Mở Bài
Biến đổi khí hậu đang tác động sâu sắc đến tính sẵn có của nguồn nước trên toàn cầu, trở thành một trong những chủ đề xuất hiện thường xuyên nhất trong kỳ thi IELTS Reading hiện nay. Chủ đề “What Are The Effects Of Climate Change On Water Availability?” không chỉ mang tính thời sự cao mà còn liên quan trực tiếp đến nhiều lĩnh vực như môi trường, kinh tế và xã hội, khiến nó trở thành đề tài ưa thích của các nhà ra đề thi IELTS.
Trong bài viết này, bạn sẽ được thực hành với một đề thi IELTS Reading hoàn chỉnh gồm 3 passages với độ khó tăng dần từ Easy đến Hard. Đề thi bao gồm 40 câu hỏi đa dạng giống như thi thật, kèm theo đáp án chi tiết và giải thích cặn kẽ giúp bạn hiểu rõ cách tiếp cận từng dạng câu hỏi. Bạn cũng sẽ học được hàng chục từ vựng quan trọng về chủ đề biến đổi khí hậu và tài nguyên nước, cùng với các kỹ thuật làm bài Reading hiệu quả.
Đề thi này phù hợp cho học viên từ band 5.0 trở lên, giúp bạn làm quen với cấu trúc bài thi thực tế và nâng cao khả năng đọc hiểu học thuật một cách bài bản.
1. Hướng Dẫn Làm Bài IELTS Reading
Tổng Quan Về IELTS Reading Test
IELTS Reading Test là bài kiểm tra kéo dài 60 phút với 3 passages và tổng cộng 40 câu hỏi. Đây là phần thi không có thời gian chuyển đáp án riêng, vì vậy bạn cần quản lý thời gian một cách thông minh.
Phân bổ thời gian khuyến nghị:
- Passage 1 (Easy): 15-17 phút – Passage dễ nhất với từ vựng và cấu trúc câu đơn giản
- Passage 2 (Medium): 18-20 phút – Độ khó trung bình với yêu cầu suy luận cao hơn
- Passage 3 (Hard): 23-25 phút – Passage khó nhất với nội dung học thuật phức tạp
Các Dạng Câu Hỏi Trong Đề Này
Đề thi mẫu này bao gồm 7 dạng câu hỏi phổ biến nhất trong IELTS Reading:
- Multiple Choice – Câu hỏi trắc nghiệm nhiều lựa chọn
- True/False/Not Given – Xác định thông tin đúng, sai hoặc không được nhắc đến
- Matching Information – Nối thông tin với đoạn văn tương ứng
- Matching Headings – Chọn tiêu đề phù hợp cho các đoạn văn
- Summary Completion – Hoàn thành đoạn tóm tắt
- Sentence Completion – Hoàn thành câu
- Short-answer Questions – Trả lời câu hỏi ngắn
2. IELTS Reading Practice Test
PASSAGE 1 – Water Scarcity in a Warming World
Độ khó: Easy (Band 5.0-6.5)
Thời gian đề xuất: 15-17 phút
Climate change is fundamentally altering the way water moves through our planet’s systems, creating unprecedented challenges for human societies and natural ecosystems alike. As global temperatures continue to rise, the delicate balance between water supply and demand is being disrupted in ways that scientists are only beginning to understand fully.
The most visible impact of climate change on water availability is the accelerated melting of glaciers and ice sheets. These frozen reservoirs have historically acted as nature’s water towers, storing precipitation during cold months and releasing it gradually during warmer periods. In mountainous regions such as the Himalayas, Andes, and Alps, millions of people depend directly on glacial meltwater for drinking, agriculture, and industry. However, as temperatures climb, glaciers are shrinking at an alarming rate. Scientists estimate that many smaller glaciers could disappear entirely within the next few decades, eliminating this crucial water source for downstream communities.
Precipitation patterns are also undergoing significant transformations. Climate models predict that wet regions will generally become wetter, while dry areas will grow drier – a phenomenon known as “precipitation intensification“. This doesn’t simply mean more or less rain; it means more extreme weather events. Some areas experience devastating floods when months’ worth of rain falls in just days, while others endure prolonged droughts lasting years. These erratic patterns make it incredibly difficult for farmers to plan planting seasons or for water managers to maintain adequate reserves.
The relationship between rising temperatures and evaporation rates creates another critical challenge. Warmer air holds more moisture, which means increased evapotranspiration from soil, plants, and water bodies. Lakes, rivers, and reservoirs are losing water faster than before, even in regions where total annual rainfall hasn’t changed dramatically. This process is particularly pronounced in already arid regions, where the combination of higher evaporation and reduced rainfall creates severe water stress.
Groundwater resources, which provide drinking water for nearly half of the world’s population, are also under threat. Climate change affects groundwater in multiple ways. Reduced rainfall means less water percolates down to recharge aquifers. Meanwhile, increased demand during droughts leads to over-extraction, causing water tables to drop. In coastal areas, falling groundwater levels allow seawater to intrude into freshwater aquifers, rendering them unusable without expensive desalination treatment.
The impact on agriculture is particularly concerning, as this sector accounts for approximately 70% of global freshwater use. Farmers in many regions are facing a double challenge: less reliable water supplies and higher crop water requirements due to increased heat. Traditional irrigation systems designed for historical climate conditions are becoming inadequate. In countries like India, Australia, and parts of Africa, agricultural productivity is declining in some areas as water scarcity intensifies, threatening food security for millions.
Urban areas are not immune to these changes either. Many of the world’s largest cities, including Mexico City, São Paulo, and Cape Town, have experienced water crises in recent years. These cities rely on complex water supply systems that bring water from distant sources, and these systems are increasingly vulnerable to climate variability. Cape Town famously came close to “Day Zero” in 2018, when the city nearly ran out of water entirely, forcing authorities to implement strict rationing measures.
Water quality is another dimension of the problem that receives less attention but is equally important. Higher temperatures promote the growth of harmful algae blooms in lakes and reservoirs, making water treatment more difficult and expensive. Floods can overwhelm sewage systems and contaminate drinking water sources with pollutants and pathogens. During droughts, reduced river flows mean less dilution of industrial effluents and agricultural runoff, concentrating harmful substances.
Despite these challenges, there are reasons for cautious optimism. Many communities are developing innovative solutions to adapt to changing water availability. These include rainwater harvesting systems, improved irrigation efficiency, wastewater recycling, and better water storage infrastructure. Israel has become a world leader in water management, recycling nearly 90% of its wastewater and using advanced drip irrigation to maximize agricultural productivity with minimal water. Singapore has implemented a comprehensive strategy called “Four National Taps,” which diversifies its water sources to include imported water, local catchment, desalination, and recycled water.
Technology is also playing an increasingly important role. Satellite monitoring systems can now track water resources in real-time, helping managers make better decisions. Smart irrigation systems use sensors and weather data to apply water precisely when and where crops need it, reducing waste. Atmospheric water generators can extract moisture directly from air, providing a supplementary water source in some contexts.
The connection between climate change and water availability underscores the urgent need for both mitigation and adaptation strategies. Reducing greenhouse gas emissions can help slow the pace of climate change, giving societies more time to adjust. Simultaneously, investing in water infrastructure, improving water-use efficiency, and developing drought-resistant crop varieties can help communities become more resilient to changes that are already unavoidable. The challenge is enormous, but with coordinated action at local, national, and international levels, it is possible to secure water supplies for future generations even in a warming world.
Tác động của biến đổi khí hậu đến tài nguyên nước toàn cầu và các vùng bị ảnh hưởng nghiêm trọng
Questions 1-13
Questions 1-5: Multiple Choice
Choose the correct letter, A, B, C, or D.
1. According to the passage, glaciers have historically functioned as:
A. permanent water sources that never change
B. natural storage systems releasing water gradually
C. barriers preventing floods in mountain regions
D. sources of drinking water only for large cities
2. The phrase “precipitation intensification” refers to:
A. more rainfall everywhere in the world
B. longer periods of continuous rain
C. more extreme variations in rainfall patterns
D. increased snowfall in polar regions
3. Which factor makes agricultural planning particularly difficult?
A. the complete absence of rainfall
B. unpredictable and erratic weather patterns
C. excessive rainfall throughout the year
D. stable but reduced water supplies
4. What happens to groundwater in coastal areas affected by climate change?
A. It increases due to rising sea levels
B. It becomes contaminated by seawater
C. It evaporates faster than before
D. It flows more rapidly to the ocean
5. Cape Town’s near “Day Zero” experience in 2018 demonstrated that:
A. urban water systems are completely secure
B. cities can easily solve water shortages
C. large cities are vulnerable to water crises
D. only small towns face water problems
Questions 6-9: True/False/Not Given
Write TRUE if the statement agrees with the information, FALSE if the statement contradicts the information, or NOT GIVEN if there is no information on this.
6. Scientists fully understand all the ways climate change affects water systems.
7. Approximately 70% of global freshwater is used in the agricultural sector.
8. Mexico City has never experienced any water supply problems.
9. Higher temperatures can encourage the growth of harmful algae in water bodies.
Questions 10-13: Sentence Completion
Complete the sentences below. Choose NO MORE THAN TWO WORDS from the passage for each answer.
10. Israel has achieved success in water management by recycling nearly 90% of its __ and using advanced irrigation methods.
11. Singapore’s water strategy called “Four National Taps” aims to __ its water sources to reduce dependency on single supplies.
12. Modern __ can now monitor water resources globally in real-time to improve management decisions.
13. Communities can become more __ to water scarcity by investing in infrastructure and improving efficiency.
PASSAGE 2 – The Hydrological Cycle Under Pressure
Độ khó: Medium (Band 6.0-7.5)
Thời gian đề xuất: 18-20 phút
The intricate mechanisms by which climate change disrupts the Earth’s hydrological cycle represent one of the most profound environmental transformations of our era. While the basic principle seems straightforward – a warmer atmosphere holds more water vapour and therefore should produce more precipitation – the reality is far more nuanced and regionally varied than this simple equation suggests. Understanding these complexities is crucial for developing effective adaptation strategies and anticipating future water challenges.
A. The fundamental physics of the water cycle are being recalibrated by rising temperatures. For every degree Celsius of warming, the atmosphere’s capacity to hold moisture increases by approximately 7% according to the Clausius-Clapeyron equation, a principle that has governed atmospheric science for over a century. However, this increased moisture-holding capacity doesn’t translate directly into proportional increases in rainfall. Research published in leading climate journals indicates that while atmospheric moisture is indeed increasing at the expected 7% rate, global precipitation is rising by only 2-3% per degree of warming. This discrepancy occurs because the energy dynamics that drive precipitation formation are constrained by other factors, including atmospheric circulation patterns and the availability of condensation nuclei.
B. The spatial distribution of these changes reveals a concerning pattern of hydrological polarization. Subtropical dry zones, already characterised by limited rainfall, are expanding poleward by approximately 0.5 to 1 degree of latitude per decade. This migration is pushing arid conditions into regions that were previously semi-arid or even temperate, affecting agriculture, ecosystems, and water supplies across vast areas. Conversely, high-latitude regions and some tropical zones are experiencing intensified precipitation, but this increase comes predominantly through extreme events rather than gentle, sustained rainfall that would optimally recharge groundwater and soil moisture.
C. The concept of “atmospheric rivers” has gained prominence in climate science as a key mechanism for understanding precipitation extremes. These narrow corridors of concentrated water vapour in the atmosphere can transport moisture equivalent to 15 times the average flow of the Mississippi River. When these atmospheric rivers make landfall, they can produce torrential rainfall leading to catastrophic flooding. Climate models project that warming will make these phenomena both more frequent and more intense, particularly affecting the western coasts of continents. California, Chile, Western Europe, and parts of Australia are particularly vulnerable to this amplification of atmospheric moisture transport.
D. Perhaps less intuitively obvious but equally important is the changing timing of water availability throughout the year. In regions dependent on snowpack for water storage, warming temperatures are fundamentally altering the seasonal water regime. Snow that once accumulated during winter and melted gradually through spring and summer, providing steady water flow, is now falling as rain more frequently, or melting much earlier in the season. This temporal shift creates a mismatch between when water is available and when it’s most needed, particularly for agriculture. The western United States, the European Alps, and the headwaters of major Asian rivers originating in the Himalayas are all experiencing this problematic transition.
E. Soil moisture dynamics represent another critical yet often overlooked aspect of climate change’s impact on water availability. Even in regions where total annual precipitation remains relatively stable, higher temperatures increase evaporative demand from soils and vegetation, a process termed evapotranspiration. This means that more water returns to the atmosphere before it can infiltrate deeply into soil profiles or recharge groundwater systems. Research using sophisticated land surface models suggests that many agricultural regions will experience progressive drying of root-zone soil moisture, even without substantial reductions in rainfall. This “hidden drought” phenomenon can reduce crop yields and ecosystem productivity while being less visible than traditional meteorological droughts.
F. The implications for groundwater sustainability are particularly sobering. Aquifers, which supply 2 billion people with drinking water and support 40% of global irrigated agriculture, recharge through a complex process that depends on both the quantity and intensity of precipitation. Climate change affects this process through multiple pathways. Reduced precipitation in some regions directly diminishes recharge rates. Increased precipitation intensity can actually reduce recharge efficiency because water runs off too quickly to permeate deeply. Simultaneously, vegetation changes in response to altered climate conditions can modify how much water reaches the soil versus being intercepted and transpired by plants. Major aquifer systems in India, the Middle East, North Africa, and the western United States are already experiencing declining water tables, a trend that climate change will likely exacerbate.
G. The feedback mechanisms between water availability and climate create additional complexity. Water scarcity can amplify warming through several processes. When soil moisture is depleted, less energy goes into evaporating water and more goes into heating the land surface, creating localised temperature increases. Reduced vegetation due to water stress decreases carbon sequestration and alters surface albedo, further affecting regional climate. Some scientists have hypothesised that these feedbacks could create “tipping points” where regional climates transition relatively rapidly from one stable state to another, though the evidence for such threshold behaviour remains debated within the scientific community.
H. Adaptation strategies must therefore be multifaceted and context-specific, reflecting the heterogeneous nature of climate impacts on water. In regions facing increased flooding risk, this might include enhanced flood management infrastructure, floodplain restoration to provide natural buffer zones, and redesigned urban drainage systems that can handle more intense rainfall events. In areas experiencing increased aridity, strategies include improved water-use efficiency through advanced irrigation technologies, crop variety selection favouring drought-resistant species, expanded water storage capacity, and potential implementation of water markets to allocate scarce resources more efficiently. Integrated water resource management approaches that consider surface water, groundwater, and water quality holistically are essential for building resilience to climate variability.
The science is clear: climate change is fundamentally restructuring the availability, timing, and predictability of water resources across the planet. The magnitude and specific characteristics of these changes vary significantly by region, but virtually no area remains unaffected. Successfully navigating this transformation will require unprecedented levels of scientific understanding, technological innovation, institutional adaptation, and international cooperation. The challenges are formidable, but the imperative to secure water supplies for both human societies and natural ecosystems makes this among the most consequential issues of our time.
Questions 14-26
Questions 14-18: Matching Headings
The passage has eight paragraphs, A-H. Choose the correct heading for paragraphs A-E from the list of headings below.
List of Headings:
i. Regional variations in precipitation patterns
ii. The role of atmospheric rivers in extreme weather
iii. Economic impacts of water scarcity
iv. Why atmospheric moisture doesn’t equal more rainfall
v. Changes in seasonal water availability
vi. The hidden problem of soil moisture depletion
vii. Solutions for water management
viii. The physics behind climate and water
ix. Future predictions for ocean temperatures
14. Paragraph A
15. Paragraph B
16. Paragraph C
17. Paragraph D
18. Paragraph E
Questions 19-22: Yes/No/Not Given
Write YES if the statement agrees with the claims of the writer, NO if the statement contradicts the claims of the writer, or NOT GIVEN if it is impossible to say what the writer thinks about this.
19. The Clausius-Clapeyron equation accurately predicts the increase in global precipitation rates.
20. Atmospheric rivers will become both more common and more powerful as the climate warms.
21. All scientists agree that water-climate feedbacks will create sudden tipping points.
22. Integrated water resource management is necessary for climate resilience.
Questions 23-26: Summary Completion
Complete the summary below. Choose NO MORE THAN TWO WORDS from the passage for each answer.
Climate change affects groundwater through several mechanisms. Decreased rainfall can directly reduce 23. __ rates into aquifers. When rain becomes more intense, water may 24. __ too quickly instead of soaking into the ground. Changes in 25. __ patterns can also affect how much water reaches the soil. Major aquifer systems worldwide are showing 26. __ water tables, a problem that climate change is making worse.
Chu trình thủy văn bị ảnh hưởng bởi biến đổi khí hậu với các yếu tố phức tạp
PASSAGE 3 – Socioeconomic Dimensions of Climate-Induced Water Stress
Độ khó: Hard (Band 7.0-9.0)
Thời gian đề xuất: 23-25 phút
The nexus between climate change, water availability, and socioeconomic stability represents one of the most intricate and consequential challenges confronting contemporary global society. While the biophysical manifestations of climate-induced water stress – droughts, floods, glacial retreat, and hydrological variability – have received considerable scientific attention, the ramifications for human systems are equally profound and arguably more immediately pressing. The distribution of climate impacts on water resources exhibits marked spatial heterogeneity, and critically, these impacts are mediated by existing socioeconomic inequalities, governance structures, and institutional capacities, creating a complex mosaic of vulnerability that transcends simple climate determinism.
Contemporary scholarship on climate adaptation increasingly recognises that water scarcity is not merely a function of physical availability but rather emerges from the interplay between hydrological conditions and social systems. This conceptual shift, often termed the “relative scarcity” framework, acknowledges that water stress can manifest even in regions with abundant absolute water resources if institutional mechanisms for allocation, distribution, and management are inadequate or inequitable. Conversely, regions with limited water resources have demonstrated remarkable resilience when supported by robust governance, appropriate technology, and effective demand management strategies. Israel’s success in sustaining a technologically advanced economy and productive agriculture in an arid environment, Singapore’s comprehensive approach to water security despite negligible natural freshwater resources, and the sophisticated traditional water management systems of Rajasthan, India, all exemplify this principle that social innovation can significantly mediate physical constraints.
The sectoral impacts of climate-induced water stress cascade through economic systems in ways that are highly interdependent and sometimes counterintuitive. Agriculture, consuming approximately 70% of global freshwater withdrawals, faces multifaceted challenges. Beyond the direct effects of reduced water availability on crop yields, farmers confront increased input costs for irrigation, heightened uncertainty in planning and investment decisions, and potential shifts in comparative advantage that could restructure agricultural geographies. Studies employing computable general equilibrium models suggest that climate-induced agricultural water stress could precipitate significant food price volatility, disproportionately affecting low-income populations who spend a higher proportion of their income on food. The 2007-2008 global food crisis, while not primarily caused by water scarcity, demonstrated the fragility of global food systems and the rapidity with which agricultural shocks can translate into social and political instability.
The industrial sector presents a paradoxical relationship with water availability. While industrial water use constitutes only about 20% of global withdrawals – substantially less than agriculture – certain industries are profoundly water-intensive and geographically concentrated. Semiconductor manufacturing, pharmaceutical production, beverage industries, and thermal power generation all require substantial, reliable water supplies of specific quality characteristics. Climate-induced water stress in regions hosting these industries could necessitate costly technological adaptations, relocations, or production curtailments. The energy-water nexus deserves particular attention: thermoelectric power plants, which generate approximately 80% of global electricity, require enormous quantities of water for cooling. During extreme heat events, when electricity demand peaks for cooling, rivers and lakes may be too warm or too low to provide adequate cooling water, forcing power plant shutdowns precisely when energy is most needed – a situation that has occurred with increasing frequency in Europe, the United States, and India.
Hydropower, which provides about 16% of global electricity and constitutes the dominant renewable energy source in many developing nations, faces fundamental challenges from altered hydrological regimes. The efficacy of hydroelectric generation depends critically on predictable water flows that can be managed through reservoir operations. Climate change introduces substantial uncertainty into these flows through multiple mechanisms: reduced overall water availability in some regions, altered precipitation seasonality, loss of glacial buffering capacity, and increased variability. Research examining hydropower systems in the Mekong Basin, the Amazon, and the Zambezi River has documented how climate-induced flow changes could reduce generation capacity by 20-40% in some scenarios, with profound implications for energy security, economic development, and carbon mitigation strategies, particularly for nations that have invested heavily in hydropower as a cornerstone of their energy infrastructure.
The demographic dimensions of water stress introduce additional complexity and normative considerations regarding equity and justice. Water scarcity does not affect populations uniformly; its impacts are stratified by income, geography, gender, and other axes of social difference. Urban slum dwellers in rapidly growing cities of the Global South often pay multiple times more per litre for water from informal vendors than wealthy households connected to municipal systems pay for piped water. Rural populations, particularly in sub-Saharan Africa and South Asia, face disproportionate burdens of time and labour for water collection, responsibilities that fall predominantly on women and girls, with cascading effects on education, economic opportunity, and health. Climate change threatens to amplify these existing disparities, potentially exacerbating social tensions and creating new axes of inequality.
The potential for water stress to precipitate or exacerbate conflict has received considerable attention, though the relationship is more nuanced than simplistic “water wars” narratives suggest. Systematic analyses of historical conflicts indicate that water scarcity alone rarely causes interstate war; however, it frequently contributes to intrastate tensions, particularly when combined with weak governance, economic stagnation, or existing ethnic divisions. The Syrian conflict, while rooted in multiple causative factors, was preceded by an unprecedented drought from 2006-2010 that decimated agricultural production, displaced 1.5 million rural residents to urban areas, and created conditions conducive to social unrest. While climate change cannot be identified as the sole or even primary cause of the conflict, it appears to have acted as a “threat multiplier,” intensifying existing vulnerabilities.
Adaptation pathways for addressing climate-induced water stress encompass a continuum from incremental adjustments within existing systems to transformational changes that fundamentally restructure human-water relationships. Incremental adaptations include technological improvements in water-use efficiency, expansion of storage infrastructure, enhanced forecasting systems, and optimised allocation mechanisms. These approaches, while valuable, may prove insufficient for regions experiencing substantial hydrological changes. Transformational adaptations involve more profound shifts: relocating agricultural production to water-rich regions, fundamentally altering crop choices and dietary patterns, restructuring urban systems to function with radically reduced water inputs, or potentially relocating populations from regions becoming untenable due to water scarcity. The socioeconomic, cultural, and political feasibility of such transformations remains highly uncertain and constitutes a frontier of adaptation research.
The governance dimension proves absolutely pivotal in determining outcomes. Water management inherently involves collective action problems, temporal mismatches between decisions and consequences, and distributional conflicts among competing users. Effective institutional frameworks require mechanisms for stakeholder participation, transparent allocation rules, enforcement capacity, and flexibility to respond to changing conditions. However, many regions facing the most severe climate-induced water stress also suffer from governance deficits: weak rule of law, limited administrative capacity, corruption, or fragmented jurisdictional authority. The tragic irony is that regions most needing robust governance to navigate water challenges often lack precisely these institutional capabilities. Building such capacity represents a prerequisite for effective adaptation but requires long-term commitment of resources and political will.
Looking forward, the trajectory of water availability under continued climate change will depend on both mitigation efforts that determine the magnitude of future warming and adaptation measures that shape societal responses. Even under optimistic emissions scenarios, substantial changes to hydrological systems are now inevitable due to climate inertia and historical emissions. The imperative is therefore twofold: dramatically reduce greenhouse gas emissions to limit long-term changes while simultaneously building resilient water systems capable of functioning under altered hydrological conditions. The magnitude of this challenge should not be understated, yet neither should the capacity for human ingenuity, cooperation, and adaptation when confronted with existential challenges. The coming decades will determine whether global society can successfully navigate this unprecedented transformation of one of civilization’s most fundamental resources.
Questions 27-40
Questions 27-31: Multiple Choice
Choose the correct letter, A, B, C, or D.
27. According to the passage, the “relative scarcity” framework suggests that:
A. water scarcity depends only on physical water amounts
B. water stress results from both physical and social factors
C. social systems have no influence on water availability
D. only arid regions experience true water scarcity
28. What does the passage indicate about the 2007-2008 food crisis?
A. It was directly caused by water scarcity
B. It had no connection to agricultural issues
C. It showed how quickly agricultural problems can affect society
D. It only affected wealthy nations
29. The energy-water nexus problem is particularly serious because:
A. power plants need water most when it is least available
B. electricity demand decreases during heat waves
C. most power plants don’t require cooling water
D. renewable energy doesn’t need any water
30. According to research cited in the passage, climate change could reduce hydropower capacity in some regions by:
A. 5-10%
B. 10-20%
C. 20-40%
D. 50-60%
31. The passage suggests that water scarcity’s role in the Syrian conflict was:
A. the sole cause of the war
B. completely unrelated to the conflict
C. a factor that worsened existing problems
D. only a minor consideration
Questions 32-36: Matching Features
Match each example (A-G) with the correct characteristic (Questions 32-36). You may use any letter more than once.
Examples:
A. Israel
B. Singapore
C. Rajasthan, India
D. Syrian conflict
E. Urban slum dwellers
F. Thermoelectric power plants
G. Mekong Basin hydropower
32. Demonstrates successful water management despite minimal natural resources
33. Shows how water stress can contribute to social instability
34. Illustrates technology overcoming physical water limitations
35. Represents vulnerability to altered river flow patterns
36. Exemplifies water access inequality based on income
Questions 37-40: Short-answer Questions
Answer the questions below. Choose NO MORE THAN THREE WORDS from the passage for each answer.
37. What type of models do scientists use to predict how water stress affects food prices and economic systems?
38. What proportion of global electricity is generated by thermoelectric power plants according to the passage?
39. Which two factors does the passage mention as creating “temporal mismatches” in water management decisions?
40. What does the passage describe as a “prerequisite” for effective climate adaptation in water-stressed regions?
Tác động kinh tế xã hội của khan hiếm nước do biến đổi khí hậu đến cộng đồng
3. Answer Keys – Đáp Án
PASSAGE 1: Questions 1-13
- B
- C
- B
- B
- C
- FALSE
- TRUE
- NOT GIVEN
- TRUE
- wastewater
- diversify/diversifies
- satellite monitoring systems (hoặc “monitoring systems”)
- resilient
PASSAGE 2: Questions 14-26
- iv (hoặc viii – cả hai đều hợp lý)
- i
- ii
- v
- vi
- NO
- YES
- NO
- YES
- recharge
- run off
- vegetation
- declining
PASSAGE 3: Questions 27-40
- B
- C
- A
- C
- C
- B
- D
- A
- G
- E
- computable general equilibrium (models)
- approximately 80% (hoặc “80%”)
- decisions and consequences
- building governance capacity (hoặc “governance capacity”)
4. Giải Thích Đáp Án Chi Tiết
Passage 1 – Giải Thích
Câu 1: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: glaciers, historically functioned
- Vị trí trong bài: Đoạn 2, dòng 1-3
- Giải thích: Bài đọc nói rõ “These frozen reservoirs have historically acted as nature’s water towers, storing precipitation during cold months and releasing it gradually during warmer periods.” Từ “storing” và “releasing it gradually” được paraphrase thành “natural storage systems releasing water gradually” trong đáp án B. Các đáp án khác không chính xác vì: A sai vì băng hà có thay đổi, C không được đề cập, D sai vì không chỉ cho thành phố lớn.
Câu 2: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: precipitation intensification
- Vị trí trong bài: Đoạn 3, dòng 2-5
- Giải thích: Thuật ngữ này được giải thích là “wet regions will generally become wetter, while dry areas will grow drier” và “more extreme weather events”. Đây chính xác là “more extreme variations in rainfall patterns” trong đáp án C.
Câu 3: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: agricultural planning, difficult
- Vị trí trong bài: Đoạn 3, dòng 6-7
- Giải thích: Bài viết nói “These erratic patterns make it incredibly difficult for farmers to plan planting seasons”. Từ “erratic patterns” (các mẫu bất thường) được paraphrase thành “unpredictable and erratic weather patterns” trong đáp án B.
Câu 5: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: Cape Town, Day Zero, 2018
- Vị trí trong bài: Đoạn 7, dòng 2-4
- Giải thích: Bài đọc đưa Cape Town làm ví dụ về việc các thành phố lớn gặp khủng hoảng nước: “Many of the world’s largest cities…have experienced water crises” và Cape Town “nearly ran out of water entirely”. Điều này chứng minh đáp án C: “large cities are vulnerable to water crises”.
Câu 6: FALSE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: scientists fully understand
- Vị trí trong bài: Đoạn 1, dòng 2-3
- Giải thích: Bài viết nói “scientists are only beginning to understand fully”, có nghĩa là các nhà khoa học MỚI CHỈ BẮT ĐẦU hiểu đầy đủ, chứ chưa hiểu hoàn toàn. Do đó câu “Scientists fully understand” là SAI.
Câu 7: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: 70%, global freshwater, agriculture
- Vị trí trong bài: Đoạn 6, dòng 1
- Giải thích: Bài viết nói rõ “this sector accounts for approximately 70% of global freshwater use”, khớp chính xác với câu hỏi.
Câu 9: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: higher temperatures, harmful algae
- Vị trí trong bài: Đoạn 8, dòng 2-3
- Giải thích: Bài viết xác nhận “Higher temperatures promote the growth of harmful algae blooms in lakes and reservoirs”, khớp với câu hỏi.
Câu 10: wastewater
- Dạng câu hỏi: Sentence Completion
- Từ khóa: Israel, recycling, 90%
- Vị trí trong bài: Đoạn 9, dòng 3-4
- Giải thích: “Israel…recycling nearly 90% of its wastewater” – từ “wastewater” nằm đúng sau “90% of its”.
Câu 11: diversify/diversifies
- Dạng câu hỏi: Sentence Completion
- Từ khóa: Singapore, Four National Taps
- Vị trí trong bài: Đoạn 9, dòng 5-6
- Giải thích: Bài viết nói chiến lược này “diversifies its water sources”, động từ “diversifies” (đa dạng hóa) phù hợp về ngữ pháp và ý nghĩa.
Câu 12: satellite monitoring systems
- Dạng câu hỏi: Sentence Completion
- Từ khóa: monitor water resources, real-time
- Vị trí trong bài: Đoạn 10, dòng 1-2
- Giải thích: “Satellite monitoring systems can now track water resources in real-time” – cụm “satellite monitoring systems” chính xác trả lời câu hỏi về công nghệ giám sát nước.
Câu 13: resilient
- Dạng câu hỏi: Sentence Completion
- Từ khóa: communities, become
- Vị trí trong bài: Đoạn 11, dòng 3-4
- Giải thích: Bài viết nói “help communities become more resilient to changes” – tính từ “resilient” (có khả năng phục hồi, thích nghi) là đáp án chính xác.
Passage 2 – Giải Thích
Câu 14: iv (hoặc viii)
- Dạng câu hỏi: Matching Headings
- Đoạn văn: A
- Giải thích: Đoạn A giải thích về Clausius-Clapeyron equation và tại sao tăng độ ẩm không đồng nghĩa với tăng mưa tương ứng: “atmospheric moisture is indeed increasing at the expected 7% rate, global precipitation is rising by only 2-3%”. Heading iv “Why atmospheric moisture doesn’t equal more rainfall” hoặc viii “The physics behind climate and water” đều phù hợp.
Câu 15: i
- Dạng câu hỏi: Matching Headings
- Đoạn văn: B
- Giải thích: Đoạn B thảo luận về “spatial distribution” và “hydrological polarization” – các vùng khô càng khô, vùng ẩm càng ẩm. Heading i “Regional variations in precipitation patterns” mô tả chính xác nội dung này.
Câu 16: ii
- Dạng câu hỏi: Matching Headings
- Đoạn văn: C
- Giải thích: Toàn bộ đoạn C nói về “atmospheric rivers” và vai trò của chúng trong việc tạo ra mưa cực đoan và lũ lụt. Heading ii “The role of atmospheric rivers in extreme weather” khớp hoàn hảo.
Câu 17: v
- Dạng câu hỏi: Matching Headings
- Đoạn văn: D
- Giải thích: Đoạn D tập trung vào “changing timing of water availability” và “temporal shift” – tuyết rơi sớm hơn, tan sớm hơn, tạo ra “mismatch between when water is available and when it’s most needed”. Heading v “Changes in seasonal water availability” phù hợp nhất.
Câu 18: vi
- Dạng câu hỏi: Matching Headings
- Đoạn văn: E
- Giải thích: Đoạn E thảo luận về “soil moisture dynamics” là khía cạnh “overlooked” (bị bỏ qua) và “hidden drought phenomenon”. Heading vi “The hidden problem of soil moisture depletion” mô tả chính xác.
Câu 19: NO
- Dạng câu hỏi: Yes/No/Not Given
- Vị trí trong bài: Đoạn A, dòng 3-6
- Giải thích: Bài viết nói Clausius-Clapeyron equation dự đoán độ ẩm tăng 7% nhưng lượng mưa thực tế chỉ tăng 2-3%, cho thấy phương trình KHÔNG dự đoán chính xác lượng mưa. Câu hỏi nói nó “accurately predicts precipitation rates” là KHÔNG đúng theo quan điểm tác giả.
Câu 20: YES
- Dạng câu hỏi: Yes/No/Not Given
- Vị trí trong bài: Đoạn C, dòng 5-6
- Giải thích: Bài viết khẳng định “Climate models project that warming will make these phenomena both more frequent and more intense”, khớp với câu hỏi về atmospheric rivers sẽ “more common and more powerful”.
Câu 21: NO
- Dạng câu hỏi: Yes/No/Not Given
- Vị trí trong bài: Đoạn G, dòng cuối
- Giải thích: Bài viết nói “though the evidence for such threshold behaviour remains debated within the scientific community”, cho thấy KHÔNG PHẢI tất cả nhà khoa học đều đồng ý về tipping points. Câu hỏi nói “all scientists agree” là sai quan điểm tác giả.
Câu 22: YES
- Dạng câu hỏi: Yes/No/Not Given
- Vị trí trong bài: Đoạn H, dòng cuối
- Giải thích: Tác giả khẳng định “Integrated water resource management approaches…are essential for building resilience”, từ “essential” (cần thiết) đồng nghĩa với “necessary” trong câu hỏi.
Câu 23: recharge
- Dạng câu hỏi: Summary Completion
- Từ khóa: decreased rainfall, directly reduce
- Vị trí trong bài: Đoạn F, dòng 5
- Giải thích: “Reduced precipitation in some regions directly diminishes recharge rates” – từ “recharge” là đáp án, nghĩa là sự bổ cập nước ngầm.
Câu 24: run off
- Dạng câu hỏi: Summary Completion
- Từ khóa: rain intense, water
- Vị trí trong bài: Đoạn F, dòng 6
- Giải thích: “water runs off too quickly to permeate deeply” – cụm động từ “run off” (chảy tràn) là đáp án chính xác.
Câu 25: vegetation
- Dạng câu hỏi: Summary Completion
- Từ khóa: changes, affect water
- Vị trí trong bài: Đoạn F, dòng 7-8
- Giải thích: “vegetation changes in response to altered climate conditions can modify how much water reaches the soil” – từ “vegetation” (thực vật) là đáp án.
Câu 26: declining
- Dạng câu hỏi: Summary Completion
- Từ khóa: water tables
- Vị trí trong bài: Đoạn F, dòng cuối
- Giải thích: “experiencing declining water tables” – tính từ “declining” (đang giảm) mô tả tình trạng mực nước ngầm.
Passage 3 – Giải Thích
Câu 27: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: relative scarcity framework
- Vị trí trong bài: Đoạn 2, dòng 1-3
- Giải thích: Framework này “acknowledges that water stress can manifest even in regions with abundant absolute water resources if institutional mechanisms…are inadequate”, cho thấy khan hiếm nước phụ thuộc cả yếu tố vật lý LẪN xã hội. Đáp án B chính xác.
Câu 28: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: 2007-2008 food crisis
- Vị trí trong bài: Đoạn 3, dòng 7-9
- Giải thích: Bài viết nói khủng hoảng này “demonstrated the fragility of global food systems and the rapidity with which agricultural shocks can translate into social and political instability” – chính xác là “showed how quickly agricultural problems can affect society” ở đáp án C.
Câu 29: A
- Dạng câu hỏi: Multiple Choice
- Từ khóa: energy-water nexus problem
- Vị trí trong bài: Đoạn 4, dòng 6-9
- Giải thích: Vấn đề là “During extreme heat events, when electricity demand peaks for cooling, rivers and lakes may be too warm or too low to provide adequate cooling water, forcing power plant shutdowns precisely when energy is most needed” – đúng với đáp án A.
Câu 30: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: hydropower capacity, reduce
- Vị trí trong bài: Đoạn 5, dòng 6-7
- Giải thích: “climate-induced flow changes could reduce generation capacity by 20-40% in some scenarios” – đáp án C chính xác.
Câu 31: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: Syrian conflict, water scarcity
- Vị trí trong bài: Đoạn 7, dòng 5-7
- Giải thích: Bài viết nói hạn hán “created conditions conducive to social unrest” và khí hậu “acted as a threat multiplier, intensifying existing vulnerabilities” – chính là “a factor that worsened existing problems” ở đáp án C.
Câu 32: B (Singapore)
- Dạng câu hỏi: Matching Features
- Giải thích: Bài viết nói Singapore có “comprehensive approach to water security despite negligible natural freshwater resources”, cho thấy quản lý thành công mặc dù thiếu nguồn tự nhiên.
Câu 33: D (Syrian conflict)
- Dạng câu hỏi: Matching Features
- Giải thích: Đoạn 7 mô tả hạn hán ở Syria góp phần tạo điều kiện cho “social unrest”, minh họa cho việc khan hiếm nước có thể dẫn đến bất ổn xã hội.
Câu 34: A (Israel)
- Dạng câu hỏi: Matching Features
- Giải thích: Bài viết nói Israel thành công trong “sustaining a technologically advanced economy…in an arid environment”, thể hiện công nghệ vượt qua giới hạn vật lý.
Câu 35: G (Mekong Basin hydropower)
- Dạng câu hỏi: Matching Features
- Giải thích: Đoạn 5 đề cập “hydropower systems in the Mekong Basin” là ví dụ về các hệ thống dễ bị tổn thương bởi “flow changes”, tức thay đổi dòng chảy sông.
Câu 36: E (Urban slum dwellers)
- Dạng câu hỏi: Matching Features
- Giải thích: Đoạn 6 mô tả “Urban slum dwellers…often pay multiple times more per litre for water…than wealthy households”, minh họa bất bình đẳng tiếp cận nước dựa trên thu nhập.
Câu 37: computable general equilibrium (models)
- Dạng câu hỏi: Short-answer Questions
- Vị trí trong bài: Đoạn 3, dòng 5-6
- Giải thích: “Studies employing computable general equilibrium models suggest that…” – đây là loại mô hình được sử dụng để dự đoán tác động kinh tế.
Câu 38: approximately 80% (hoặc 80%)
- Dạng câu hỏi: Short-answer Questions
- Vị trí trong bài: Đoạn 4, dòng 6
- Giải thích: “thermoelectric power plants, which generate approximately 80% of global electricity” – con số chính xác trong bài.
Câu 39: decisions and consequences
- Dạng câu hỏi: Short-answer Questions
- Vị trí trong bài: Đoạn 9, dòng 2
- Giải thích: “Water management inherently involves…temporal mismatches between decisions and consequences” – hai yếu tố tạo ra sự không khớp về thời gian.
Câu 40: building governance capacity (hoặc governance capacity)
- Dạng câu hỏi: Short-answer Questions
- Vị trí trong bài: Đoạn 9, dòng cuối
- Giải thích: “Building such capacity represents a prerequisite for effective adaptation” – cụm “building governance capacity” (xây dựng năng lực quản trị) là điều kiện tiên quyết.
5. Từ Vựng Quan Trọng Theo Passage
Passage 1 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| fundamentally alter | verb phrase | /ˌfʌndəˈmentəli ˈɔːltə(r)/ | thay đổi căn bản | Climate change is fundamentally altering the way water moves | fundamentally change, fundamentally transform |
| unprecedented | adj | /ʌnˈpresɪdentɪd/ | chưa từng có | creating unprecedented challenges | unprecedented scale, unprecedented level |
| delicate balance | noun phrase | /ˈdelɪkət ˈbæləns/ | sự cân bằng mong manh | the delicate balance between water supply and demand | maintain a delicate balance, upset the delicate balance |
| accelerated melting | noun phrase | /əkˈseləreɪtɪd ˈmeltɪŋ/ | sự tan chảy nhanh | accelerated melting of glaciers | accelerated rate, accelerated pace |
| glacial meltwater | noun | /ˈɡleɪʃl ˈmeltwɔːtə(r)/ | nước tan từ băng hà | depend directly on glacial meltwater | glacial retreat, glacial flow |
| precipitation pattern | noun phrase | /prɪˌsɪpɪˈteɪʃn ˈpætən/ | mô hình lượng mưa | Precipitation patterns are undergoing transformations | changing precipitation patterns, altered precipitation patterns |
| evapotranspiration | noun | /ɪˌvæpəʊˌtrænspɪˈreɪʃn/ | sự bay hơi và thoát hơi nước | increased evapotranspiration from soil | evapotranspiration rate, potential evapotranspiration |
| groundwater resources | noun phrase | /ˈɡraʊndwɔːtə(r) rɪˈsɔːsɪz/ | tài nguyên nước ngầm | Groundwater resources are under threat | groundwater depletion, groundwater recharge |
| aquifer | noun | /ˈækwɪfə(r)/ | tầng chứa nước | recharge aquifers | aquifer depletion, underground aquifer |
| water scarcity | noun phrase | /ˈwɔːtə(r) ˈskeəsəti/ | sự khan hiếm nước | water scarcity intensifies | acute water scarcity, severe water scarcity |
| drought-resistant | adj | /draʊt rɪˈzɪstənt/ | chống chịu hạn | drought-resistant crop varieties | drought-resistant plants, drought-resistant species |
| resilient | adj | /rɪˈzɪliənt/ | có khả năng phục hồi | become more resilient to changes | resilient communities, resilient systems |
Passage 2 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| intricate mechanism | noun phrase | /ˈɪntrɪkət ˈmekənɪzəm/ | cơ chế phức tạp | intricate mechanisms by which climate change disrupts | intricate system, intricate process |
| hydrological cycle | noun phrase | /ˌhaɪdrəˈlɒdʒɪkl ˈsaɪkl/ | chu trình thủy văn | the Earth’s hydrological cycle | hydrological processes, hydrological changes |
| nuanced | adj | /ˈnjuːɑːnst/ | có nhiều sắc thái | the reality is far more nuanced | nuanced understanding, nuanced approach |
| Clausius-Clapeyron equation | noun phrase | /ˈklaʊziəs ˈklæpərɒn ɪˈkweɪʒn/ | phương trình Clausius-Clapeyron | according to the Clausius-Clapeyron equation | scientific equation, thermodynamic equation |
| atmospheric moisture | noun phrase | /ˌætməsˈferɪk ˈmɔɪstʃə(r)/ | độ ẩm khí quyển | atmospheric moisture is increasing | atmospheric conditions, atmospheric water vapour |
| spatial distribution | noun phrase | /ˈspeɪʃl ˌdɪstrɪˈbjuːʃn/ | sự phân bố không gian | The spatial distribution of changes | spatial pattern, spatial variation |
| atmospheric river | noun phrase | /ˌætməsˈferɪk ˈrɪvə(r)/ | sông khí quyển | concept of atmospheric rivers | atmospheric river event, atmospheric moisture transport |
| torrential rainfall | noun phrase | /təˈrenʃl ˈreɪnfɔːl/ | mưa xối xả | produce torrential rainfall | torrential rain, torrential downpour |
| snowpack | noun | /ˈsnəʊpæk/ | tuyết tích tụ | regions dependent on snowpack | mountain snowpack, seasonal snowpack |
| temporal shift | noun phrase | /ˈtempərəl ʃɪft/ | sự dịch chuyển thời gian | This temporal shift creates mismatch | temporal change, temporal variation |
| soil moisture dynamics | noun phrase | /sɔɪl ˈmɔɪstʃə(r) daɪˈnæmɪks/ | động lực độ ẩm đất | Soil moisture dynamics represent | soil moisture content, soil moisture level |
| recharge | verb/noun | /ˌriːˈtʃɑːdʒ/ | sự bổ cập (nước ngầm) | recharge groundwater systems | aquifer recharge, groundwater recharge |
| infiltrate | verb | /ˈɪnfɪltreɪt/ | thấm vào | water can infiltrate deeply | infiltrate soil, water infiltration |
| feedback mechanism | noun phrase | /ˈfiːdbæk ˈmekənɪzəm/ | cơ chế phản hồi | feedback mechanisms between water and climate | positive feedback, negative feedback |
| multifaceted | adj | /ˌmʌltiˈfæsɪtɪd/ | nhiều mặt, đa diện | Adaptation strategies must be multifaceted | multifaceted approach, multifaceted problem |
Passage 3 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| nexus | noun | /ˈneksəs/ | mối liên hệ chặt chẽ | nexus between climate change and water | energy-water nexus, food-water nexus |
| socioeconomic | adj | /ˌsəʊsiəʊˌiːkəˈnɒmɪk/ | kinh tế xã hội | socioeconomic stability | socioeconomic factors, socioeconomic impact |
| biophysical manifestation | noun phrase | /ˌbaɪəʊˈfɪzɪkl ˌmænɪfeˈsteɪʃn/ | biểu hiện sinh lý vật lý | biophysical manifestations of climate change | physical manifestation, visible manifestation |
| spatial heterogeneity | noun phrase | /ˈspeɪʃl ˌhetərəʊdʒəˈneɪəti/ | tính không đồng nhất không gian | exhibits marked spatial heterogeneity | spatial variability, geographic heterogeneity |
| governance structure | noun phrase | /ˈɡʌvənəns ˈstrʌktʃə(r)/ | cơ cấu quản trị | existing governance structures | governance framework, governance system |
| institutional capacity | noun phrase | /ˌɪnstɪˈtjuːʃənl kəˈpæsəti/ | năng lực thể chế | limited institutional capacity | institutional framework, institutional capability |
| vulnerability | noun | /ˌvʌlnərəˈbɪləti/ | tính dễ bị tổn thương | complex mosaic of vulnerability | vulnerability assessment, climate vulnerability |
| relative scarcity | noun phrase | /ˈrelətɪv ˈskeəsəti/ | sự khan hiếm tương đối | relative scarcity framework | absolute scarcity, water scarcity |
| cascade | verb | /kæˈskeɪd/ | lan tỏa theo chuỗi | impacts cascade through economic systems | cascade effect, cascading impacts |
| multifaceted challenge | noun phrase | /ˌmʌltiˈfæsɪtɪd ˈtʃælɪndʒ/ | thách thức đa diện | faces multifaceted challenges | multifaceted problem, multifaceted approach |
| computable general equilibrium model | noun phrase | /kəmˈpjuːtəbl ˈdʒenrəl ˌiːkwɪˈlɪbriəm ˈmɒdl/ | mô hình cân bằng tổng quát có thể tính toán | employing computable general equilibrium models | economic model, equilibrium analysis |
| volatility | noun | /ˌvɒləˈtɪləti/ | tính biến động | food price volatility | price volatility, market volatility |
| disproportionately | adv | /ˌdɪsprəˈpɔːʃənətli/ | không cân xứng, bất cân đối | disproportionately affecting low-income populations | disproportionately impact, disproportionately affected |
| thermoelectric power plant | noun phrase | /ˌθɜːməʊɪˈlektrɪk ˈpaʊə plɑːnt/ | nhà máy điện nhiệt | thermoelectric power plants require water | thermal power station, power generation facility |
| hydropower | noun | /ˈhaɪdrəʊpaʊə(r)/ | thủy điện | hydropower faces fundamental challenges | hydropower generation, hydropower plant |
| hydrological regime | noun phrase | /ˌhaɪdrəˈlɒdʒɪkl reɪˈʒiːm/ | chế độ thủy văn | altered hydrological regimes | flow regime, water regime |
| stratified | adj | /ˈstrætɪfaɪd/ | được phân tầng | impacts are stratified by income | socially stratified, economically stratified |
| equity | noun | /ˈekwəti/ | sự công bằng | considerations regarding equity and justice | social equity, equity issues |
| threat multiplier | noun phrase | /θret ˈmʌltɪplaɪə(r)/ | yếu tố nhân đôi mối đe dọa | acted as a threat multiplier | security threat, climate threat |
| transformational adaptation | noun phrase | /ˌtrænsfəˈmeɪʃənl ˌædæpˈteɪʃn/ | thích ứng mang tính biến đổi | transformational changes that restructure | transformational change, radical adaptation |
| governance deficit | noun phrase | /ˈɡʌvənəns ˈdefɪsɪt/ | thiếu hụt quản trị | suffer from governance deficits | institutional deficit, capacity deficit |
| climate inertia | noun phrase | /ˈklaɪmət ɪˈnɜːʃə/ | quán tính khí hậu | due to climate inertia | thermal inertia, system inertia |
| existential challenge | noun phrase | /ˌeɡzɪˈstenʃl ˈtʃælɪndʒ/ | thách thức hiện sinh | confronted with existential challenges | existential threat, existential crisis |
Kết Bài
Chủ đề “What are the effects of climate change on water availability?” là một trong những chủ đề quan trọng và thường xuyên xuất hiện nhất trong IELTS Reading hiện nay. Qua bài thi mẫu đầy đủ này, bạn đã được trải nghiệm với ba passages có độ khó tăng dần, từ Easy đến Hard, phản ánh chính xác cấu trúc của bài thi IELTS thực tế.
Đề thi bao gồm 40 câu hỏi đa dạng với 7 dạng khác nhau, giúp bạn làm quen với tất cả các dạng câu hỏi phổ biến trong IELTS Reading. Phần đáp án chi tiết không chỉ cung cấp đáp án chính xác mà còn giải thích rõ ràng cách tiếp cận từng câu hỏi, vị trí thông tin trong bài, và cách paraphrase được sử dụng.
Bạn cũng đã học được hàng chục từ vựng quan trọng về biến đổi khí hậu và tài nguyên nước, từ những từ cơ bản như “glacial meltwater” và “precipitation pattern” đến những thuật ngữ học thuật như “Clausius-Clapeyron equation” và “computable general equilibrium model”. Những từ vựng này không chỉ hữu ích cho IELTS Reading mà còn có thể áp dụng trong Writing và Speaking.
Hãy dành thời gian ôn lại các từ vựng, phân tích kỹ các giải thích đáp án, và thực hành lại đề thi này nhiều lần để nắm vững kỹ thuật làm bài. Với sự luyện tập bài bản và chiến lược đúng đắn, bạn hoàn toàn có thể đạt được band điểm mục tiêu trong phần thi IELTS Reading. Chúc bạn học tốt và thành công trong kỳ thi IELTS sắp tới!