IELTS Reading: Biến Đổi Khí Hậu Ảnh Hưởng Đến Năng Suất Cây Trồng Toàn Cầu – Đề Thi Mẫu Có Đáp Án Chi Tiết

Giới Thiệu

Biến đổi khí hậu và tác động của nó đến năng suất cây trồng toàn cầu là một trong những chủ đề nóng bỏng và thường xuyên xuất hiện trong bài thi IELTS Reading. Chủ đề này không chỉ phản ánh vấn đề môi trường cấp bách mà còn liên quan mật thiết đến an ninh lương thực, kinh tế nông nghiệp và sự phát triển bền vững.

Trong các kỳ thi IELTS thực tế, đề tài về nông nghiệp, khí hậu và môi trường xuất hiện với tần suất khá cao, đặc biệt trong Academic Reading. Việc làm quen với dạng bài này sẽ giúp bạn tự tin hơn khi đối mặt với đề thi thật.

Bài viết này cung cấp cho bạn một bộ đề thi IELTS Reading hoàn chỉnh với 3 passages theo đúng format Cambridge, từ mức độ dễ đến khó. Bạn sẻ được trải nghiệm các dạng câu hỏi đa dạng như trong thi thật, kèm theo đáp án chi tiết và giải thích cụ thể. Ngoài ra, bộ từ vựng chuyên ngành về khí hậu và nông nghiệp sẽ giúp bạn nâng cao vốn từ học thuật quan trọng.

Đề thi này phù hợp cho học viên có trình độ từ band 5.0 trở lên, giúp bạn rèn luyện kỹ năng đọc hiểu, quản lý thời gian và chiến lược làm bài hiệu quả.

Hướng Dẫn Làm Bài IELTS Reading

Tổng Quan Về IELTS Reading Test

IELTS Reading Test kéo dài 60 phút với tổng cộng 40 câu hỏi được phân bổ đều trong 3 passages. Mỗi passage có độ khó tăng dần, yêu cầu bạn vừa đọc hiểu nhanh vừa phân tích sâu.

Phân bổ thời gian khuyến nghị:

  • Passage 1: 15-17 phút (độ khó dễ, câu hỏi trực tiếp)
  • Passage 2: 18-20 phút (độ khó trung bình, cần paraphrase)
  • Passage 3: 23-25 phút (độ khó cao, yêu cầu suy luận)

Lưu ý quan trọng: Không có thời gian bổ sung để chép đáp án, vì vậy bạn cần ghi đáp án trực tiếp vào answer sheet trong 60 phút.

Các Dạng Câu Hỏi Trong Đề Này

Đề thi mẫu này bao gồm 7 dạng câu hỏi phổ biến nhất:

  • Multiple Choice – Câu hỏi trắc nghiệm
  • True/False/Not Given – Xác định thông tin đúng/sai/không có
  • Matching Information – Nối thông tin với đoạn văn
  • Sentence Completion – Hoàn thành câu
  • Matching Headings – Nối tiêu đề với đoạn văn
  • Summary Completion – Hoàn thành đoạn tóm tắt
  • Short-answer Questions – Câu hỏi ngắn

IELTS Reading Practice Test

PASSAGE 1 – The Global Impact of Climate Change on Agriculture

Độ khó: Easy (Band 5.0-6.5)

Thời gian đề xuất: 15-17 phút

Climate change is increasingly affecting agricultural productivity worldwide, with significant implications for food security and economic stability. As global temperatures continue to rise and weather patterns become more unpredictable, farmers across different continents are facing unprecedented challenges in maintaining consistent crop yields.

The relationship between climate and agriculture has always been fundamental. However, recent decades have witnessed dramatic shifts in this relationship. According to research from the Intergovernmental Panel on Climate Change (IPCC), average global temperatures have increased by approximately 1.1°C since the pre-industrial era. This seemingly small change has triggered a cascade of effects on agricultural systems. Extreme weather events, including droughts, floods, and heatwaves, have become more frequent and severe, directly impacting crop growth cycles.

Temperature changes affect crops in multiple ways. Most plants have optimal temperature ranges for growth and reproduction. When temperatures exceed these ranges, even temporarily, plants experience heat stress. This stress reduces photosynthesis efficiency, the process by which plants convert sunlight into energy. For example, wheat and rice, two of the world’s most important staple crops, show significant yield reductions when exposed to temperatures above 30°C during critical growth stages. Studies indicate that for every degree Celsius increase above optimal temperatures, wheat yields can decline by 6% and rice yields by 3-10%.

Water availability represents another critical factor. Climate change has altered precipitation patterns globally, creating water scarcity in some regions while causing excessive rainfall in others. Agriculture consumes approximately 70% of global freshwater resources, making it particularly vulnerable to changes in water availability. In regions like Sub-Saharan Africa and South Asia, where many farmers rely on rain-fed agriculture, erratic rainfall patterns have made it increasingly difficult to predict planting and harvesting times. Conversely, areas experiencing increased rainfall face problems with soil erosion and waterlogging, which can damage crops and reduce soil fertility.

The impact varies significantly across different geographical regions. Tropical and subtropical areas are generally more vulnerable because crops there already grow close to their maximum temperature tolerance. Research suggests that by 2050, crop productivity in tropical regions could decrease by 10-25% if current trends continue. Meanwhile, some temperate regions might initially benefit from longer growing seasons and increased carbon dioxide levels, which can enhance plant growth under certain conditions. However, these potential benefits are likely to be offset by increased pest populations, diseases, and extreme weather events.

Biến đổi khí hậu tác động nghiêm trọng đến năng suất cây trồng toàn cầu qua các giai đoạnBiến đổi khí hậu tác động nghiêm trọng đến năng suất cây trồng toàn cầu qua các giai đoạn

Farmers worldwide are attempting to adapt through various strategies. Crop diversification, where farmers grow multiple crop varieties instead of relying on a single type, helps spread risk. Improved irrigation systems and water conservation techniques are being implemented in water-scarce regions. Additionally, agricultural scientists are developing climate-resistant crop varieties that can tolerate higher temperatures, drought, or flooding. Some farmers are also adjusting their planting schedules and adopting conservation agriculture practices that improve soil health and water retention.

However, adaptation faces significant barriers. Small-scale farmers in developing countries often lack access to financial resources, technology, and information needed to implement adaptive strategies. The cost of improved seeds, irrigation infrastructure, and modern farming equipment remains prohibitive for many. Furthermore, traditional farming knowledge passed down through generations is becoming less reliable as climate patterns shift unpredictably.

The global food system’s interconnectedness means that climate impacts in one region can affect food prices and availability worldwide. Major crop-producing regions like the United States, China, India, and Brazil play crucial roles in global food security. Production shortfalls in these areas can trigger price increases that particularly harm food-insecure populations in importing countries. The 2010-2011 food price crisis, partly attributed to climate-related crop failures in major exporting countries, demonstrated how vulnerable the global food system is to climate shocks.

Looking forward, addressing climate change’s impact on agriculture requires coordinated action at multiple levels. Governments need to invest in agricultural research, provide support to farmers, and develop policies that promote sustainable farming practices. International cooperation is essential for sharing knowledge, technology, and resources. Meanwhile, broader efforts to mitigate climate change by reducing greenhouse gas emissions remain crucial for preventing the most severe projected impacts on agricultural productivity.

Questions 1-13

Questions 1-5: Multiple Choice

Choose the correct letter, A, B, C, or D.

  1. According to the passage, the average global temperature increase since pre-industrial times is approximately:
    A. 0.5°C
    B. 1.1°C
    C. 1.5°C
    D. 2.0°C

  2. What happens to wheat and rice when temperatures exceed optimal ranges?
    A. They grow faster
    B. They require less water
    C. Their yields decrease significantly
    D. They become more resistant to pests

  3. What percentage of global freshwater resources does agriculture consume?
    A. 50%
    B. 60%
    C. 70%
    D. 80%

  4. By 2050, crop productivity in tropical regions could decrease by:
    A. 5-10%
    B. 10-25%
    C. 25-40%
    D. 40-50%

  5. The 2010-2011 food price crisis was partly caused by:
    A. Increased demand for meat
    B. Climate-related crop failures
    C. Trade restrictions
    D. Population growth

Questions 6-9: True/False/Not Given

Do the following statements agree with the information given in the passage?

Write:

  • TRUE if the statement agrees with the information
  • FALSE if the statement contradicts the information
  • NOT GIVEN if there is no information on this
  1. Heat stress reduces the efficiency of photosynthesis in plants.
  2. All regions will experience negative impacts from climate change on agriculture.
  3. Small-scale farmers in developing countries have easy access to modern farming technology.
  4. The United States is the world’s largest food exporter.

Questions 10-13: Sentence Completion

Complete the sentences below. Choose NO MORE THAN TWO WORDS from the passage for each answer.

  1. Many farmers in Sub-Saharan Africa and South Asia depend on __ for their crops.
  2. Agricultural scientists are working to develop __ that can withstand extreme climate conditions.
  3. Traditional farming knowledge is becoming less useful because climate patterns are changing __.
  4. Governments should promote __ that support environmentally friendly farming methods.

PASSAGE 2 – Agricultural Adaptation Strategies in a Changing Climate

Độ khó: Medium (Band 6.0-7.5)

Thời gian đề xuất: 18-20 phút

The agricultural sector stands at a critical juncture as climate change intensifies, compelling farmers, researchers, and policymakers to devise innovative strategies that ensure food production sustainability. While the challenges are formidable, a growing body of evidence suggests that targeted adaptation measures can significantly mitigate the adverse effects of climate change on crop yields. Understanding these strategies and their implementation contexts is essential for building resilient agricultural systems capable of feeding a growing global population projected to reach nearly 10 billion by 2050.

Precision agriculture has emerged as one of the most promising technological solutions for optimizing crop production under changing climatic conditions. This approach utilizes advanced technologies including GPS guidance systems, remote sensing, soil sensors, and data analytics to enable farmers to make informed decisions about planting, irrigation, fertilization, and pest management. By collecting and analyzing real-time data about soil moisture, nutrient levels, and crop health, farmers can apply inputs more efficiently, reducing waste while maximizing yields. For instance, variable rate technology allows farmers to adjust seed, water, and fertilizer application rates across different areas of a field based on specific conditions, rather than applying uniform amounts. Studies conducted in the United States Midwest have demonstrated that precision agriculture can increase yields by 5-15% while simultaneously reducing water usage by up to 30% and fertilizer application by 20%.

Agroforestry systems, which integrate trees and shrubs into agricultural landscapes, represent another multifaceted adaptation strategy. These systems provide numerous benefits that enhance climate resilience. Trees create microclimates that moderate temperature extremes and reduce wind speed, protecting crops from heat stress and physical damage. Their root systems improve soil structure, enhance water infiltration, and reduce erosion. Additionally, trees sequester carbon dioxide, contributing to climate change mitigation while simultaneously adapting to its effects. In tropical regions, shade-grown coffee plantations exemplify successful agroforestry implementation, where canopy trees protect coffee plants from excessive heat while providing additional income through fruit or timber production. Research in Sub-Saharan Africa has shown that parkland agroforestry systems, where scattered trees are deliberately retained in croplands, can increase cereal yields by 10-20% compared to treeless systems, particularly during drought years when trees help maintain soil moisture.

The development and deployment of climate-smart crop varieties constitute a cornerstone of adaptation efforts. Plant breeders and geneticists are working to develop varieties with traits such as drought tolerance, heat resistance, flood tolerance, and pest resistance. Traditional breeding techniques, which involve cross-pollinating plants with desired characteristics, have been accelerated through marker-assisted selection that uses genetic markers to identify desirable traits early in the breeding process. More recently, genetic modification and gene editing technologies like CRISPR have enabled scientists to introduce specific traits more rapidly. For example, researchers have developed drought-tolerant maize varieties that maintain yields even when rainfall is 20-30% below normal. In Bangladesh, submergence-tolerant rice varieties developed through breeding programs have enabled farmers to maintain production despite increasingly frequent flooding events. These varieties can survive complete submergence for up to two weeks, compared to just a few days for conventional varieties.

Water management innovations are particularly crucial given agriculture’s heavy dependence on water resources and the projected increase in water scarcity affecting many agricultural regions. Drip irrigation systems, which deliver water directly to plant roots through a network of tubes and emitters, can reduce water consumption by 30-70% compared to traditional flood irrigation while often increasing yields. In Israel, a global leader in agricultural water efficiency, drip irrigation combined with treated wastewater use has enabled productive agriculture in arid conditions. Rainwater harvesting techniques, ranging from simple collection ponds to sophisticated underground storage systems, help farmers capture and store water during wet periods for use during dry spells. In India’s semi-arid regions, farm ponds and check dams have proven effective in recharging groundwater and providing supplemental irrigation. Soil moisture conservation practices, such as mulching and conservation tillage, reduce evaporation and improve water retention, making more moisture available to crops during critical growth periods.

Crop management practices are also evolving to address climate variability. Adjusted planting dates allow farmers to align crop growth stages with favorable weather conditions, avoiding temperature or moisture extremes during sensitive periods like flowering and grain filling. Crop rotation and intercropping systems enhance resilience by reducing pest and disease pressure, improving soil health, and spreading production risk across different species with varying climate sensitivities. In Kenya, farmers practicing push-pull technology—intercropping maize with nitrogen-fixing desmodium and planting pest-repelling napier grass around field borders—have achieved yield increases of 50-200% while suppressing pests and improving soil fertility. Conservation agriculture, built on principles of minimal soil disturbance, permanent soil cover, and crop diversification, improves soil health and water retention while reducing labor requirements and input costs.

However, the successful adoption of these adaptation strategies faces numerous obstacles. Financial constraints represent the most significant barrier, particularly for smallholder farmers in developing countries who lack access to credit and cannot afford upfront investments in new technologies or practices. Information and knowledge gaps limit awareness and understanding of available options, while institutional barriers including inadequate extension services, unclear land tenure systems, and limited market access hinder implementation. Cultural factors also play a role, as farmers may be reluctant to abandon traditional practices, especially when new approaches require significant changes in farming systems. Gender dynamics further complicate adoption, as women farmers, who produce much of the food in developing countries, often have less access to resources, training, and decision-making power than men.

Effective adaptation requires supportive policy environments and targeted interventions. Governments and development organizations must invest in agricultural research and development, strengthen extension services, improve access to finance through microfinance and crop insurance programs, and develop infrastructure including irrigation systems and storage facilities. Climate information services that provide farmers with timely, localized weather forecasts and agricultural advisories enable better planning and risk management. Participatory approaches that involve farmers in identifying problems, testing solutions, and sharing knowledge increase the likelihood of adoption and long-term sustainability. Successful examples from countries like Ethiopia, where the government has implemented comprehensive climate-smart agriculture programs combining improved seeds, soil conservation, water management, and farmer training, demonstrate the potential for coordinated efforts to enhance agricultural resilience at scale.

Questions 14-26

Questions 14-18: Yes/No/Not Given

Do the following statements agree with the views of the writer in the passage?

Write:

  • YES if the statement agrees with the views of the writer
  • NO if the statement contradicts the views of the writer
  • NOT GIVEN if it is impossible to say what the writer thinks about this
  1. Precision agriculture technology can completely eliminate the need for human decision-making in farming.
  2. Agroforestry systems provide benefits for both climate adaptation and climate mitigation.
  3. Genetic modification is considered more effective than traditional breeding methods by all scientists.
  4. Drip irrigation systems always result in higher crop yields than traditional irrigation methods.
  5. Women farmers in developing countries face greater barriers to adopting new agricultural practices than men.

Questions 19-22: Matching Information

Match the following statements (19-22) with the correct country or region (A-F) mentioned in the passage.

A. United States
B. Bangladesh
C. Israel
D. India
E. Kenya
F. Ethiopia

  1. Developed rice varieties that can survive underwater for extended periods
  2. Uses treated wastewater for agricultural purposes
  3. Implemented push-pull technology for maize production
  4. Has established comprehensive climate-smart agriculture programs

Questions 23-26: Summary Completion

Complete the summary below. Choose NO MORE THAN TWO WORDS from the passage for each answer.

Conservation agriculture is based on three main principles: minimal soil disturbance, maintaining permanent (23) __, and diversifying crops. This approach enhances soil health and improves (24) __ while reducing the need for labor and decreasing (25) __. However, many farmers face (26) __ that prevent them from investing in new technologies and methods, especially in developing nations.


PASSAGE 3 – The Nexus Between Climate Change, Agricultural Productivity, and Global Food Security

Độ khó: Hard (Band 7.0-9.0)

Thời gian đề xuất: 23-25 phút

The intricate relationship between anthropogenic climate change and agricultural productivity represents one of the most pressing challenges confronting contemporary civilization. As atmospheric concentrations of greenhouse gases continue their inexorable ascent, the cascading effects on terrestrial ecosystems and agricultural systems have become increasingly manifest. The ramifications extend far beyond simple yield reductions, permeating complex socioeconomic systems and threatening to exacerbate existing inequalities in food access and nutritional security. Comprehending the multidimensional nature of these impacts and the differential vulnerabilities across regions and populations is imperative for developing effective responses that safeguard both agricultural productivity and human wellbeing.

Recent empirical evidence derived from longitudinal studies and sophisticated climate-crop modeling systems has begun to elucidate the nuanced mechanisms through which climate change impinges upon agricultural yields. The impacts manifest through multiple, often synergistic pathways that compound one another in ways that simple linear models fail to capture. Elevated atmospheric CO₂ concentrations, while potentially enhancing photosynthetic rates through the so-called fertilization effect, simultaneously alter plant physiology in complex ways. Research utilizing Free-Air CO₂ Enrichment (FACE) experiments has revealed that while C3 plants such as wheat, rice, and soybeans may initially exhibit yield increases of 10-15% under elevated CO₂ conditions, these gains are substantially attenuated when accompanied by higher temperatures, water stress, or nutrient limitations that co-occur in real-world conditions. Moreover, elevated CO₂ has been shown to reduce protein content and essential micronutrient concentrations in staple crops, potentially precipitating hidden hunger even where caloric availability remains adequate. This phenomenon, termed nutrient dilution, poses particularly acute risks for populations in low-income countries where dietary diversity is limited and micronutrient deficiencies are already prevalent.

Temperature anomalies exert profound influences on crop physiology across multiple scales. At the phenological level, increased temperatures accelerate developmental processes, potentially shortening the duration of critical growth phases such as grain filling, thereby reducing yield potential even when absolute temperature thresholds are not exceeded. This effect is particularly pronounced in cereal crops, where the relationship between temperature and development rate follows non-linear dynamics. Beyond developmental effects, temperature extremes during sensitive periods—particularly flowering and early grain development—can cause catastrophic yield losses through pollen sterility, impaired fertilization, and programmed cell death in developing tissues. The probability and intensity of such extreme heat events have increased markedly; statistical analyses of temperature distributions indicate that events which would have occurred once per century in pre-industrial climates now occur multiple times per decade in many agricultural regions, and projections suggest further intensification under even conservative emissions scenarios.

The hydrological cycle’s perturbation represents an equally critical dimension of climate change impacts on agriculture. Changes in precipitation patterns exhibit substantial spatial heterogeneity, with some regions experiencing intensified rainfall and flooding while others face protracted droughts. This bifurcation in water availability challenges agricultural systems in distinct ways. In regions experiencing increased precipitation intensity, soil saturation and waterlogging create anaerobic conditions that impair root function and can promote pathogen proliferation. Conversely, in water-limited environments, evapotranspiration rates increase with temperature, exacerbating moisture stress even where total precipitation remains relatively stable. The temporal distribution of rainfall has also shifted, with many regions experiencing longer dry spells interrupted by more intense precipitation events—a pattern particularly detrimental to rain-fed agriculture. Groundwater resources, which provide crucial buffering capacity through irrigation, face increasing pressure in many agricultural regions due to both overextraction and reduced recharge rates, creating a trajectory toward unsustainable water use that threatens long-term agricultural viability.

Recent advances in econometric analysis and integrated assessment modeling have enabled more sophisticated quantification of climate change impacts on agricultural productivity at regional and global scales. Meta-analyses synthesizing hundreds of individual studies suggest that without adaptation, global yields of major cereals could decline by 5-20% by mid-century under moderate warming scenarios, with considerably larger reductions possible under more extreme trajectories. However, these global aggregates obscure substantial spatial heterogeneity in impacts. Tropical and subtropical regions, where many of the world’s most food-insecure populations reside, face disproportionately severe impacts due to crops already growing near their thermal tolerance limits and limited adaptive capacity. Conversely, some high-latitude regions may experience initial productivity gains from longer growing seasons and ameliorated cold constraints, though these potential benefits are increasingly recognized as transient and likely to be overwhelmed by negative factors including pest pressure, extreme events, and system disruptions as warming continues. Furthermore, spatiotemporal correlation of yield shocks across major producing regions—a phenomenon potentially intensified by climate change—poses systemic risks to global food markets and could trigger price volatility and access disruptions that disproportionately affect vulnerable populations.

Phân tích khoa học về mối liên hệ phức tạp giữa biến đổi khí hậu và năng suất cây trồng toàn cầuPhân tích khoa học về mối liên hệ phức tạp giữa biến đổi khí hậu và năng suất cây trồng toàn cầu

The socioeconomic dimensions of climate impacts on agriculture merit particular emphasis, as biophysical changes propagate through complex social and economic systems in ways that amplify vulnerabilities for marginalized populations. Smallholder farmers in developing countries, who produce a substantial proportion of the world’s food yet often exist at or near subsistence levels, face compound vulnerabilities arising from both direct climate impacts and limited resources for adaptation. These farmers typically lack access to improved technologies, climate information services, financial instruments like crop insurance, and social safety nets that could buffer against climate shocks. Gender dimensions further compound these vulnerabilities; women, who constitute a large proportion of the agricultural workforce in many developing countries, often face additional constraints including limited land rights, restricted access to credit and agricultural inputs, reduced participation in extension services, and higher opportunity costs associated with adopting new practices. These structural inequalities mean that climate impacts reverberate through agricultural communities in highly differentiated ways, with marginalized groups bearing disproportionate burdens.

Responding effectively to climate change’s impacts on agricultural productivity necessitates integrated approaches that span multiple domains and scales. At the agronomic level, developing and disseminating climate-resilient crop varieties through both conventional breeding and modern biotechnology remains essential, though realizing this potential requires sustained investment in agricultural research, particularly in crops and regions that have been historically underfunded. Agronomic practices that enhance resilience—including diversified cropping systems, agroecological approaches, improved water management, and soil health enhancement—require context-specific adaptation and supporting infrastructure. Beyond farm-level interventions, building resilient food systems requires attention to markets, infrastructure, governance, and social protection. Strengthening market information systems, improving storage and transportation infrastructure, developing risk transfer mechanisms, and implementing social protection programs can enhance capacity to manage climate risks across the food system. Climate information services that provide actionable forecasts and advisories enable better decision-making, though realizing their potential requires addressing the “last-mile problem” of delivering relevant information to smallholder farmers in accessible formats.

Policy frameworks play pivotal roles in enabling and incentivizing adaptation while addressing systemic vulnerabilities. Agricultural policies must be recalibrated to support climate resilience, moving beyond narrow productivity-focused paradigms toward approaches that balance productivity, sustainability, and equity objectives. This includes reforming subsidy systems that currently perpetuate unsustainable practices, investing in public goods including research, extension, and infrastructure, and strengthening land tenure security to encourage long-term investments in soil health and sustainable practices. Trade policies require careful consideration; while international trade can buffer against localized production shocks by enabling food movement from surplus to deficit regions, dependence on international markets creates vulnerabilities for food-importing countries and may disincentivize domestic production capacity. Climate change mitigation efforts in agriculture, including reducing emissions from livestock, rice cultivation, and fertilizer use while enhancing carbon sequestration in soils and biomass, must be pursued synergistically with adaptation to maximize co-benefits and minimize trade-offs.

Questions 27-40

Questions 27-31: Multiple Choice

Choose the correct letter, A, B, C, or D.

  1. According to the passage, FACE experiments have shown that:
    A. All crops benefit equally from elevated CO₂ levels
    B. Yield increases from CO₂ enrichment are reduced under real-world stress conditions
    C. C4 plants show greater yield improvements than C3 plants
    D. Elevated CO₂ has no effect on nutritional content

  2. The term “nutrient dilution” refers to:
    A. The reduction of protein and micronutrient concentrations in crops
    B. The decreased availability of soil nutrients
    C. The contamination of water resources
    D. The loss of nutrients through soil erosion

  3. Temperature extremes during flowering can cause yield losses through:
    A. Accelerated development only
    B. Increased water demand only
    C. Pollen sterility and impaired fertilization
    D. Enhanced photosynthesis

  4. Meta-analyses suggest that without adaptation, global cereal yields could decline by mid-century by:
    A. 1-5%
    B. 5-20%
    C. 20-35%
    D. 35-50%

  5. According to the passage, women farmers face additional constraints including:
    A. Limited land rights and restricted credit access
    B. Excessive government regulation
    C. Higher productivity expectations
    D. Language barriers

Questions 32-36: Matching Features

Match each description (32-36) with the correct term (A-G) from the passage.

A. Phenological level
B. Anaerobic conditions
C. Evapotranspiration
D. Econometric analysis
E. Agronomic level
F. Last-mile problem
G. Co-benefits

  1. The process by which water is transferred from land to atmosphere through evaporation and plant transpiration
  2. The developmental timing and sequence of biological events in plants
  3. Conditions created by waterlogged soil that impair root function
  4. The challenge of delivering climate information to individual farmers in usable formats
  5. Positive outcomes achieved from actions that serve multiple objectives simultaneously

Questions 37-40: Short-answer Questions

Answer the questions below. Choose NO MORE THAN THREE WORDS from the passage for each answer.

  1. What type of experiments have been used to study the effects of elevated CO₂ on crops?
  2. What phenomenon describes correlated crop failures across multiple major producing regions?
  3. What type of farmers produce a substantial proportion of the world’s food despite limited resources?
  4. What must agricultural policies balance beyond just productivity according to the passage?

Answer Keys – Đáp Án

PASSAGE 1: Questions 1-13

  1. B
  2. C
  3. C
  4. B
  5. B
  6. TRUE
  7. FALSE
  8. FALSE
  9. NOT GIVEN
  10. rain-fed agriculture
  11. climate-resistant varieties (hoặc: resistant varieties)
  12. unpredictably
  13. sustainable practices (hoặc: sustainable farming)

PASSAGE 2: Questions 14-26

  1. NO
  2. YES
  3. NOT GIVEN
  4. NOT GIVEN
  5. YES
  6. B
  7. C
  8. E
  9. F
  10. soil cover
  11. water retention
  12. input costs
  13. financial constraints

PASSAGE 3: Questions 27-40

  1. B
  2. A
  3. C
  4. B
  5. A
  6. C
  7. A
  8. B
  9. F
  10. G
  11. FACE experiments
  12. spatiotemporal correlation (hoặc: yield shocks)
  13. smallholder farmers
  14. sustainability and equity (hoặc: equity objectives)

Giải Thích Đáp Án Chi Tiết

Passage 1 – Giải Thích

Câu 1: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: average global temperature increase, pre-industrial times
  • Vị trí trong bài: Đoạn 2, dòng 3-5
  • Giải thích: Bài đọc nêu rõ “According to research from the Intergovernmental Panel on Climate Change (IPCC), average global temperatures have increased by approximately 1.1°C since the pre-industrial era.” Đáp án B (1.1°C) chính xác khớp với thông tin này.

Câu 2: C

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: wheat and rice, temperatures exceed optimal ranges
  • Vị trí trong bài: Đoạn 3, dòng 5-8
  • Giải thích: Đoạn văn giải thích “When temperatures exceed these ranges, even temporarily, plants experience heat stress” và tiếp theo đó “wheat yields can decline by 6% and rice yields by 3-10%”. Điều này chứng minh yields giảm đáng kể (significantly decrease).

Câu 5: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: 2010-2011 food price crisis
  • Vị trí trong bài: Đoạn 8, dòng 4-6
  • Giải thích: Bài đọc nêu rõ “The 2010-2011 food price crisis, partly attributed to climate-related crop failures in major exporting countries”. Đáp án B “Climate-related crop failures” là paraphrase chính xác của thông tin này.

Câu 6: TRUE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: heat stress, reduces photosynthesis efficiency
  • Vị trí trong bài: Đoạn 3, dòng 4-5
  • Giải thích: Bài viết nói “This stress reduces photosynthesis efficiency, the process by which plants convert sunlight into energy.” Câu hỏi và bài đọc khớp hoàn toàn, không có paraphrase.

Câu 7: FALSE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: all regions, negative impacts
  • Vị trí trong bài: Đoạn 5, dòng 3-5
  • Giải thích: Bài đọc nêu rõ “Meanwhile, some temperate regions might initially benefit from longer growing seasons”. Điều này mâu thuẫn trực tiếp với câu hỏi nói “all regions” sẽ có tác động tiêu cực, nên đáp án là FALSE.

Câu 10: rain-fed agriculture

  • Dạng câu hỏi: Sentence Completion
  • Từ khóa: farmers, Sub-Saharan Africa, South Asia, depend on
  • Vị trí trong bài: Đoạn 4, dòng 4-5
  • Giải thích: Bài đọc nêu “In regions like Sub-Saharan Africa and South Asia, where many farmers rely on rain-fed agriculture”. Từ “rely on” trong bài được paraphrase thành “depend on” trong câu hỏi.

Passage 2 – Giải Thích

Câu 14: NO

  • Dạng câu hỏi: Yes/No/Not Given
  • Từ khóa: precision agriculture, completely eliminate, human decision-making
  • Vị trí trong bài: Đoạn 2, toàn đoạn
  • Giải thích: Bài đọc nói precision agriculture “enable farmers to make informed decisions” – giúp đưa ra quyết định tốt hơn, chứ không phải loại bỏ hoàn toàn quyết định của con người. Từ “completely eliminate” làm cho câu này mâu thuẫn với thông tin bài đọc.

Câu 15: YES

  • Dạng câu hỏi: Yes/No/Not Given
  • Từ khóa: agroforestry systems, adaptation, mitigation
  • Vị trí trong bài: Đoạn 3, dòng 5-7
  • Giải thích: Bài viết nêu rõ “Additionally, trees sequester carbon dioxide, contributing to climate change mitigation while simultaneously adapting to its effects.” Câu này chứng minh agroforestry có cả lợi ích adaptation (thích ứng) và mitigation (giảm nhẹ).

Câu 19: B (Bangladesh)

  • Dạng câu hỏi: Matching Information
  • Từ khóa: rice varieties, survive underwater, extended periods
  • Vị trí trong bài: Đoạn 4, dòng 8-10
  • Giải thích: Bài đọc nói “In Bangladesh, submergence-tolerant rice varieties developed through breeding programs have enabled farmers to maintain production despite increasingly frequent flooding events. These varieties can survive complete submergence for up to two weeks.” Từ “survive complete submergence for up to two weeks” paraphrase với “survive underwater for extended periods”.

Câu 23: soil cover

  • Dạng câu hỏi: Summary Completion
  • Từ khóa: conservation agriculture, three main principles, permanent
  • Vị trí trong bài: Đoạn 6, dòng 6-8
  • Giải thích: Bài viết nêu “Conservation agriculture, built on principles of minimal soil disturbance, permanent soil cover, and crop diversification”. Ba nguyên tắc được liệt kê rõ ràng, trong đó “permanent soil cover” là từ cần điền.

Passage 3 – Giải Thích

Câu 27: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: FACE experiments, elevated CO₂
  • Vị trí trong bài: Đoạn 2, dòng 5-9
  • Giải thích: Bài đọc giải thích “Research utilizing Free-Air CO₂ Enrichment (FACE) experiments has revealed that while C3 plants… may initially exhibit yield increases of 10-15% under elevated CO₂ conditions, these gains are substantially attenuated when accompanied by higher temperatures, water stress, or nutrient limitations”. Từ “attenuated” (suy giảm) được paraphrase thành “reduced” trong đáp án B.

Câu 28: A

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: nutrient dilution, refers to
  • Vị trí trong bài: Đoạn 2, dòng 9-12
  • Giải thích: Bài viết định nghĩa “elevated CO₂ has been shown to reduce protein content and essential micronutrient concentrations in staple crops… This phenomenon, termed nutrient dilution”. Đáp án A mô tả chính xác hiện tượng này.

Câu 30: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: meta-analyses, without adaptation, global cereal yields, mid-century
  • Vị trí trong bài: Đoạn 5, dòng 3-5
  • Giải thích: Bài đọc nêu rõ “Meta-analyses synthesizing hundreds of individual studies suggest that without adaptation, global yields of major cereals could decline by 5-20% by mid-century”. Đáp án B (5-20%) khớp chính xác.

Câu 32: C (Evapotranspiration)

  • Dạng câu hỏi: Matching Features
  • Từ khóa: water transferred, land to atmosphere, evaporation, plant transpiration
  • Vị trí trong bài: Đoạn 4, dòng 6-7
  • Giải thích: Dù bài không định nghĩa trực tiếp, bài nói “evapotranspiration rates increase with temperature” trong context của water loss. Evapotranspiration là thuật ngữ khoa học mô tả quá trình mất nước qua bốc hơi và thoát hơi nước từ thực vật.

Câu 37: FACE experiments

  • Dạng câu hỏi: Short-answer Question
  • Từ khóa: experiments, study effects, elevated CO₂
  • Vị trí trong bài: Đoạn 2, dòng 5
  • Giải thích: Bài viết nêu rõ “Research utilizing Free-Air CO₂ Enrichment (FACE) experiments”. Đây là tên chính thức của loại thí nghiệm được sử dụng.

Câu 40: sustainability and equity

  • Dạng câu hỏi: Short-answer Question
  • Từ khóa: agricultural policies, balance, beyond productivity
  • Vị trí trong bài: Đoạn 8, dòng 2-4
  • Giải thích: Bài viết nói “Agricultural policies must be recalibrated to support climate resilience, moving beyond narrow productivity-focused paradigms toward approaches that balance productivity, sustainability, and equity objectives.” Ba yếu tố cần cân bằng là productivity, sustainability và equity, trong đó hai yếu tố ngoài productivity là sustainability và equity.

Từ Vựng Quan Trọng Theo Passage

Passage 1 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
unpredictable adj /ˌʌnprɪˈdɪktəbl/ không thể dự đoán weather patterns become more unpredictable unpredictable weather, unpredictable patterns
yield n /jiːld/ năng suất, sản lượng maintaining consistent crop yields crop yield, yield reduction
cascade n /kæˈskeɪd/ hiệu ứng dây chuyền triggered a cascade of effects cascade of effects, cascade effect
optimal adj /ˈɒptɪməl/ tối ưu optimal temperature ranges optimal conditions, optimal range
precipitation n /prɪˌsɪpɪˈteɪʃn/ lượng mưa altered precipitation patterns precipitation patterns, annual precipitation
vulnerable adj /ˈvʌlnərəbl/ dễ bị tổn thương particularly vulnerable to changes vulnerable to, vulnerable populations
erratic adj /ɪˈrætɪk/ thất thường, không đều erratic rainfall patterns erratic rainfall, erratic behavior
offset v /ˈɒfset/ bù đắp, làm giảm likely to be offset by offset by, offset the impact
diversification n /daɪˌvɜːsɪfɪˈkeɪʃn/ đa dạng hóa crop diversification crop diversification, economic diversification
prohibitive adj /prəˈhɪbɪtɪv/ quá đắt, cản trở cost remains prohibitive prohibitive cost, prohibitive price
interconnectedness n /ˌɪntəkəˈnektɪdnəs/ sự liên kết chặt chẽ global food system’s interconnectedness global interconnectedness, economic interconnectedness
mitigation n /ˌmɪtɪˈɡeɪʃn/ giảm nhẹ efforts to mitigate climate change climate mitigation, mitigation strategies

Passage 2 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
devise v /dɪˈvaɪz/ đưa ra, nghĩ ra devise innovative strategies devise a strategy, devise a plan
resilient adj /rɪˈzɪliənt/ có khả năng phục hồi building resilient agricultural systems resilient systems, resilient communities
precision agriculture n /prɪˈsɪʒn ˈæɡrɪkʌltʃə/ nông nghiệp chính xác precision agriculture has emerged precision farming, precision technology
remote sensing n /rɪˈməʊt ˈsensɪŋ/ viễn thám advanced technologies including remote sensing remote sensing technology, satellite remote sensing
agroforestry n /ˈæɡrəʊˌfɒrɪstri/ nông lâm kết hợp agroforestry systems represent agroforestry systems, agroforestry practices
microclimate n /ˈmaɪkrəʊˌklaɪmət/ vi khí hậu trees create microclimates local microclimate, favorable microclimate
sequester v /sɪˈkwestə/ cô lập, hấp thụ trees sequester carbon dioxide sequester carbon, carbon sequestration
geneticist n /dʒəˈnetɪsɪst/ nhà di truyền học plant breeders and geneticists molecular geneticist, research geneticist
drought tolerance n /draʊt ˈtɒlərəns/ khả năng chịu hạn varieties with drought tolerance drought tolerance traits, improved drought tolerance
drip irrigation n /drɪp ˌɪrɪˈɡeɪʃn/ tưới nhỏ giọt drip irrigation systems drip irrigation system, drip irrigation technology
mulching n /ˈmʌltʃɪŋ/ phủ rơm rạ practices such as mulching mulching materials, surface mulching
intercropping n /ˈɪntəˌkrɒpɪŋ/ trồng xen canh crop rotation and intercropping systems intercropping systems, intercropping practices
microfinance n /ˈmaɪkrəʊˌfaɪnæns/ tài chính vi mô access to finance through microfinance microfinance institutions, microfinance programs
extension services n /ɪkˈstenʃn ˈsɜːvɪsɪz/ dịch vụ khuyến nông strengthen extension services agricultural extension services, extension programs
participatory adj /pɑːˈtɪsɪpətri/ có sự tham gia participatory approaches participatory approach, participatory methods

Passage 3 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
anthropogenic adj /ˌænθrəpəˈdʒenɪk/ do con người gây ra anthropogenic climate change anthropogenic emissions, anthropogenic factors
inexorable adj /ɪnˈeksərəbl/ không thể ngăn cản inexorable ascent inexorable decline, inexorable rise
ramification n /ˌræmɪfɪˈkeɪʃn/ hệ quả, phân nhánh the ramifications extend far beyond serious ramifications, long-term ramifications
exacerbate v /ɪɡˈzæsəbeɪt/ làm trầm trọng thêm threatening to exacerbate existing inequalities exacerbate the problem, exacerbate the situation
elucidate v /ɪˈluːsɪdeɪt/ làm sáng tỏ begun to elucidate the nuanced mechanisms elucidate the relationship, elucidate the mechanism
synergistic adj /ˌsɪnəˈdʒɪstɪk/ hiệp đồng, tăng cường lẫn nhau often synergistic pathways synergistic effect, synergistic interaction
attenuated adj /əˈtenjueɪtɪd/ suy giảm, yếu đi gains are substantially attenuated attenuated response, attenuated effect
precipitate v /prɪˈsɪpɪteɪt/ gây ra đột ngột potentially precipitating hidden hunger precipitate a crisis, precipitate decline
phenological adj /ˌfiːnəˈlɒdʒɪkl/ thuộc về thời vụ sinh học at the phenological level phenological stages, phenological changes
bifurcation n /ˌbaɪfəˈkeɪʃn/ sự phân nhánh, phân đôi this bifurcation in water availability bifurcation point, bifurcation of paths
anaerobic adj /ˌænəˈrəʊbɪk/ yếm khí anaerobic conditions anaerobic bacteria, anaerobic digestion
evapotranspiration n /ɪˌvæpəʊˌtrænspəˈreɪʃn/ sự thoát hơi nước evapotranspiration rates increase actual evapotranspiration, potential evapotranspiration
econometric adj /ɪˌkɒnəˈmetrɪk/ thuộc về kinh tế lượng advances in econometric analysis econometric analysis, econometric model
meta-analysis n /ˌmetəəˈnæləsɪs/ phân tích tổng hợp meta-analyses synthesizing hundreds meta-analysis of studies, systematic meta-analysis
spatiotemporal adj /ˌspeɪʃɪəʊˈtempərəl/ không gian-thời gian spatiotemporal correlation spatiotemporal patterns, spatiotemporal dynamics
disseminating v /dɪˈsemɪneɪtɪŋ/ phổ biến, truyền bá developing and disseminating disseminating information, disseminating knowledge
biotechnology n /ˌbaɪəʊtekˈnɒlədʒi/ công nghệ sinh học conventional breeding and modern biotechnology agricultural biotechnology, biotechnology applications
agronomic adj /ˌæɡrəˈnɒmɪk/ thuộc về nông học agronomic practices agronomic research, agronomic management
recalibrated v /ˌriːˈkælɪbreɪtɪd/ hiệu chỉnh lại policies must be recalibrated recalibrate strategy, recalibrate approach

Kết Luận

Bộ đề thi IELTS Reading về chủ đề “How Climate Change Is Affecting Crop Yields Globally” vừa mang đến cho bạn một trải nghiệm luyện tập toàn diện với độ khó tăng dần từ band 5.0 đến 9.0. Ba passages đã bao quát nhiều khía cạnh khác nhau của vấn đề: từ tác động trực tiếp của biến đổi khí hậu (Passage 1), các chiến lược thích ứng (Passage 2), đến phân tích sâu về mối liên hệ phức tạp giữa khí hậu và an ninh lương thực toàn cầu (Passage 3).

Đề thi này giúp bạn làm quen với 7 dạng câu hỏi phổ biến nhất trong IELTS Reading, từ Multiple Choice, True/False/Not Given, đến các dạng nâng cao như Matching Features và Summary Completion. Đặc biệt, những ví dụ về cách thông tin được paraphrase giữa câu hỏi và đoạn văn sẽ giúp bạn phát triển kỹ năng scanning và skimming hiệu quả hơn.

Phần đáp án chi tiết không chỉ cung cấp đáp án đúng mà còn giải thích rõ ràng tại sao đó là đáp án chính xác, vị trí thông tin trong bài và cách paraphrase được sử dụng. Điều này giúp bạn hiểu sâu hơn về cách IELTS Reading Test được thiết kế và xây dựng chiến lược làm bài phù hợp.

Bộ từ vựng với hơn 40 từ và cụm từ chuyên ngành được trình bày chi tiết sẽ là tài liệu quý giá cho việc học từ vựng học thuật. Những từ này không chỉ hữu ích cho Reading mà còn có thể áp dụng trong Writing Task 2 và Speaking Part 3 khi thảo luận về các vấn đề môi trường và nông nghiệp.

Hãy luyện tập đề thi này nhiều lần, phân tích kỹ các lỗi sai và rút ra bài học cho bản thân. Nếu bạn quan tâm đến các chủ đề liên quan như The effects of climate change on global food security hoặc How green technologies are influencing global agriculture, bạn có thể tìm thêm tài liệu ôn tập trên website. Đây là những chủ đề tương đồng và thường xuyên xuất hiện trong bài thi IELTS thực tế.

Chúc bạn ôn tập hiệu quả và đạt band điểm cao trong kỳ thi IELTS sắp tới!

Previous Article

Cách Sử Dụng In Contrast To Comparison Trong IELTS - Bí Quyết Ghi Điểm Writing & Speaking Band 8.0

Next Article

IELTS Writing Task 2: Space Exploration Benefits – Bài Mẫu Band 5-9 & Phân Tích Chi Tiết

Write a Comment

Leave a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Đăng ký nhận thông tin bài mẫu

Để lại địa chỉ email của bạn, chúng tôi sẽ thông báo tới bạn khi có bài mẫu mới được biên tập và xuất bản thành công.
Chúng tôi cam kết không spam email ✨