Mở Bài
Biến đổi khí hậu và tác động của nó đến các mô hình thời tiết toàn cầu là một trong những chủ đề nóng nhất trong các kỳ thi IELTS Reading hiện nay. Với tần suất xuất hiện ngày càng cao trong các đề thi từ năm 2020 đến nay, đây là chủ đề mà mọi thí sinh cần chuẩn bị kỹ lưỡng. Theo kinh nghiệm giảng dạy hơn 20 năm của tôi, các bài đọc về climate change thường xuất hiện ở cả ba levels từ dễ đến khó, với đa dạng dạng câu hỏi.
Bài viết này cung cấp cho bạn một đề thi IELTS Reading hoàn chỉnh gồm 3 passages với độ khó tăng dần, từ band 5.0 đến 9.0. Bạn sẽ được luyện tập với các dạng câu hỏi phổ biến nhất như Multiple Choice, True/False/Not Given, Matching Headings, và Summary Completion. Mỗi câu hỏi đều có đáp án chi tiết kèm giải thích cụ thể về vị trí thông tin trong bài và kỹ thuật paraphrase.
Đề thi này phù hợp cho học viên từ band 5.0 trở lên, giúp bạn làm quen với format thi thật, nâng cao kỹ năng đọc hiểu, và tích lũy vốn từ vựng học thuật quan trọng về chủ đề môi trường và khí hậu.
1. Hướng Dẫn Làm Bài IELTS Reading
Tổng Quan Về IELTS Reading Test
IELTS Reading Test kéo dài 60 phút với tổng cộng 40 câu hỏi được phân bổ qua 3 passages. Mỗi passage có độ dài khoảng 700-900 từ và độ khó tăng dần. Điểm đặc biệt là bạn không có thời gian riêng để chuyển đáp án sang answer sheet, do đó cần quản lý thời gian một cách thông minh.
Phân bổ thời gian khuyến nghị:
- Passage 1 (Easy): 15-17 phút – Dành cho việc làm quen với chủ đề và ghi điểm nhanh
- Passage 2 (Medium): 18-20 phút – Cần đọc kỹ hơn và suy luận nhiều hơn
- Passage 3 (Hard): 23-25 phút – Yêu cầu phân tích sâu và xử lý thông tin phức tạp
Luôn dành 2-3 phút cuối để kiểm tra đáp án và đảm bảo không bỏ sót câu nào. Nhớ rằng, mỗi câu đúng được tính 1 điểm, không có điểm âm cho câu sai.
Các Dạng Câu Hỏi Trong Đề Này
Đề thi mẫu này bao gồm 7 dạng câu hỏi phổ biến nhất trong IELTS Reading:
- Multiple Choice – Chọn đáp án đúng từ các phương án cho sẵn
- True/False/Not Given – Xác định thông tin đúng, sai hoặc không được đề cập
- Matching Headings – Ghép tiêu đề phù hợp với các đoạn văn
- Sentence Completion – Hoàn thành câu với thông tin từ bài đọc
- Summary Completion – Điền từ vào đoạn tóm tắt
- Matching Features – Ghép đặc điểm với các yếu tố được liệt kê
- Short-answer Questions – Trả lời câu hỏi ngắn với số từ giới hạn
2. IELTS Reading Practice Test
PASSAGE 1 – The Changing Face of Global Weather Patterns
Độ khó: Easy (Band 5.0-6.5)
Thời gian đề xuất: 15-17 phút
Weather patterns around the world are undergoing significant transformations as a result of climate change, and these changes are becoming increasingly visible to both scientists and ordinary citizens. Over the past few decades, researchers have documented a marked increase in the frequency and intensity of extreme weather events, ranging from devastating hurricanes and prolonged droughts to unprecedented heatwaves and severe flooding.
The relationship between global warming and weather patterns is complex but increasingly well understood. As greenhouse gases accumulate in the Earth’s atmosphere, they trap heat that would otherwise escape into space. This process, known as the greenhouse effect, causes the planet’s average temperature to rise. Since the late 19th century, the Earth’s average surface temperature has increased by approximately 1.1 degrees Celsius, with most of this warming occurring in the past 40 years. While this might seem like a small change, it has profound implications for weather systems worldwide.
One of the most observable effects of climate change is the alteration of precipitation patterns. Some regions are experiencing more frequent and intense rainfall, leading to flash floods and waterlogging, while others are suffering from extended periods of drought. For instance, parts of East Africa have faced consecutive failed rainy seasons, resulting in severe water shortages and agricultural losses. Meanwhile, areas of South Asia have witnessed torrential monsoon rains that have caused catastrophic flooding and landslides, displacing millions of people.
Tropical cyclones, also known as hurricanes or typhoons depending on their location, are becoming more intense due to warmer ocean temperatures. Although the total number of these storms may not be increasing significantly, scientists have noted that a higher proportion of them are reaching Category 4 or 5 status, which means they bring more destructive winds and heavier rainfall. Hurricane Harvey in 2017, which dumped more than 60 inches of rain on parts of Texas, serves as a stark reminder of how climate change can amplify the destructive power of these natural phenomena.
The Arctic region is experiencing warming at approximately twice the rate of the global average, a phenomenon known as Arctic amplification. This rapid warming is causing the polar ice caps to melt at an alarming rate, which in turn affects weather patterns far beyond the Arctic Circle. The jet stream, a fast-flowing river of air that circles the Northern Hemisphere, is becoming more erratic as the temperature difference between the Arctic and lower latitudes decreases. When the jet stream weakens and becomes more wavy, it can cause weather systems to stall over particular regions, leading to prolonged heatwaves in summer or extended cold spells in winter.
Heatwaves have become more frequent, longer-lasting, and more intense across many parts of the world. Europe experienced a particularly severe heatwave in 2003 that resulted in an estimated 70,000 deaths. More recently, in 2021, the Pacific Northwest of the United States and western Canada experienced temperatures exceeding 49 degrees Celsius, breaking previous records by significant margins. These extraordinary temperatures are made substantially more likely by climate change, and they pose serious risks to human health, agriculture, and infrastructure.
Changes in weather patterns are also affecting the timing of seasons. Spring is arriving earlier in many regions, causing plants to bloom and animals to emerge from hibernation before they normally would. This phenological shift can create mismatches in ecosystems, such as when birds arrive for breeding season but find that the insect populations they depend on have already peaked. Similarly, autumn is lasting longer in some areas, which might seem beneficial but can actually confuse plant and animal life cycles that have evolved over millennia to respond to specific seasonal cues.
The impacts of these changing weather patterns extend far beyond environmental concerns. They affect agriculture, water resources, human health, and economic stability. Farmers are finding it increasingly difficult to predict planting and harvesting times, while water managers struggle to plan for both floods and droughts. Coastal communities face the dual threats of rising sea levels and more powerful storms, forcing difficult decisions about whether to invest in protection measures or relocate entirely.
Understanding these changes is crucial for developing adaptation strategies and mitigation measures. While the scientific community continues to refine climate models and improve predictions, the evidence is clear that weather patterns will continue to change as long as greenhouse gas concentrations keep rising. The question now is not whether we will need to adapt, but how quickly we can do so and whether we can limit future changes by reducing emissions.
Questions 1-6
Do the following statements agree with the information given in Reading Passage 1?
Write:
- TRUE if the statement agrees with the information
- FALSE if the statement contradicts the information
- NOT GIVEN if there is no information on this
- The Earth’s average temperature has risen by more than 1 degree Celsius since the late 1800s.
- The total number of tropical cyclones occurring globally is significantly increasing.
- The Arctic is warming faster than any other region on Earth.
- The 2003 European heatwave was the deadliest weather event in recorded history.
- Spring is beginning earlier in many parts of the world.
- All coastal communities have decided to relocate due to rising sea levels.
Questions 7-10
Complete the sentences below.
Choose NO MORE THAN TWO WORDS from the passage for each answer.
- The accumulation of greenhouse gases leads to the __ which causes global temperatures to rise.
- When the jet stream becomes weaker and more unstable, weather systems can remain over the same areas, creating __ during summer months.
- Changes in the timing of natural events, such as when plants flower, is called a __.
- Scientists are working to improve __ to better predict future weather patterns.
Questions 11-13
Choose the correct letter, A, B, C, or D.
-
According to the passage, what is the relationship between ocean temperatures and hurricanes?
- A. Warmer oceans produce more hurricanes overall
- B. Warmer oceans lead to more intense hurricanes
- C. Ocean temperatures have no effect on hurricanes
- D. Cooler oceans create more destructive hurricanes
-
The passage suggests that Arctic amplification affects weather patterns by:
- A. Causing the jet stream to become more stable
- B. Increasing temperatures only in polar regions
- C. Making the jet stream more unpredictable
- D. Reducing the difference between seasons
-
Which of the following is mentioned as a consequence of changing weather patterns?
- A. Improved agricultural productivity
- B. More predictable rainfall patterns
- C. Difficulties in planning farming activities
- D. Shorter growing seasons in all regions
PASSAGE 2 – Atmospheric Dynamics and Climate Change: A Complex Interaction
Độ khó: Medium (Band 6.0-7.5)
Thời gian đề xuất: 18-20 phút
The intricate relationship between climate change and weather patterns represents one of the most challenging areas of contemporary climate science. While the general trend of global warming is well established, understanding precisely how this warming translates into specific weather events requires sophisticated analysis of atmospheric dynamics, ocean currents, and the complex feedback mechanisms that link them. Recent advances in computational modeling and satellite observation have provided researchers with unprecedented insights into these processes, yet significant uncertainties remain.
A
The fundamental driver of weather pattern changes is the redistribution of heat energy within the Earth’s climate system. As greenhouse gas concentrations increase, more solar energy is retained in the atmosphere rather than being reflected back into space. However, this heat is not distributed uniformly across the planet. The equatorial regions receive more solar radiation than the poles, creating a temperature gradient that drives large-scale atmospheric circulation patterns. Climate change is altering this gradient in complex ways, with disproportionate warming occurring at higher latitudes, particularly in the Arctic. This thermal imbalance modification affects the strength and position of major atmospheric circulation cells, including the Hadley, Ferrel, and Polar cells that govern weather across different latitudinal zones.
B
One of the most significant manifestations of these changes is the observed shift in the position and behavior of the subtropical jet streams. These high-altitude, fast-moving air currents play a crucial role in determining weather patterns across mid-latitude regions, including much of North America, Europe, and Asia. Research published in recent years has demonstrated that the jet streams are not only becoming more meandering but are also shifting poleward, with profound implications for regional climates. When jet streams develop large amplitude waves and slow down, they can create blocking patterns that trap weather systems in place for extended periods. This phenomenon has been linked to numerous extreme weather events, including the 2010 Russian heatwave, the 2011 floods in Thailand, and the 2013-2014 California drought.
C
The ocean’s role in modulating climate and weather patterns cannot be overstated. Oceans absorb approximately 90% of the excess heat trapped by greenhouse gases, acting as a massive thermal reservoir that influences atmospheric conditions. Changes in ocean heat content and circulation patterns are already having measurable effects on regional weather. The Atlantic Meridional Overturning Circulation (AMOC), which includes the Gulf Stream, is showing signs of weakening. This circulation system transports warm water from the tropics toward the North Atlantic, playing a vital role in moderating European climate. A significant slowdown could lead to paradoxical cooling in parts of Europe even as the planet overall continues to warm. Similarly, changes in Pacific Ocean temperature patterns, including increased frequency of El Niño and La Niña events, are affecting weather across vast regions, from droughts in Australia to floods in South America.
D
The hydrological cycle—the continuous movement of water through evaporation, condensation, precipitation, and runoff—is experiencing fundamental alterations as a result of climate change. Warmer air can hold more moisture; for every degree Celsius of warming, the atmosphere’s water vapor capacity increases by approximately seven percent. This enhanced atmospheric moisture content has direct implications for precipitation patterns. While total global precipitation is expected to increase, this increase will not be uniform. The principle of “wet gets wetter, dry gets drier” generally holds true, with humid regions experiencing more intense rainfall events and arid regions facing more severe droughts. However, this oversimplification masks significant regional variations and seasonal differences that climate scientists are still working to fully understand and predict.
E
Extreme precipitation events have become notably more common and intense in many regions. The physical mechanism behind this is straightforward: warmer air holding more moisture can produce heavier rainfall when conditions trigger precipitation. However, the spatial distribution and frequency of these events are influenced by complex factors including local topography, land use changes, and regional circulation patterns. Urban areas are particularly vulnerable to intense precipitation due to the urban heat island effect and extensive impermeable surfaces that prevent water absorption. The August 2021 flooding in Germany and Belgium, which resulted in over 200 deaths and billions of euros in damage, exemplified how extreme rainfall can overwhelm infrastructure designed for historical climate conditions that no longer apply.
F
Conversely, drought conditions are becoming more prevalent and severe in many regions. While reduced precipitation contributes to drought, the picture is more complicated than simple rainfall deficits. Rising temperatures increase evapotranspiration rates—the combined loss of water from soil evaporation and plant transpiration. This means that even regions without significant changes in precipitation can experience moisture stress due to higher temperatures alone. The American West has experienced unprecedented drought conditions in recent years, driven by a combination of below-average precipitation and above-average temperatures. These conditions have contributed to catastrophic wildfire seasons, with fires burning larger areas and generating smoke that affects air quality across entire continents.
G
The concept of climate variability versus climate change is crucial for understanding weather pattern alterations. Natural climate variability, driven by phenomena such as El Niño-Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), and the North Atlantic Oscillation (NAO), has always caused fluctuations in weather patterns. The challenge for climate scientists is to disentangle these natural variations from the long-term trends caused by human-induced climate change. Advanced statistical techniques and improving climate models are enhancing our ability to make this distinction, allowing for better attribution studies that can determine the extent to which specific weather events have been made more likely or intense by climate change.
H
Looking forward, climate projections suggest that many of the observed trends in weather patterns will intensify if greenhouse gas emissions continue at current rates. However, the exact trajectory depends on multiple factors, including the pace of emissions reductions, potential tipping points in the climate system, and feedback mechanisms that are not yet fully understood. What is certain is that communities worldwide will need to develop more resilient infrastructure, water management systems, and agricultural practices to cope with increasingly variable and extreme weather conditions. The question is no longer whether weather patterns are changing, but how quickly societies can adapt to these changes while simultaneously working to limit further warming.
Questions 14-19
Reading Passage 2 has eight paragraphs, A-H.
Which paragraph contains the following information?
Write the correct letter, A-H, in boxes 14-19 on your answer sheet.
- Examples of specific extreme weather events caused by stationary weather systems
- An explanation of how temperature affects the amount of water vapor in the air
- A description of how oceans store heat from climate change
- Information about infrastructure challenges in cities during heavy rainfall
- The difficulty of separating natural weather variations from human-caused climate change
- Details about how temperature affects water loss from soil and plants
Questions 20-23
Complete the summary below.
Choose NO MORE THAN TWO WORDS from the passage for each answer.
Climate change affects weather patterns through multiple mechanisms. The uneven distribution of warming creates a modified (20) __ between different latitudes. The jet streams, which are crucial for mid-latitude weather, are becoming more (21) __ and shifting toward the poles. In the oceans, the (22) __, which includes the Gulf Stream, may be weakening, potentially affecting European climate. Meanwhile, the principle that “(23) __” describes how precipitation changes are affecting different regions, though this is an oversimplification of complex patterns.
Questions 24-26
Choose THREE letters, A-G.
Which THREE of the following statements are true according to the passage?
A. The Arctic is warming at the same rate as other parts of the planet.
B. Oceans absorb the majority of excess heat from greenhouse gases.
C. The Gulf Stream is strengthening due to climate change.
D. Urban areas face particular challenges during extreme rainfall events.
E. All regions with normal precipitation levels are experiencing droughts.
F. Natural climate phenomena like ENSO have always caused weather fluctuations.
G. Future weather patterns are completely predictable with current technology.
PASSAGE 3 – Teleconnections, Non-linear Dynamics, and the Future of Weather Forecasting in a Changing Climate
Độ khó: Hard (Band 7.0-9.0)
Thời gian đề xuất: 23-25 phút
The escalating complexity of weather patterns under anthropogenic climate change presents formidable challenges to both our theoretical understanding of atmospheric processes and our practical capacity for weather prediction. While public discourse often focuses on the increasing frequency of extreme events, the more subtle and potentially more consequential changes involve the fundamental reorganization of atmospheric circulation patterns and the emergence of previously rare teleconnection patterns—correlations between weather events in geographically distant regions. These changes demand a paradigmatic shift in how meteorologists and climatologists approach weather forecasting, risk assessment, and climate adaptation strategies.
At the heart of this complexity lies the non-linear nature of atmospheric dynamics. The atmosphere is a chaotic system in the mathematical sense, where small perturbations can amplify through feedback mechanisms to produce large-scale changes—a concept popularly known as the “butterfly effect.” Climate change is introducing systematic perturbations into this already chaotic system, but predicting the consequences is not simply a matter of linear extrapolation from past trends. The phase space of possible atmospheric states is being altered, potentially leading to novel climate regimes without historical analogues. This introduces irreducible uncertainty into long-range weather forecasting and makes it challenging to prepare for events that fall outside the range of historical experience.
Recent research has highlighted the critical role of Arctic amplification in reconfiguring global teleconnection patterns. The Arctic’s disproportionate warming is reducing the meridional temperature gradient—the temperature difference between the equator and the poles—which fundamentally alters the dynamics of Rossby waves, the large-scale meanders in the jet stream that shape mid-latitude weather. The resulting changes in wave amplitude and propagation characteristics can create persistent atmospheric configurations that generate concurrent extremes in multiple regions—so-called “compound events” that pose particular challenges for global supply chains and humanitarian response systems.
One manifestation of these altered teleconnections is the observed increase in quasi-resonant amplification (QRA) of planetary waves. QRA occurs when Rossby waves develop specific wavelength configurations that allow them to remain stationary and grow in amplitude, creating blocking patterns that can persist for weeks. During QRA episodes, some regions experience extreme heat while simultaneously others undergo floods or cold outbreaks. The 2010 Russian heatwave and Pakistani floods, which occurred concurrently, have been linked to such a pattern. The physical mechanism involves the trapping of wave energy in waveguides formed by the weakened jet stream, a phenomenon that appears to be occurring more frequently as Arctic warming continues.
The stratosphere-troposphere coupling represents another dimension of complexity in understanding changing weather patterns. The stratosphere, the atmospheric layer above the troposphere where weather occurs, is cooling even as the troposphere warms—a characteristic fingerprint of greenhouse gas forcing. This differential temperature change affects the stratospheric polar vortex, a large-scale cyclonic circulation that forms over the winter poles. Disruptions to this vortex can propagate downward, influencing surface weather patterns weeks later. The mechanism, known as sudden stratospheric warming (SSW), has been linked to cold air outbreaks in mid-latitudes. Some research suggests that Arctic warming may be increasing the frequency of SSW events, though this remains a subject of active scientific debate and investigation.
The ocean-atmosphere interface presents additional layers of complexity. Sea surface temperature anomalies don’t simply respond passively to atmospheric forcing; they actively influence atmospheric circulation through alterations in convection patterns and the release of latent heat. The tropical Pacific’s ENSO phenomenon has well-documented global teleconnections, but climate change may be modifying ENSO’s behavior. Some models project an increase in extreme El Niño events, while others suggest a shift toward more frequent central Pacific (as opposed to eastern Pacific) warming patterns, with distinct teleconnection signatures. Similarly, the Indian Ocean Dipole and Atlantic Multidecadal Variability are important modes of ocean-atmosphere interaction that may be changing in ways that affect weather patterns globally.
Biến đổi khí hậu tác động đến mô hình thời tiết toàn cầu qua các cơ chế khí quyển
Land-atmosphere feedbacks constitute yet another critical component of the changing weather equation. Soil moisture, vegetation cover, and snow extent all influence surface energy balance and thus atmospheric conditions. In a warmer climate, these land surface characteristics are themselves changing, creating feedback loops that can amplify or dampen atmospheric responses. For instance, soil moisture-precipitation coupling can create persistence in weather patterns: drought conditions reduce evapotranspiration, which can suppress convection and precipitation, reinforcing the drought. Conversely, wet soil conditions can enhance precipitation locally. As climate change alters baseline soil moisture conditions in various regions, these feedbacks are becoming more pronounced, contributing to the observed increase in precipitation extremes at both wet and dry ends of the spectrum.
The implications for weather forecasting are profound and multifaceted. Traditional forecasting methods rely heavily on statistical relationships derived from historical data, but these relationships are becoming less reliable as the climate system enters new regimes. Dynamical forecast models, which solve physical equations governing atmospheric motion, face challenges including the need for higher resolution to capture critical processes, better representation of cloud physics and convection, and improved initialization of ocean and land surface conditions. The computational demands of these improvements are substantial, requiring exascale computing resources that are only now becoming available.
Moreover, the concept of forecast skill—the degree to which predictions outperform simple climatological averages—is itself being redefined. In a rapidly changing climate, what constitutes the appropriate climatological baseline for comparison becomes unclear. Should forecasts be evaluated against the climate of the past 30 years, or against a projection of what the current climate should look like? This seemingly technical question has practical implications for how forecast accuracy is communicated and for the design of verification systems that evaluate forecast performance.
The emerging field of climate services seeks to bridge the gap between climate science and societal decision-making, providing actionable information about weather and climate risks in a changing environment. This requires not just improved predictions but also better understanding of decision-makers’ needs, effective communication of uncertainty, and integration of climate information with other relevant data streams. The challenge is particularly acute for low-probability, high-impact events that are becoming more frequent but remain rare enough that historical experience provides limited guidance.
Adaptation strategies must acknowledge the irreducible uncertainty inherent in predicting specific weather outcomes in a changing climate. Rather than seeking precise predictions of future conditions, resilience planning increasingly focuses on robustness across a range of plausible scenarios. This approach, sometimes termed deep uncertainty analysis, involves identifying strategies that perform adequately across diverse possible futures rather than optimizing for a single predicted outcome. For critical infrastructure designed to last decades, this means incorporating substantially larger safety margins than historical climate data would suggest.
Looking to the horizon, several research frontiers promise to enhance our understanding of weather patterns in a changing climate. Machine learning techniques are being applied to identify patterns in vast datasets that might escape traditional analysis, potentially revealing new teleconnections or precursor signals for extreme events. Paleoclimate reconstructions from tree rings, ice cores, and other archives extend our knowledge of climate variability beyond the instrumental record, providing insights into how the system behaved under different background conditions. Meanwhile, observation networks are being expanded and refined, with new satellite systems and ground-based instruments providing unprecedented detail about atmospheric processes.
Yet even as scientific understanding advances, the fundamental trajectory of future weather patterns ultimately depends on humanity’s choices regarding greenhouse gas emissions. The physics of climate change is clear: continued emissions will drive further alterations in weather patterns, with the magnitude and rate of change dependent on cumulative carbon dioxide levels in the atmosphere. Each fraction of a degree of additional warming amplifies risks and moves the climate system further from the stable conditions that have characterized human civilization. The question facing society is not whether we have perfect knowledge of every future weather pattern—we never will—but whether we have sufficient understanding to recognize the necessity of rapid emissions reductions and proactive adaptation measures. The evidence strongly suggests that we do.
Questions 27-32
Complete the summary using the list of words, A-L, below.
Weather patterns are becoming more complex due to climate change’s effects on atmospheric dynamics. The atmosphere functions as a (27) __ system where small changes can produce significant effects. Arctic amplification is altering (28) __ patterns, which are correlations between weather events in distant locations. The phenomenon of quasi-resonant amplification occurs when Rossby waves develop specific (29) __ that allow them to become stationary. In the stratosphere, disruptions to the polar vortex through (30) __ can influence surface weather. The ocean doesn’t merely respond to atmospheric changes but actively affects circulation through (31) __. Traditional forecasting faces challenges because (32) __ derived from past data are becoming unreliable.
A. chaotic
B. teleconnection
C. stable
D. wavelength configurations
E. statistical relationships
F. sudden stratospheric warming
G. precipitation patterns
H. convection patterns
I. seasonal variations
J. linear
K. temperature gradients
L. wind speeds
Questions 33-36
Choose the correct letter, A, B, C, or D.
-
According to the passage, compound events refer to:
- A. Multiple storms occurring in the same region
- B. Extreme weather happening simultaneously in different areas
- C. Events that are compounded over several years
- D. Weather patterns that repeat regularly
-
The passage suggests that sudden stratospheric warming events:
- A. Are definitely increasing due to Arctic warming
- B. Only occur during summer months
- C. May be influenced by Arctic changes, though this is still debated
- D. Have no effect on surface weather conditions
-
What does the passage say about ENSO behavior under climate change?
- A. It will definitely become weaker
- B. Its future changes remain uncertain with different model projections
- C. It will stop occurring entirely
- D. It will only affect the Pacific region
-
According to the passage, deep uncertainty analysis focuses on:
- A. Making precise predictions of specific future weather events
- B. Reducing all uncertainty in climate projections
- C. Finding strategies that work well across various possible futures
- D. Ignoring uncertainty in planning processes
Questions 37-40
Do the following statements agree with the claims of the writer in Reading Passage 3?
Write:
- YES if the statement agrees with the claims of the writer
- NO if the statement contradicts the claims of the writer
- NOT GIVEN if it is impossible to say what the writer thinks about this
- The butterfly effect makes it impossible to make any useful weather predictions.
- Soil moisture conditions can create feedback loops that either worsen or alleviate drought.
- Machine learning will completely solve the challenges of weather forecasting in a changing climate.
- The future trajectory of weather patterns ultimately depends on decisions about greenhouse gas emissions.
3. Answer Keys – Đáp Án
PASSAGE 1: Questions 1-13
- TRUE
- FALSE
- NOT GIVEN
- NOT GIVEN
- TRUE
- FALSE
- greenhouse effect
- prolonged heatwaves
- phenological shift
- climate models
- B
- C
- C
PASSAGE 2: Questions 14-26
- B
- D
- C
- E
- G
- F
- temperature gradient / thermal imbalance
- meandering
- AMOC / Atlantic Meridional Overturning Circulation
- wet gets wetter, dry gets drier
- B, D, F (in any order)
- B, D, F (in any order)
- B, D, F (in any order)
PASSAGE 3: Questions 27-40
- A
- B
- D
- F
- H
- E
- B
- C
- B
- C
- NO
- YES
- NOT GIVEN
- YES
4. Giải Thích Đáp Án Chi Tiết
Passage 1 – Giải Thích
Câu 1: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: Earth’s average temperature, risen, more than 1 degree Celsius, late 1800s
- Vị trí trong bài: Đoạn 2, dòng 5-7
- Giải thích: Bài đọc nói rõ “Since the late 19th century, the Earth’s average surface temperature has increased by approximately 1.1 degrees Celsius”. Con số 1.1 độ C lớn hơn 1 độ C, do đó câu phát biểu đúng với thông tin trong bài.
Câu 2: FALSE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: total number, tropical cyclones, significantly increasing
- Vị trí trong bài: Đoạn 4, dòng 2-3
- Giải thích: Bài viết nói “Although the total number of these storms may not be increasing significantly”, điều này mâu thuẫn trực tiếp với câu phát biểu. Bài đọc nhấn mạnh cường độ tăng chứ không phải số lượng.
Câu 5: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: Spring, beginning earlier
- Vị trí trong bài: Đoạn 7, dòng 1-2
- Giải thích: Câu “Spring is arriving earlier in many regions” khớp chính xác với thông tin trong bài. Đây là ví dụ về paraphrase đơn giản: “arriving earlier” = “beginning earlier”.
Câu 6: FALSE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: All coastal communities, decided to relocate
- Vị trí trong bài: Đoạn 8, dòng 4-5
- Giải thích: Bài viết nói “forcing difficult decisions about whether to invest in protection measures or relocate entirely”, điều này cho thấy các cộng đồng vẫn đang cân nhắc giữa hai lựa chọn chứ không phải tất cả đã quyết định di dời. Từ “all” làm cho câu phát biểu sai.
Câu 7: greenhouse effect
- Dạng câu hỏi: Sentence Completion
- Từ khóa: accumulation of greenhouse gases, causes global temperatures to rise
- Vị trí trong bài: Đoạn 2, dòng 3-5
- Giải thích: Bài đọc mô tả “This process, known as the greenhouse effect, causes the planet’s average temperature to rise”. Đây là cụm từ chính xác cần điền, sử dụng không quá hai từ.
Câu 11: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: relationship, ocean temperatures, hurricanes
- Vị trí trong bài: Đoạn 4
- Giải thích: Đoạn văn nói “Tropical cyclones… are becoming more intense due to warmer ocean temperatures” và “scientists have noted that a higher proportion of them are reaching Category 4 or 5 status”. Điều này khớp với đáp án B về việc đại dương ấm hơn tạo ra bão mạnh hơn (intense), không phải nhiều hơn về số lượng.
Câu 12: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: Arctic amplification, jet stream
- Vị trí trong bài: Đoạn 5, dòng 5-7
- Giải thích: Bài viết giải thích “When the jet stream weakens and becomes more wavy, it can cause weather systems to stall”. Từ “erratic” và “wavy” đều chỉ sự không ổn định, unpredictable, do đó đáp án C đúng.
Passage 2 – Giải Thích
Câu 14: B
- Dạng câu hỏi: Matching Information to Paragraphs
- Từ khóa: specific extreme weather events, stationary weather systems
- Vị trí trong bài: Đoạn B, câu cuối
- Giải thích: Đoạn B đề cập cụ thể “the 2010 Russian heatwave, the 2011 floods in Thailand, and the 2013-2014 California drought” và liên kết chúng với “blocking patterns that trap weather systems in place”. Đây là các ví dụ cụ thể về sự kiện cực đoan do hệ thống thời tiết bị “đóng băng”.
Câu 15: D
- Dạng câu hỏi: Matching Information to Paragraphs
- Từ khóa: temperature affects, water vapor, air
- Vị trí trong bài: Đoạn D, dòng 2-3
- Giải thích: Đoạn D giải thích rõ “Warmer air can hold more moisture; for every degree Celsius of warming, the atmosphere’s water vapor capacity increases by approximately seven percent”. Đây là giải thích trực tiếp về mối quan hệ nhiệt độ và hơi nước.
Câu 16: C
- Dạng câu hỏi: Matching Information to Paragraphs
- Từ khóa: oceans store heat
- Vị trí trong bài: Đoạn C, dòng 1-2
- Giải thích: Đoạn C nói “Oceans absorb approximately 90% of the excess heat trapped by greenhouse gases, acting as a massive thermal reservoir”. Đây là thông tin về việc đại dương lưu trữ nhiệt.
Câu 20: temperature gradient / thermal imbalance
- Dạng câu hỏi: Summary Completion
- Từ khóa: uneven distribution of warming, modified, between different latitudes
- Vị trí trong bài: Đoạn A
- Giải thích: Bài viết nói về “temperature gradient” và “thermal imbalance modification”. Cả hai cụm từ đều chấp nhận được vì bài đọc sử dụng cả hai để mô tả sự phân bố nhiệt độ không đều.
Câu 21: meandering
- Dạng câu hỏi: Summary Completion
- Từ khóa: jet streams, becoming more
- Vị trí trong bài: Đoạn B
- Giải thích: Từ “meandering” được sử dụng trong câu “the jet streams are not only becoming more meandering but are also shifting poleward”. Đây là từ mô tả chính xác sự thay đổi của dòng phản lực.
Câu 24-26: B, D, F
- Dạng câu hỏi: Multiple Choice (chọn 3 đáp án đúng)
- Giải thích:
- B đúng: Đoạn C nói “Oceans absorb approximately 90% of the excess heat”
- D đúng: Đoạn E đề cập “Urban areas are particularly vulnerable to intense precipitation”
- F đúng: Đoạn G nói “Natural climate variability… has always caused fluctuations in weather patterns”
- A sai vì Arctic ấm nhanh hơn gấp đôi; C sai vì Gulf Stream đang yếu đi; E sai vì chỉ một số vùng bị hạn; G sai vì còn nhiều uncertainties.
Passage 3 – Giải Thích
Câu 27: A (chaotic)
- Dạng câu hỏi: Summary Completion với từ cho sẵn
- Từ khóa: atmosphere functions as, small changes, significant effects
- Vị trí trong bài: Đoạn 2, dòng 1-2
- Giải thích: Bài viết nói rõ “The atmosphere is a chaotic system in the mathematical sense, where small perturbations can amplify”. Từ “chaotic” mô tả chính xác bản chất của hệ thống khí quyển.
Câu 28: B (teleconnection)
- Dạng câu hỏi: Summary Completion với từ cho sẵn
- Từ khóa: correlations between weather events, distant locations
- Vị trí trong bài: Đoạn 1
- Giải thích: Định nghĩa trong bài: “teleconnection patterns—correlations between weather events in geographically distant regions”. Đây là định nghĩa trực tiếp của thuật ngữ.
Câu 33: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: compound events
- Vị trí trong bài: Đoạn 3, cuối đoạn
- Giải thích: Bài viết giải thích compound events là “concurrent extremes in multiple regions”—nghĩa là các hiện tượng cực đoan xảy ra đồng thời ở nhiều khu vực khác nhau, khớp với đáp án B.
Câu 34: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: sudden stratospheric warming events, Arctic warming
- Vị trí trong bài: Đoạn 5, câu cuối
- Giải thích: Bài viết nói “Some research suggests that Arctic warming may be increasing the frequency of SSW events, though this remains a subject of active scientific debate”. Từ “though this remains a subject of debate” cho thấy vẫn còn tranh luận, khớp với đáp án C.
Câu 37: NO
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: butterfly effect, impossible, any useful predictions
- Vị trí trong bài: Đoạn 2
- Giải thích: Mặc dù bài viết đề cập butterfly effect và sự hỗn loạn, nhưng không nói rằng không thể dự đoán hữu ích. Thực tế, toàn bộ bài nói về việc cải thiện dự báo, cho thấy tác giả không đồng ý với quan điểm này.
Câu 38: YES
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: soil moisture, feedback loops, worsen or alleviate drought
- Vị trí trong bài: Đoạn 7
- Giải thích: Bài viết giải thích cụ thể “soil moisture-precipitation coupling can create persistence in weather patterns: drought conditions reduce evapotranspiration, which can suppress… precipitation, reinforcing the drought. Conversely, wet soil conditions can enhance precipitation”. Điều này khớp chính xác với câu phát biểu.
Câu 40: YES
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: future trajectory, weather patterns, depends on, greenhouse gas emissions
- Vị trí trong bài: Đoạn cuối, dòng 1-2
- Giải thích: Câu cuối của bài viết nói rõ “the fundamental trajectory of future weather patterns ultimately depends on humanity’s choices regarding greenhouse gas emissions”. Đây là quan điểm trực tiếp của tác giả.
5. Từ Vựng Quan Trọng Theo Passage
Passage 1 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| significant transformations | n. phrase | /sɪɡˈnɪfɪkənt trænsfəˈmeɪʃənz/ | những biến đổi đáng kể | Weather patterns are undergoing significant transformations | undergo transformations |
| extreme weather events | n. phrase | /ɪkˈstriːm ˈweðər ɪˈvents/ | các hiện tượng thời tiết cực đoan | marked increase in extreme weather events | frequency of events |
| greenhouse gases | n. phrase | /ˈɡriːnhaʊs ˈɡæsɪz/ | khí nhà kính | As greenhouse gases accumulate in the atmosphere | accumulation of gases |
| profound implications | n. phrase | /prəˈfaʊnd ˌɪmplɪˈkeɪʃənz/ | những tác động sâu sắc | it has profound implications for weather systems | have implications for |
| flash floods | n. phrase | /flæʃ flʌdz/ | lũ quét | leading to flash floods and waterlogging | cause flash floods |
| torrential rains | adj. + n. | /təˈrenʃəl reɪnz/ | mưa như trút nước | torrential monsoon rains that caused catastrophic flooding | bring torrential rains |
| Arctic amplification | n. phrase | /ˈɑːrktɪk ˌæmplɪfɪˈkeɪʃən/ | sự khuếch đại Bắc Cực | a phenomenon known as Arctic amplification | effects of amplification |
| jet stream | n. phrase | /dʒet striːm/ | dòng phản lực | The jet stream is becoming more erratic | weaken the jet stream |
| prolonged heatwaves | adj. + n. | /prəˈlɒŋd ˈhiːtweɪvz/ | đợt nóng kéo dài | leading to prolonged heatwaves in summer | experience prolonged heatwaves |
| phenological shift | n. phrase | /ˌfiːnəˈlɒdʒɪkəl ʃɪft/ | sự thay đổi thời vụ sinh học | This phenological shift can create mismatches | observe phenological shifts |
| coastal communities | n. phrase | /ˈkəʊstəl kəˈmjuːnɪtiz/ | cộng đồng ven biển | Coastal communities face dual threats | protect coastal communities |
| adaptation strategies | n. phrase | /ˌædæpˈteɪʃən ˈstrætədʒiz/ | các chiến lược thích ứng | developing adaptation strategies and mitigation measures | implement adaptation strategies |
Passage 2 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| atmospheric dynamics | n. phrase | /ˌætməsˈferɪk daɪˈnæmɪks/ | động lực học khí quyển | sophisticated analysis of atmospheric dynamics | study atmospheric dynamics |
| feedback mechanisms | n. phrase | /ˈfiːdbæk ˈmekənɪzəmz/ | các cơ chế phản hồi | complex feedback mechanisms that link them | trigger feedback mechanisms |
| computational modeling | n. phrase | /ˌkɒmpjuˈteɪʃənəl ˈmɒdəlɪŋ/ | mô hình hóa tính toán | advances in computational modeling | use computational modeling |
| temperature gradient | n. phrase | /ˈtemprətʃər ˈɡreɪdiənt/ | độ dốc nhiệt độ | creating a temperature gradient | steep temperature gradient |
| disproportionate warming | adj. + n. | /ˌdɪsprəˈpɔːʃənət ˈwɔːmɪŋ/ | sự ấm lên không cân đối | disproportionate warming occurring at higher latitudes | experience disproportionate warming |
| blocking patterns | n. phrase | /ˈblɒkɪŋ ˈpætərnz/ | các mô hình ngăn chặn | create blocking patterns that trap weather systems | form blocking patterns |
| thermal reservoir | n. phrase | /ˈθɜːməl ˈrezəvwɑːr/ | bể chứa nhiệt | acting as a massive thermal reservoir | serve as thermal reservoir |
| Atlantic Meridional Overturning Circulation | n. phrase (proper) | /ətˈlæntɪk məˈrɪdiənəl ˌəʊvəˈtɜːnɪŋ ˌsɜːkjuˈleɪʃən/ | Hệ thống tuần hoàn đảo chiều kinh tuyến Đại Tây Dương | The AMOC is showing signs of weakening | monitor the AMOC |
| evapotranspiration | n. | /ɪˌvæpəʊˌtrænspəˈreɪʃən/ | sự bốc hơi thoát hơi nước | Rising temperatures increase evapotranspiration rates | rate of evapotranspiration |
| moisture stress | n. phrase | /ˈmɔɪstʃər stres/ | sự thiếu hụt độ ẩm | regions can experience moisture stress | suffer moisture stress |
| attribution studies | n. phrase | /ˌætrɪˈbjuːʃən ˈstʌdiz/ | các nghiên cứu quy kết | allowing for better attribution studies | conduct attribution studies |
| tipping points | n. phrase | /ˈtɪpɪŋ pɔɪnts/ | các điểm tới hạn | potential tipping points in the climate system | reach tipping points |
Passage 3 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| anthropogenic climate change | adj. + n. phrase | /ˌænθrəpəˈdʒenɪk ˈklaɪmət tʃeɪndʒ/ | biến đổi khí hậu do con người | weather patterns under anthropogenic climate change | address anthropogenic change |
| teleconnection patterns | n. phrase | /ˈtelikəˌnekʃən ˈpætərnz/ | các mô hình viễn kết nối | emergence of rare teleconnection patterns | analyze teleconnection patterns |
| paradigmatic shift | n. phrase | /ˌpærədɪɡˈmætɪk ʃɪft/ | sự thay đổi mô thức | demand a paradigmatic shift in how meteorologists approach | represent a paradigmatic shift |
| non-linear dynamics | adj. + n. | /nɒn ˈlɪniər daɪˈnæmɪks/ | động lực học phi tuyến | the non-linear nature of atmospheric dynamics | exhibit non-linear dynamics |
| phase space | n. phrase | /feɪz speɪs/ | không gian pha | The phase space of possible atmospheric states | explore phase space |
| meridional temperature gradient | adj. + n. phrase | /məˈrɪdiənəl ˈtemprətʃər ˈɡreɪdiənt/ | độ dốc nhiệt độ theo kinh tuyến | reducing the meridional temperature gradient | weaken meridional gradient |
| quasi-resonant amplification | adj. + n. | /ˈkweɪzaɪ ˈrezənənt ˌæmplɪfɪˈkeɪʃən/ | sự khuếch đại chuẩn cộng hưởng | increase in quasi-resonant amplification of planetary waves | undergo quasi-resonant amplification |
| compound events | n. phrase | /ˈkɒmpaʊnd ɪˈvents/ | các sự kiện phức hợp | concurrent extremes—so-called compound events | experience compound events |
| stratosphere-troposphere coupling | n. phrase | /ˈstrætəsfɪər ˈtrɒpəsfɪər ˈkʌplɪŋ/ | sự ghép nối tầng bình lưu-đối lưu | The stratosphere-troposphere coupling represents complexity | study coupling mechanisms |
| sudden stratospheric warming | adj. + n. phrase | /ˈsʌdən ˌstrætəsˈferɪk ˈwɔːmɪŋ/ | sự ấm lên đột ngột tầng bình lưu | The mechanism, known as sudden stratospheric warming | observe sudden warming events |
| sea surface temperature anomalies | n. phrase | /siː ˈsɜːfɪs ˈtemprətʃər əˈnɒməliz/ | các bất thường nhiệt độ bề mặt biển | Sea surface temperature anomalies actively influence circulation | detect temperature anomalies |
| land-atmosphere feedbacks | n. phrase | /lænd ˈætməsfɪər ˈfiːdbæks/ | các phản hồi đất-khí quyển | Land-atmosphere feedbacks constitute a critical component | examine land-atmosphere feedbacks |
| soil moisture-precipitation coupling | n. phrase | /sɔɪl ˈmɔɪstʃər prɪˌsɪpɪˈteɪʃən ˈkʌplɪŋ/ | sự ghép nối độ ẩm đất-lượng mưa | soil moisture-precipitation coupling can create persistence | investigate coupling effects |
| dynamical forecast models | adj. + n. phrase | /daɪˈnæmɪkəl ˈfɔːkɑːst ˈmɒdəlz/ | các mô hình dự báo động lực | Dynamical forecast models face challenges | develop forecast models |
| exascale computing resources | adj. + n. phrase | /ˈeksəskeɪl kəmˈpjuːtɪŋ rɪˈsɔːsɪz/ | các nguồn lực tính toán cấp exa | requiring exascale computing resources | access computing resources |
| deep uncertainty analysis | adj. + n. phrase | /diːp ʌnˈsɜːtənti əˈnæləsɪs/ | phân tích không chắc chắn sâu | an approach termed deep uncertainty analysis | conduct uncertainty analysis |
| paleoclimate reconstructions | n. phrase | /ˈpeɪliəʊˌklaɪmət ˌriːkənˈstrʌkʃənz/ | các tái tạo cổ khí hậu | Paleoclimate reconstructions from tree rings | study paleoclimate records |
Kết Bài
Chủ đề biến đổi khí hậu và tác động của nó lên các mô hình thời tiết không chỉ là một vấn đề toàn cầu cấp bách mà còn là một chủ đề xuất hiện thường xuyên trong kỳ thi IELTS Reading. Qua bài thi mẫu hoàn chỉnh này, bạn đã được tiếp cận với ba passages có độ khó tăng dần, từ mức cơ bản đến nâng cao, phản ánh chính xác cấu trúc của bài thi thật.
Passage 1 giúp bạn làm quen với các khái niệm cơ bản về biến đổi khí hậu và những tác động có thể quan sát được. Passage 2 đi sâu vào các cơ chế phức tạp hơn như tuần hoàn khí quyển và đại dương. Passage 3 thách thức khả năng đọc hiểu học thuật của bạn với các khái niệm khoa học tiên tiến và thuật ngữ chuyên ngành.
Với 40 câu hỏi đa dạng bao gồm True/False/Not Given, Multiple Choice, Matching Headings, Summary Completion và nhiều dạng khác, bạn đã thực hành toàn diện các kỹ năng cần thiết cho IELTS Reading. Các đáp án chi tiết kèm giải thích cụ thể về vị trí thông tin và kỹ thuật paraphrase sẽ giúp bạn hiểu rõ logic làm bài và tránh những sai lầm phổ biến.
Từ vựng học thuật được tổng hợp từ ba passages không chỉ hữu ích cho phần Reading mà còn có thể áp dụng trong Writing Task 2 và Speaking Part 3 khi thảo luận về các vấn đề môi trường. Những cụm từ như “greenhouse effect”, “teleconnection patterns”, hay “adaptation strategies” là những từ vựng mà giám khảo đánh giá cao.
Hãy dành thời gian xem lại những câu bạn làm sai, phân tích lý do tại sao bạn chọn nhầm đáp án, và luyện tập thêm với các đề thi tương tự. Việc luyện tập thường xuyên với các chủ đề đa dạng và dạng câu hỏi khác nhau là chìa khóa để đạt band điểm cao trong IELTS Reading. Chúc bạn ôn tập hiệu quả và đạt kết quả như mong muốn trong kỳ thi sắp tới!