures caused by multiple simultaneous climate stressors

21. A discussion of how soil quality affects crop resilience to climate change

22. Information about temperature thresholds that cause pollen problems in certain crops

Questions 23-26: Summary Completion

Complete the summary below. Choose NO MORE THAN TWO WORDS from the passage for each answer.

Compound climate extremes, such as when heat and drought occur together, create (23) __ that are worse than either problem alone. During water stress, plants cannot use (24) __ to cool down effectively, making them more susceptible to heat damage. Historical data shows that such compound extremes have caused many of the most serious (25) __ in recent decades. Meanwhile, the benefits of elevated CO₂ are limited by factors such as nutrient availability and pest pressure, which (26) __ plants from fully utilizing the additional CO₂.


PASSAGE 3 – Modeling Future Agricultural Outcomes Under Climate Change Scenarios

Độ khó: Hard (Band 7.0-9.0)

Thời gian đề xuất: 23-25 phút

Predicting how climate change will affect global crop yields necessitates the integration of multiple scientific disciplines and the deployment of increasingly sophisticated computational frameworks. Contemporary agroclimate modeling represents a synthesis of climatology, plant physiology, soil science, economics, and computational mathematics, creating what are termed “integrated assessment models” (IAMs). These models attempt to capture the multifarious interactions between biophysical processes and human decision-making that collectively determine agricultural outcomes. However, despite substantial advances in modeling capabilities, significant uncertainties persist, stemming from both fundamental knowledge gaps regarding plant-climate interactions and the inherent unpredictability of future socioeconomic trajectories.

The foundational architecture of crop yield projections typically involves coupling General Circulation Models (GCMs), which simulate global climate dynamics, with crop simulation models that predict plant growth and development under specified environmental conditions. GCMs, developed by major climate research institutions worldwide, project future temperature, precipitation, and atmospheric composition based on different greenhouse gas emission scenarios – now standardized as Shared Socioeconomic Pathways (SSPs) and Representative Concentration Pathways (RCPs). These projections are then downscaled to regional and local resolutions appropriate for agricultural applications, a process that introduces its own methodological challenges and uncertainties. The resulting climate variables serve as inputs to crop models such as DSSAT (Decision Support System for Agrotechnology Transfer), APSIM (Agricultural Production Systems sIMulator), or EPIC (Environmental Policy Integrated Climate), each employing distinct algorithmic approaches to simulate crop growth responses to environmental drivers.

A critical challenge in this modeling paradigm lies in accurately representing the mechanistic processes by which climate variables affect crop physiology. While the fundamental principles of photosynthesis, respiration, and transpiration are well-established, their quantitative relationships to temperature, water availability, and CO₂ concentration under field conditions remain incompletely characterized. Most crop models employ semi-empirical functions calibrated against historical experimental data, but these relationships may not extrapolate reliably to future climate conditions that lie outside the range of historical observations. The non-linear and threshold-based responses observed in many crop-climate relationships further complicate modeling efforts, as small changes in input variables near critical thresholds can produce disproportionately large variations in predicted yields, amplifying model sensitivity and uncertainty.

The treatment of adaptation in yield projections represents another major source of divergence among modeling approaches. Some studies employ “dumb farmer” scenarios that hold management practices constant, effectively isolating the biophysical impacts of climate change but potentially overstating negative consequences by ignoring autonomous adaptation by farmers. Conversely, models incorporating extensive adaptation measures – such as shifts to heat-tolerant cultivars, altered planting schedules, expanded irrigation, and even crop substitution – generally predict more modest yield declines or even yield improvements in some regions. However, the feasibility and rate of adoption of such adaptations depend on myriad factors including technological availability, economic viability, institutional support, cultural acceptability, and farmers’ access to information – variables that are themselves highly uncertain and vary dramatically across geographical and socioeconomic contexts. Some state-of-the-art models now attempt to endogenously represent adaptation decisions using economic optimization frameworks, but these approaches require numerous assumptions about farmer behavior and constraints that may or may not reflect real-world decision-making processes.

Recent meta-analyses synthesizing results from multiple modeling studies reveal substantial variability in projected climate change impacts on major crops. For wheat, projections for mid-century (2050s) range from yield decreases of 30% to increases of 15%, depending on the region, emissions scenario, and modeling approach employed. Maize projections show similar variability, though with a stronger tendency toward negative impacts, particularly in tropical regions. Rice, the world’s most important staple crop for direct human consumption, shows more geographically differentiated responses, with significant yield declines projected for South and Southeast Asia – regions where hundreds of millions depend on rice for food security – while some temperate rice-growing regions might experience neutral or positive impacts. These discrepancies among projections create substantial challenges for policymakers attempting to formulate appropriate preparedness and adaptation strategies.

Probabilistic approaches to yield projection represent an evolving frontier in agricultural climate modeling. Rather than presenting single “best estimate” projections, these methods explicitly characterize uncertainty by generating probability distributions of potential outcomes. This is typically accomplished through ensemble modeling, which involves running multiple simulations using different GCMs, crop models, and parameter sets, then statistically analyzing the resulting distribution of projections. Such approaches acknowledge the irreducible uncertainty inherent in complex system predictions while providing more nuanced information for risk assessment and decision-making. For instance, instead of stating that “yields will decrease by 15%,” a probabilistic projection might indicate that “there is a 66% probability that yields will decrease by 10-20%, and a 10% probability of decreases exceeding 25%.” This framing better represents scientific understanding while enabling risk-based planning.

The economic ramifications of climate-induced yield changes extend far beyond immediate production losses. Global agricultural markets are highly integrated, meaning that yield shocks in major exporting regions can trigger price volatility affecting consumers worldwide. The 2007-2008 and 2010-2011 food price spikes, partly attributable to weather-related production shortfalls, demonstrated how agricultural disruptions can precipitate social instability and humanitarian crises, particularly in import-dependent developing countries where food comprises a large share of household expenditures. IAMs incorporating economic trade models project that climate change could increase food price volatility and average price levels, with disproportionate impacts on low-income populations who spend the highest proportion of their income on food. These models also highlight potential feedback loops: rising food prices may incentivize agricultural expansion into currently non-agricultural lands, including forests and natural ecosystems, thereby accelerating biodiversity loss and potentially releasing additional carbon emissions, further exacerbating climate change in a pernicious cycle.

Emerging research frontiers in climate-agriculture modeling include the incorporation of extreme events, pest and disease dynamics, nutritional quality changes, and cascading impacts through food systems. Traditional models have often focused on mean climate changes while underrepresenting the impacts of short-duration extremes like heatwaves and heavy rainfall events, despite evidence that these extremes may be more consequential for yields than gradual temperature increases. Similarly, the dynamic responses of agricultural pests and pathogens to changing climate conditions remain poorly integrated into most yield projections, despite their potentially substantial impacts. Addressing these knowledge gaps requires not only enhanced computational capabilities but also expanded empirical research to better understand the fundamental mechanisms governing crop responses to complex, changing environments. As modeling frameworks continue to evolve, they will likely provide increasingly refined insights into the climate-agriculture nexus, though irreducible uncertainties will persist given the inherent complexity and open-ended nature of both Earth’s climate system and human societies.

Questions 27-40

Questions 27-31: Multiple Choice

Choose the correct letter, A, B, C, or D.

27. According to the passage, integrated assessment models combine:
A. only climate and plant biology data
B. multiple scientific disciplines including economics
C. different types of crops and soils
D. historical and future emission scenarios

28. The process of downscaling climate projections:
A. eliminates all uncertainties in crop predictions
B. converts global climate data to regional scales
C. reduces the accuracy of crop models
D. is no longer necessary with modern computers

29. The passage suggests that “dumb farmer” scenarios:
A. accurately represent real farming practices
B. include all possible adaptation strategies
C. may overestimate negative climate impacts
D. are preferred by most climate scientists

30. Meta-analyses of wheat yield projections for mid-century show:
A. consistent predictions across all studies
B. only negative outcomes in all regions
C. substantial variability ranging from -30% to +15%
D. that wheat is not affected by climate change

31. Probabilistic approaches to yield projection differ from traditional methods by:
A. using only one climate model
B. providing single best-estimate numbers
C. ignoring uncertainty completely
D. generating probability distributions of outcomes

Questions 32-36: Matching Features

Match each characteristic (32-36) with the correct crop model or approach (A-F).

NB: You may use any letter more than once.

A. General Circulation Models (GCMs)
B. Crop simulation models (DSSAT, APSIM, EPIC)
C. “Dumb farmer” scenarios
D. Probabilistic approaches
E. Integrated assessment models
F. Economic trade models

32. Simulate global climate dynamics based on emission scenarios

33. Hold agricultural management practices constant

34. Generate probability distributions rather than single predictions

35. Project how agricultural disruptions affect global food prices

36. Predict plant growth responses to environmental conditions

Questions 37-40: Short-answer Questions

Answer the questions below. Choose NO MORE THAN THREE WORDS from the passage for each answer.

37. What are the standardized future emission scenarios now called?

38. What type of functions do most crop models use that are based on historical data?

39. Which crop is described as the most important staple for direct human consumption?

40. What do models suggest climate change could increase in agricultural markets besides average prices?

Học viên tập trung luyện thi IELTS Reading với đề thi mẫu về biến đổi khí hậu và năng suất cây trồngHọc viên tập trung luyện thi IELTS Reading với đề thi mẫu về biến đổi khí hậu và năng suất cây trồng

Answer Keys – Đáp Án

PASSAGE 1: Questions 1-13

  1. B
  2. B
  3. C
  4. B
  5. C
  6. TRUE
  7. NOT GIVEN
  8. FALSE
  9. TRUE
  10. moisture stress
  11. reproduction cycles / generations
  12. temperate zones
  13. limited resources

PASSAGE 2: Questions 14-26

  1. NO
  2. YES
  3. YES
  4. NOT GIVEN
  5. YES
  6. Paragraph 5
  7. Paragraph 4
  8. Paragraph 7
  9. Paragraph 2
  10. synergistic negative effects
  11. transpiration
  12. crop failures
  13. constrain

PASSAGE 3: Questions 27-40

  1. B
  2. B
  3. C
  4. C
  5. D
  6. A
  7. C
  8. D
  9. F
  10. B
  11. Shared Socioeconomic Pathways / Representative Concentration Pathways (accept either)
  12. semi-empirical functions
  13. Rice
  14. food price volatility / price volatility

Giải Thích Đáp Án Chi Tiết

Passage 1 – Giải Thích

Câu 1: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: main concern, rising temperatures, crop production
  • Vị trí trong bài: Đoạn 2, dòng 1-5
  • Giải thích: Bài đọc nói rõ “When temperatures exceed these ranges, plant metabolism is disrupted, leading to reduced growth and lower yields.” Đây là mối quan ngại chính. Đáp án A không chính xác vì đây không phải ý chính của đoạn văn về nhiệt độ. Đáp án C sai vì các loại cây trồng có yêu cầu nhiệt độ khác nhau. Đáp án D hoàn toàn sai vì nhiệt độ cao không phải lúc nào cũng tốt.

Câu 2: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: rice production, particularly affected
  • Vị trí trong bài: Đoạn 2, dòng 7-9
  • Giải thích: Bài viết chỉ rõ “rice production becomes increasingly vulnerable when nighttime temperatures stay above 25°C”. Câu này paraphrase “nighttime temperatures” trong đáp án B.

Câu 3: C

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: CO₂ fertilization effect
  • Vị trí trong bài: Đoạn 4, dòng 6-8
  • Giải thích: Đoạn văn nói “However, this benefit is often offset by other negative impacts of climate change, such as heat stress and water scarcity.” Từ “offset” có nghĩa là抵消, tương đương với “cancelled out” trong đáp án C.

Câu 4: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: high-latitude regions, benefit
  • Vị trí trong bài: Đoạn 6, dòng 1-3
  • Giải thích: Bài viết nói rõ “Some high-latitude regions… might actually see improved growing conditions with longer frost-free periods”. “Longer frost-free periods” chính là “longer growing seasons”.

Câu 5: C

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: adaptation strategies, EXCEPT
  • Vị trí trong bài: Đoạn 7, dòng 2-5
  • Giải thích: Đoạn cuối liệt kê các chiến lược thích ứng bao gồm A, B, và D. Không có đề cập đến việc giảm dân số toàn cầu (C).

Câu 6: TRUE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: wheat yields decrease, 30°C
  • Vị trí trong bài: Đoạn 2, dòng 5-7
  • Giải thích: Bài viết nói trực tiếp “wheat yields can decline significantly when temperatures during the growing season rise above 30°C”, hoàn toàn khớp với câu hỏi.

Câu 7: NOT GIVEN

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: excessive rainfall, more harmful, drought
  • Vị trí trong bài: Đoạn 3
  • Giải thích: Bài viết đề cập cả hai đều có hại (“Both extremes are detrimental”) nhưng không so sánh cái nào nghiêm trọng hơn.

Câu 8: FALSE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: all crops, lower nutritional value, CO₂
  • Vị trí trong bài: Đoạn 4, dòng 9-11
  • Giải thích: Bài viết chỉ nói “crops grown in high-CO₂ environments may have lower nutritional value”, không nói là “all crops”.

Câu 9: TRUE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: tropical regions, worst yield reductions
  • Vị trí trong bài: Đoạn 6, dòng 4-7
  • Giải thích: Bài viết khẳng định “Tropical and subtropical areas… are expected to experience the most severe yield reductions”, hoàn toàn đúng với câu hỏi.

Câu 10: moisture stress

  • Dạng câu hỏi: Sentence Completion
  • Từ khóa: drought conditions, soil
  • Vị trí trong bài: Đoạn 3, dòng 4-5
  • Giải thích: “Drought conditions… cause soil moisture stress, which inhibits plant growth.”

Câu 11: reproduction cycles / generations

  • Dạng câu hỏi: Sentence Completion
  • Từ khóa: warmer temperatures, insect pests, each year
  • Vị trí trong bài: Đoạn 5, dòng 3-4
  • Giải thích: “Warmer temperatures can accelerate pest reproduction cycles, meaning more generations per year.” Cả hai đáp án đều chấp nhận được.

Câu 12: temperate zones

  • Dạng câu hỏi: Sentence Completion
  • Từ khóa: diseases, tropical areas, now appearing
  • Vị trí trong bài: Đoạn 5, dòng 6-7
  • Giải thích: “Some diseases that were once limited to tropical regions are now appearing in temperate zones.”

Câu 13: limited resources

  • Dạng câu hỏi: Sentence Completion
  • Từ khóa: developing countries, vulnerable
  • Vị trí trong bài: Đoạn 6, dòng 7-8
  • Giải thích: “These regions are also home to many developing countries that have limited resources for adaptation.”

Passage 2 – Giải Thích

Câu 14: NO

  • Dạng câu hỏi: Yes/No/Not Given
  • Từ khóa: earlier climate models, accurately predicted
  • Vị trí trong bài: Đoạn 2, dòng 1-3
  • Giải thích: Bài viết nói “Unlike earlier assumptions that predicted proportional decreases”, ngụ ý các mô hình trước đây không chính xác, mâu thuẫn với câu hỏi.

Câu 15: YES

  • Dạng câu hỏi: Yes/No/Not Given
  • Từ khóa: maize, vulnerable, reproductive phase
  • Vị trí trong bài: Đoạn 2, dòng 6-8
  • Giải thích: “This threshold behavior has been particularly well-documented in maize production… during the reproductive phase”, hoàn toàn đồng ý với tuyên bố.

Câu 16: YES

  • Dạng câu hỏi: Yes/No/Not Given
  • Từ khóa: wheat, heat stress, flowering, vegetative growth
  • Vị trí trong bài: Đoạn 3, dòng 3-5
  • Giải thích: “Heat stress during the flowering period of wheat has disproportionately severe consequences compared to heat exposure during vegetative growth phases”, đồng ý với câu hỏi.

Câu 17: NOT GIVEN

  • Dạng câu hỏi: Yes/No/Not Given
  • Từ khóa: all crops equally, same geographic region
  • Vị trí trong bài: Không có thông tin
  • Giải thích: Bài viết không đề cập đến việc so sánh tác động giữa các loại cây trồng trong cùng một khu vực địa lý cụ thể.

Câu 18: YES

  • Dạng câu hỏi: Yes/No/Not Given
  • Từ khóa: farmers developed countries, better equipped, smallholder farmers
  • Vị trí trong bài: Đoạn 6, toàn bộ
  • Giải thích: Đoạn 6 giải thích rõ “Farmers in developed countries typically have access to advanced technologies… In contrast, smallholder farmers in developing countries… often lack access to such tools”, rõ ràng đồng ý.

Câu 19: Paragraph 5

  • Dạng câu hỏi: Matching Information
  • Từ khóa: laboratory results differ, field observations, CO₂
  • Vị trí trong bài: Đoạn 5, dòng 4-7
  • Giải thích: “However, the magnitude of CO₂ benefits observed in field conditions is typically much smaller than those measured in controlled chamber experiments. This disparity occurs because…”

Câu 20: Paragraph 4

  • Dạng câu hỏi: Matching Information
  • Từ khóa: specific crop failures, multiple simultaneous stressors
  • Vị trí trong bài: Đoạn 4, dòng 7-9
  • Giải thích: “Such compound extremes have been responsible for… the 2010 Russian wheat crisis and the 2012 United States drought.”

Câu 21: Paragraph 7

  • Dạng câu hỏi: Matching Information
  • Từ khóa: soil quality, crop resilience
  • Vị trí trong bài: Đoạn 7, toàn bộ
  • Giải thích: Đoạn 7 tập trung thảo luận về “soil health as a mediating factor in crop responses to climate change.”

Câu 22: Paragraph 2

  • Dạng câu hỏi: Matching Information
  • Từ khóa: temperature thresholds, pollen problems
  • Vị trí trong bài: Đoạn 2, dòng 7-9
  • Giải thích: “Exposure to temperatures above this range… can cause pollen sterility.”

Câu 23: synergistic negative effects

  • Dạng câu hỏi: Summary Completion
  • Từ khóa: compound extremes, heat and drought, worse than either
  • Vị trí trong bài: Đoạn 4, dòng 2-3
  • Giải thích: “The co-occurrence of heat and drought… creates synergistic negative effects that exceed the sum of their individual impacts.”

Câu 24: transpiration

  • Dạng câu hỏi: Summary Completion
  • Từ khóa: water stress, cool down
  • Vị trí trong bài: Đoạn 4, dòng 4-5
  • Giải thích: “Plants experiencing water stress are less able to cool themselves through transpiration.”

Câu 25: crop failures

  • Dạng câu hỏi: Summary Completion
  • Từ khóa: compound extremes, most serious
  • Vị trí trong bài: Đoạn 4, dòng 6-7
  • Giải thích: “Such compound extremes have been responsible for many of the most severe crop failures.”

Câu 26: constrain

  • Dạng câu hỏi: Summary Completion
  • Từ khóa: factors, limit plants from utilizing CO₂
  • Vị trí trong bài: Đoạn 5, dòng 5-7
  • Giải thích: “Numerous limiting factors… that constrain plants’ ability to capitalize on additional CO₂.”

Chiến lược làm bài IELTS Reading hiệu quả với biểu đồ phân bổ thời gian và các dạng câu hỏiChiến lược làm bài IELTS Reading hiệu quả với biểu đồ phân bổ thời gian và các dạng câu hỏi

Passage 3 – Giải Thích

Câu 27: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: integrated assessment models, combine
  • Vị trí trong bài: Đoạn 1, dòng 2-4
  • Giải thích: “Contemporary agroclimate modeling represents a synthesis of climatology, plant physiology, soil science, economics, and computational mathematics”, rõ ràng bao gồm nhiều ngành khoa học bao gồm cả kinh tế.

Câu 28: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: downscaling, climate projections
  • Vị trí trong bài: Đoạn 2, dòng 5-7
  • Giải thích: “These projections are then downscaled to regional and local resolutions appropriate for agricultural applications”, chuyển đổi dữ liệu khí hậu toàn cầu sang quy mô khu vực.

Câu 29: C

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: “dumb farmer” scenarios
  • Vị trí trong bài: Đoạn 4, dòng 2-4
  • Giải thích: “Some studies employ ‘dumb farmer’ scenarios… potentially overstating negative consequences by ignoring autonomous adaptation”, có thể đánh giá quá cao tác động tiêu cực.

Câu 30: C

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: meta-analyses, wheat, mid-century
  • Vị trí trong bài: Đoạn 5, dòng 2-3
  • Giải thích: “For wheat, projections for mid-century (2050s) range from yield decreases of 30% to increases of 15%”, chính xác là đáp án C.

Câu 31: D

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: probabilistic approaches, differ
  • Vị trí trong bài: Đoạn 6, dòng 1-4
  • Giải thích: “Rather than presenting single ‘best estimate’ projections, these methods explicitly characterize uncertainty by generating probability distributions of potential outcomes.”

Câu 32: A

  • Dạng câu hỏi: Matching Features
  • Vị trí trong bài: Đoạn 2, dòng 2-4
  • Giải thích: “GCMs… project future temperature, precipitation, and atmospheric composition based on different greenhouse gas emission scenarios.”

Câu 33: C

  • Dạng câu hỏi: Matching Features
  • Vị trí trong bài: Đoạn 4, dòng 2
  • Giải thích: “‘Dumb farmer’ scenarios that hold management practices constant.”

Câu 34: D

  • Dạng câu hỏi: Matching Features
  • Vị trí trong bài: Đoạn 6, dòng 3-4
  • Giải thích: “These methods… generating probability distributions of potential outcomes.”

Câu 35: F

  • Dạng câu hỏi: Matching Features
  • Vị trí trong bài: Đoạn 7, dòng 4-6
  • Giải thích: “IAMs incorporating economic trade models project that climate change could increase food price volatility.”

Câu 36: B

  • Dạng câu hỏi: Matching Features
  • Vị trí trong bài: Đoạn 2, dòng 7-9
  • Giải thích: “The resulting climate variables serve as inputs to crop models… each employing distinct algorithmic approaches to simulate crop growth responses to environmental drivers.”

Câu 37: Shared Socioeconomic Pathways / Representative Concentration Pathways

  • Dạng câu hỏi: Short-answer Questions
  • Từ khóa: standardized future emission scenarios
  • Vị trí trong bài: Đoạn 2, dòng 4-5
  • Giải thích: “Now standardized as Shared Socioeconomic Pathways (SSPs) and Representative Concentration Pathways (RCPs).” Cả hai đáp án đều được chấp nhận.

Câu 38: semi-empirical functions

  • Dạng câu hỏi: Short-answer Questions
  • Từ khóa: crop models use, based on historical data
  • Vị trí trong bài: Đoạn 3, dòng 4-5
  • Giải thích: “Most crop models employ semi-empirical functions calibrated against historical experimental data.”

Câu 39: Rice

  • Dạng câu hỏi: Short-answer Questions
  • Từ khóa: most important staple, direct human consumption
  • Vị trí trong bài: Đoạn 5, dòng 4-5
  • Giải thích: “Rice, the world’s most important staple crop for direct human consumption.”

Câu 40: food price volatility / price volatility

  • Dạng câu hỏi: Short-answer Questions
  • Từ khóa: climate change, increase, agricultural markets, besides average prices
  • Vị trí trong bài: Đoạn 7, dòng 4-5
  • Giải thích: “IAMs… project that climate change could increase food price volatility and average price levels.”

Từ Vựng Quan Trọng Theo Passage

Passage 1 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
unprecedented adj /ʌnˈpresɪdentɪd/ chưa từng có unprecedented rate of climate change unprecedented level/scale/speed
optimal adj /ˈɒptɪməl/ tối ưu optimal growing temperatures optimal condition/solution/level
metabolism n /məˈtæbəlɪzəm/ quá trình trao đổi chất plant metabolism is disrupted affect/boost/slow metabolism
precipitation n /prɪˌsɪpɪˈteɪʃən/ lượng mưa changing precipitation patterns annual/average precipitation
drought n /draʊt/ hạn hán frequent and severe droughts prolonged/severe drought
waterlog v /ˈwɔːtəlɒɡ/ úng nước waterlog soils waterlogged soil/field
inhibit v /ɪnˈhɪbɪt/ ngăn cản inhibits plant growth inhibit growth/development
photosynthesis n /ˌfəʊtəʊˈsɪnθəsɪs/ quá trình quang hợp enhance photosynthesis process of photosynthesis
fertilization n /ˌfɜːtɪlaɪˈzeɪʃən/ sự bón phân/thụ tinh CO₂ fertilization effect soil fertilization
elevated adj /ˈelɪveɪtɪd/ cao, tăng lên elevated CO₂ conditions elevated level/temperature
pathogen n /ˈpæθədʒən/ mầm bệnh plant pathogens bacterial/fungal pathogen
mitigate v /ˈmɪtɪɡeɪt/ giảm thiểu mitigate these impacts mitigate risk/effect/damage

Passage 2 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
intricate adj /ˈɪntrɪkət/ phức tạp, tinh vi far more intricate intricate pattern/relationship
heterogeneous adj /ˌhetərəˈdʒiːniəs/ không đồng nhất highly heterogeneous impacts heterogeneous group/population
threshold n /ˈθreʃhəʊld/ ngưỡng threshold effects critical/temperature threshold
precipitously adv /prɪˈsɪpɪtəsli/ một cách đột ngột yields can plummet precipitously decline/drop precipitously
sterility n /stəˈrɪləti/ tình trạng vô sinh pollen sterility male/female sterility
phenological adj /ˌfiːnəˈlɒdʒɪkəl/ thuộc sinh học theo thời vụ phenological sensitivity phenological change/stage
compound adj /ˈkɒmpaʊnd/ phức hợp, kết hợp compound climate extremes compound effect/problem
synergistic adj /ˌsɪnəˈdʒɪstɪk/ hiệp đồng synergistic negative effects synergistic effect/interaction
transpiration n /ˌtrænspɪˈreɪʃən/ sự thoát hơi nước cool themselves through transpiration plant transpiration
exacerbate v /ɪɡˈzæsəbeɪt/ làm trầm trọng thêm exacerbating drought effects exacerbate problem/situation
repercussion n /ˌriːpəˈkʌʃən/ hậu quả significant repercussions serious/wide repercussions
dilution n /daɪˈluːʃən/ sự pha loãng nutritional dilution effect dilution of quality/value
paradox n /ˈpærədɒks/ nghịch lý troubling paradox central/apparent paradox
impede v /ɪmˈpiːd/ cản trở impede their ability impede progress/development
resilience n /rɪˈzɪliəns/ khả năng phục hồi enhancing climate resilience build/increase resilience

Passage 3 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
multifarious adj /ˌmʌltɪˈfeəriəs/ đa dạng, nhiều mặt multifarious interactions multifarious forms/aspects
biophysical adj /ˌbaɪəʊˈfɪzɪkəl/ sinh lý biophysical processes biophysical environment/model
downscale v /ˈdaʊnskeɪl/ thu nhỏ quy mô projections are downscaled downscale data/model
paradigm n /ˈpærədaɪm/ mô hình, khuôn mẫu modeling paradigm new/dominant paradigm
mechanistic adj /ˌmekəˈnɪstɪk/ theo cơ chế mechanistic processes mechanistic approach/explanation
extrapolate v /ɪkˈstræpəleɪt/ suy rộng may not extrapolate reliably extrapolate from data
divergence n /daɪˈvɜːdʒəns/ sự khác biệt major source of divergence divergence of opinion/views
autonomous adj /ɔːˈtɒnəməs/ tự chủ autonomous adaptation autonomous system/vehicle
cultivar n /ˈkʌltɪvɑː(r)/ giống cây trồng heat-tolerant cultivars improved/new cultivar
myriad adj/n /ˈmɪriəd/ vô số myriad factors myriad of possibilities
endogenously adv /enˈdɒdʒɪnəsli/ một cách nội sinh endogenously represent endogenously determined
meta-analysis n /ˌmetə əˈnæləsɪs/ phân tích tổng hợp recent meta-analyses conduct/perform meta-analysis
probabilistic adj /ˌprɒbəbɪˈlɪstɪk/ theo xác suất probabilistic approaches probabilistic model/method
ensemble n /ɒnˈsɒmbl/ tập hợp ensemble modeling ensemble of models
irreducible adj /ˌɪrɪˈdjuːsəbl/ không thể giảm được irreducible uncertainty irreducible minimum/complexity
ramification n /ˌræmɪfɪˈkeɪʃən/ hệ quả economic ramifications serious/political ramifications
pernicious adj /pəˈnɪʃəs/ có hại, nguy hiểm pernicious cycle pernicious effect/influence
consequential adj /ˌkɒnsɪˈkwenʃəl/ quan trọng, có hậu quả more consequential for yields consequential decision/change

Bảng từ vựng IELTS Reading chủ đề biến đổi khí hậu với ví dụ và phiên âmBảng từ vựng IELTS Reading chủ đề biến đổi khí hậu với ví dụ và phiên âm

Kết Luận

Chủ đề How Does Climate Change Affect Global Crop Yields? là một trong những đề tài xuất hiện thường xuyên và quan trọng trong kỳ thi IELTS Reading. Qua bài viết này, bạn đã được thực hành với một bộ đề thi hoàn chỉnh bao gồm 3 passages với độ khó tăng dần từ Easy (Band 5.0-6.5) đến Medium (Band 6.0-7.5) và Hard (Band 7.0-9.0), phản ánh chính xác cấu trúc và yêu cầu của đề thi IELTS thực tế.

40 câu hỏi đa dạng trong đề thi này bao gồm đầy đủ các dạng câu hỏi phổ biến: Multiple Choice, True/False/Not Given, Yes/No/Not Given, Matching Information, Matching Headings, Sentence Completion, Summary Completion, và Short-answer Questions. Việc làm quen với tất cả các dạng câu hỏi này giúp bạn tự tin hơn khi bước vào phòng thi thực tế.

Phần giải thích đáp án chi tiết không chỉ cung cấp đáp án đúng mà còn hướng dẫn bạn cách xác định từ khóa, tìm thông tin trong bài, và hiểu cách paraphrase – một kỹ năng quan trọng trong IELTS Reading. Bạn cũng được học hơn 40 từ vựng quan trọng liên quan đến chủ đề khí hậu và nông nghiệp, được trình bày đầy đủ với phiên âm, nghĩa tiếng Việt, ví dụ thực tế và collocations hữu ích để áp dụng trong cả phần Writing và Speaking.

Để đạt kết quả tốt nhất, hãy:

  • Thực hành đúng giờ (60 phút cho cả 3 passages)
  • Phân bổ thời gian hợp lý cho từng passage theo khuyến nghị
  • Đọc kỹ instructions cho mỗi dạng câu hỏi
  • Gạch chân từ khóa trong câu hỏi và tìm paraphrase trong bài
  • Ôn lại từ vựng thường xuyên và học cách sử dụng trong ngữ cảnh

Chúc bạn luyện tập hiệu quả và đạt được band điểm IELTS Reading mục tiêu!

Previous Article

IELTS Reading: Role of Education in Fostering Global Citizenship - Đề Thi Mẫu Có Đáp Án Chi Tiết

Next Article

IELTS Reading: Tiết Kiệm Chi Tiêu Mua Sắm - Đề Thi Mẫu Có Đáp Án Chi Tiết

Write a Comment

Leave a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Đăng ký nhận thông tin bài mẫu

Để lại địa chỉ email của bạn, chúng tôi sẽ thông báo tới bạn khi có bài mẫu mới được biên tập và xuất bản thành công.
Chúng tôi cam kết không spam email ✨