Mở Bài
Công nghệ blockchain đang trở thành một trong những chủ đề nóng trong các kỳ thi IELTS Reading gần đây, đặc biệt khi kết hợp với vấn đề phát triển bền vững. Chủ đề “How Blockchain Is Enhancing Sustainability In Supply Chains” không chỉ phản ánh xu hướng công nghệ toàn cầu mà còn xuất hiện ngày càng thường xuyên trong các đề thi IELTS Academic, đặc biệt từ Cambridge IELTS 15 trở về sau.
Bài viết này cung cấp cho bạn một đề thi IELTS Reading hoàn chỉnh với ba passages theo đúng chuẩn format thi thật, bao gồm độ khó tăng dần từ Easy đến Hard. Bạn sẽ được thực hành với đầy đủ các dạng câu hỏi phổ biến như Multiple Choice, True/False/Not Given, Matching Headings, và nhiều dạng khác. Mỗi câu hỏi đều có đáp án chi tiết kèm giải thích cụ thể về vị trí thông tin và kỹ thuật paraphrase, giúp bạn hiểu rõ logic làm bài.
Ngoài ra, bạn còn nhận được bộ từ vựng chuyên ngành được phân loại theo từng passage, với phiên âm, nghĩa tiếng Việt và ví dụ cụ thể từ bài đọc. Đề thi này phù hợp cho học viên từ band 5.0 trở lên, giúp bạn làm quen với chủ đề công nghệ – môi trường và rèn luyện kỹ năng đọc hiểu một cách bài bản nhất.
1. Hướng Dẫn Làm Bài IELTS Reading
Tổng Quan Về IELTS Reading Test
IELTS Reading Test kéo dài 60 phút với 3 passages và tổng cộng 40 câu hỏi. Mỗi câu trả lời đúng được tính 1 điểm, không bị trừ điểm khi sai. Độ khó của các passages tăng dần, với Passage 1 thường dễ nhất và Passage 3 khó nhất.
Phân bổ thời gian khuyến nghị:
- Passage 1: 15-17 phút (13 câu hỏi)
- Passage 2: 18-20 phút (13 câu hỏi)
- Passage 3: 23-25 phút (14 câu hỏi)
Lưu ý dành 2-3 phút cuối để chép đáp án vào Answer Sheet. Trong thời gian thi, bạn phải hoàn thành cả việc đọc và trả lời câu hỏi trực tiếp vào phiếu trả lời.
Các Dạng Câu Hỏi Trong Đề Này
Đề thi mẫu này bao gồm 7 dạng câu hỏi phổ biến nhất trong IELTS Reading:
- Multiple Choice – Trắc nghiệm nhiều lựa chọn
- True/False/Not Given – Xác định thông tin đúng/sai/không đề cập
- Matching Information – Ghép thông tin với đoạn văn
- Yes/No/Not Given – Xác định quan điểm tác giả
- Matching Headings – Ghép tiêu đề với đoạn văn
- Summary Completion – Hoàn thành tóm tắt
- Short-answer Questions – Câu hỏi trả lời ngắn
2. IELTS Reading Practice Test
PASSAGE 1 – Blockchain Technology Revolutionizes Supply Chain Transparency
Độ khó: Easy (Band 5.0-6.5)
Thời gian đề xuất: 15-17 phút
In recent years, blockchain technology has emerged as a revolutionary tool in transforming how companies manage their supply chains, particularly when it comes to enhancing sustainability practices. Originally developed as the underlying technology for cryptocurrencies like Bitcoin, blockchain has found numerous applications beyond digital currencies, with supply chain management being one of the most promising areas.
At its core, blockchain is a distributed ledger technology that records transactions across multiple computers in a way that makes the records immutable and transparent. This means that once information is entered into the blockchain, it cannot be altered or deleted, and all participants in the network can view the same information simultaneously. These characteristics make blockchain particularly valuable for tracking products as they move through complex supply chains involving multiple parties, from raw material suppliers to manufacturers, distributors, and retailers.
One of the primary ways blockchain enhances sustainability is through improved traceability. Consider the fashion industry, which has long faced criticism for its environmental impact and poor labor practices. Several major clothing brands have now implemented blockchain systems that allow consumers to trace a garment’s journey from the cotton farm where the raw materials were grown to the factory where it was manufactured and the store where it is sold. This unprecedented level of transparency helps ensure that products are made sustainably and ethically, as each step in the process is permanently recorded and verifiable.
Food supply chains have also benefited significantly from blockchain technology. Walmart, one of the world’s largest retailers, has implemented a blockchain system for tracking leafy greens in its supply chain. Before blockchain, it could take nearly a week to trace the origin of contaminated produce. With blockchain, this process now takes just 2.2 seconds. This dramatic improvement not only helps prevent foodborne illnesses but also reduces food waste by allowing companies to quickly identify and remove only the affected products rather than disposing of entire batches.
The technology also plays a crucial role in combating fraud and counterfeiting, which have significant environmental implications. When fake products enter supply chains, they often fail to meet environmental standards and contribute to unnecessary waste. Blockchain’s verification capabilities help ensure that products claiming to be organic, fair-trade, or sustainably sourced actually meet those criteria. For example, diamond companies use blockchain to verify that gems are conflict-free, while coffee producers use it to confirm that beans were grown using sustainable farming methods.
Another important application involves carbon footprint tracking. Companies can use blockchain to record the carbon emissions associated with each stage of their supply chain, from production to transportation. This detailed tracking enables businesses to identify the most carbon-intensive parts of their operations and take targeted action to reduce their environmental impact. Some companies are even exploring the use of blockchain to create transparent carbon credit systems, where verified emission reductions can be traded as digital tokens.
However, implementing blockchain technology is not without challenges. The systems require significant initial investment in both technology and training. Additionally, for blockchain to work effectively across a supply chain, all participants must agree to use the same system and share their data, which can be difficult to achieve when dealing with multiple companies across different countries. There are also concerns about the energy consumption of some blockchain systems, particularly those that use proof-of-work mechanisms similar to Bitcoin. Fortunately, newer energy-efficient alternatives are being developed that could make blockchain more sustainable.
Despite these challenges, the potential benefits of blockchain for supply chain sustainability are substantial. As the technology matures and becomes more accessible, more companies are expected to adopt it. Industry experts predict that within the next decade, blockchain-based supply chain management could become the standard rather than the exception, fundamentally changing how we think about product transparency and corporate responsibility in the global economy.
Questions 1-13
Questions 1-5: Multiple Choice
Choose the correct letter, A, B, C, or D.
-
What is the main characteristic that makes blockchain valuable for supply chains?
A. It was originally created for Bitcoin
B. It allows information to be easily changed
C. Information recorded cannot be altered and is visible to all
D. It only works with cryptocurrencies -
According to the passage, how long does it now take Walmart to trace contaminated produce using blockchain?
A. Nearly a week
B. 2.2 seconds
C. Several hours
D. A few minutes -
How does blockchain help combat counterfeiting?
A. By making products more expensive
B. By verifying that products meet claimed standards
C. By reducing the number of suppliers
D. By eliminating all fake products immediately -
What is one challenge mentioned regarding blockchain implementation?
A. It requires all companies to use the same system
B. It makes supply chains more complex
C. It reduces transparency
D. It cannot track carbon emissions -
What do experts predict about blockchain in supply chain management?
A. It will disappear within a decade
B. It will only be used by large companies
C. It could become the standard practice
D. It will remain too expensive for most businesses
Questions 6-9: True/False/Not Given
Do the following statements agree with the information given in the passage?
Write:
- TRUE if the statement agrees with the information
- FALSE if the statement contradicts the information
- NOT GIVEN if there is no information on this
- Blockchain technology was specifically designed for supply chain management.
- The fashion industry has been criticized for environmental and labor issues.
- All major clothing brands have implemented blockchain systems.
- Blockchain helps reduce food waste by enabling faster identification of contaminated products.
Questions 10-13: Matching Information
Match the following statements (10-13) with the correct paragraph (A-H).
A. Paragraph 1
B. Paragraph 2
C. Paragraph 3
D. Paragraph 4
E. Paragraph 5
F. Paragraph 6
G. Paragraph 7
H. Paragraph 8
- A description of how blockchain works as a technology
- An example of blockchain reducing food safety response time
- Discussion of obstacles to widespread blockchain adoption
- Information about tracking environmental impact through supply chains
PASSAGE 2 – The Technical Infrastructure Behind Sustainable Blockchain Solutions
Độ khó: Medium (Band 6.0-7.5)
Thời gian đề xuất: 18-20 phút
While the concept of blockchain enhancing supply chain sustainability is compelling, understanding the technical mechanisms that make this possible reveals both the technology’s transformative potential and its inherent limitations. The architecture of blockchain systems designed for sustainability applications differs significantly from their cryptocurrency counterparts, requiring specialized protocols and consensus mechanisms that balance security, speed, and environmental responsibility.
Traditional blockchain systems, particularly those employing proof-of-work (PoW) consensus algorithms, have faced considerable criticism for their substantial energy requirements. Bitcoin’s blockchain, for instance, consumes approximately 130 terawatt-hours of electricity annually—roughly equivalent to the entire energy consumption of Argentina. This carbon-intensive approach is clearly incompatible with sustainability goals, prompting developers to create alternative consensus methods. Proof-of-stake (PoS), proof-of-authority (PoA), and delegated proof-of-stake (DPoS) have emerged as more energy-efficient alternatives, reducing energy consumption by up to 99% compared to PoW systems while maintaining the security and immutability that make blockchain valuable.
The implementation of blockchain in supply chains typically involves smart contracts—self-executing programs that automatically trigger actions when predetermined conditions are met. In sustainability contexts, these smart contracts can enforce environmental standards throughout the supply chain. For example, a smart contract might automatically verify that a shipment of timber comes from certified sustainable forests by checking digital certificates uploaded at the source. If verification fails, the contract can prevent payment release or alert relevant authorities, creating a self-regulating system that reduces the need for manual auditing and minimizes the risk of non-compliant products entering the supply chain.
Interoperability remains one of the most significant technical challenges facing blockchain adoption in supply chains. Most industries involve complex networks of suppliers, manufacturers, and distributors who may already use different information systems and standards. Creating a blockchain solution that can seamlessly integrate with existing enterprise resource planning (ERP) systems, warehouse management software, and transportation management systems requires sophisticated middleware and application programming interfaces (APIs). Several industry consortiums have formed to develop common standards, with initiatives like the GS1 organization working to ensure blockchain implementations can communicate across different platforms and jurisdictions.
The concept of tokenization adds another dimension to blockchain’s sustainability applications. By creating digital representations of physical assets or environmental attributes, companies can track and trade sustainability credentials more efficiently. Carbon credits, for instance, can be tokenized and recorded on a blockchain, creating a transparent marketplace where companies can buy and sell verified emission reductions. Similarly, renewable energy certificates can be tokenized, allowing consumers to verify that the energy they purchase genuinely comes from renewable sources. This tokenization transforms abstract environmental benefits into tangible, tradeable assets, potentially creating stronger economic incentives for sustainable practices.
Data integrity and privacy present a paradox in blockchain-based supply chain systems. While transparency is crucial for sustainability verification, companies often need to protect proprietary information about suppliers, costs, and processes. Advanced cryptographic techniques such as zero-knowledge proofs allow parties to verify information without revealing the underlying data. For example, a company could prove that its products meet certain environmental standards without disclosing the exact locations of its suppliers or specific production methods. Selective transparency—where different stakeholders have access to different levels of information—can be achieved through permissioned blockchain networks, where participation and data access rights are controlled.
The scalability of blockchain systems for large-scale supply chain applications has improved dramatically in recent years. Early blockchain implementations could process only a limited number of transactions per second, making them impractical for high-volume supply chains that might involve millions of products moving simultaneously. Layer-2 solutions, sidechains, and sharding techniques have increased transaction throughput substantially, with some modern blockchain platforms capable of processing thousands of transactions per second. These technical advances make blockchain viable for even the most complex global supply networks.
Looking forward, the integration of blockchain with other emerging technologies promises to further enhance sustainability applications. Internet of Things (IoT) sensors can automatically record environmental data—such as temperature, humidity, or location—directly to the blockchain, eliminating manual data entry and reducing errors. Artificial intelligence algorithms can analyze blockchain-recorded supply chain data to identify patterns and suggest optimizations that reduce waste or emissions. This convergence of technologies creates synergistic effects that multiply the potential benefits beyond what any single technology could achieve alone.
However, the technological sophistication of these systems also creates new risks. Cybersecurity vulnerabilities, particularly at the points where blockchain systems interface with traditional IT infrastructure, could potentially be exploited to manipulate data or disrupt operations. The decentralized nature of blockchain makes it resilient against certain types of attacks, but not immune. Organizations implementing blockchain solutions must invest in comprehensive security frameworks and regular audits to ensure their systems remain trustworthy and reliable over time.
Công nghệ blockchain ứng dụng trong quản lý chuỗi cung ứng bền vững với các nút mạng kết nối
Questions 14-26
Questions 14-18: Yes/No/Not Given
Do the following statements agree with the views of the writer in the passage?
Write:
- YES if the statement agrees with the views of the writer
- NO if the statement contradicts the views of the writer
- NOT GIVEN if it is impossible to say what the writer thinks about this
- Proof-of-work consensus mechanisms are suitable for sustainability-focused blockchain applications.
- Smart contracts can create systems that reduce the need for manual verification of environmental standards.
- All blockchain systems should be completely transparent to maximize sustainability benefits.
- The integration of blockchain with IoT and AI will enhance its sustainability applications.
- Blockchain systems are completely immune to cybersecurity threats.
Questions 19-23: Matching Headings
Choose the correct heading for paragraphs B-F from the list of headings below.
List of Headings:
i. The challenge of connecting different information systems
ii. Converting environmental benefits into digital assets
iii. Energy consumption problems and their solutions
iv. Balancing openness with commercial confidentiality
v. The future of manual auditing processes
vi. Automated enforcement of sustainability requirements
vii. Traditional supply chain management methods
viii. The cost implications of blockchain technology
- Paragraph B
- Paragraph C
- Paragraph D
- Paragraph E
- Paragraph F
Questions 24-26: Summary Completion
Complete the summary below using NO MORE THAN TWO WORDS from the passage for each answer.
Modern blockchain platforms have addressed early limitations in processing speed through various technical innovations. Solutions such as 24. ___, sidechains, and sharding techniques have significantly increased the number of transactions that can be handled per second. This improved 25. ___ makes blockchain practical for complex global supply networks. When combined with 26. ___ sensors that automatically record data, blockchain systems can eliminate manual entry and improve accuracy.
PASSAGE 3 – Socioeconomic Implications and Future Trajectories of Blockchain-Enabled Sustainable Supply Chains
Độ khó: Hard (Band 7.0-9.0)
Thời gian đề xuất: 23-25 phút
The integration of blockchain technology into supply chain management transcends mere technical innovation, representing a fundamental restructuring of commercial relationships, power dynamics, and accountability frameworks within global trade networks. As this technology matures and achieves broader adoption, its ramifications extend far beyond operational efficiency gains, potentially catalyzing a paradigmatic shift in how societies conceptualize and operationalize corporate environmental responsibility and stakeholder engagement in the context of sustainable development.
From an economic perspective, blockchain-enabled supply chains present a compelling case study in how technological infrastructure can influence market mechanisms and competitive dynamics. The technology’s capacity to reduce information asymmetries—long recognized as a source of market failure in neoclassical economics—creates conditions for more efficient resource allocation. When consumers can verify sustainability claims with unprecedented accuracy, companies engaging in greenwashing face substantially higher risks of reputational damage, while genuinely sustainable enterprises gain competitive advantages that were previously difficult to communicate credibly. This recalibration of market incentives potentially addresses the principal-agent problems that have historically plagued efforts to promote corporate environmental stewardship, whereby the interests of company management diverged from those of environmentally-conscious stakeholders due to information gaps and verification difficulties.
However, the democratizing potential of enhanced transparency must be weighed against emerging concerns about supply chain power concentration. The substantial capital requirements and technical expertise needed to implement comprehensive blockchain systems may create barriers to entry that favor large, well-resourced corporations over small and medium-sized enterprises (SMEs). This concentration risk is particularly acute in developing economies, where suppliers may lack the financial capacity or technological infrastructure to participate in blockchain-enabled supply networks. The resulting digital divide could paradoxically undermine sustainability goals by excluding producers who employ traditional, environmentally sound practices but cannot afford the technology to document them. Some scholars argue that this represents a form of technological hegemony, where dominant firms in supply chains impose participation requirements that consolidate their market power while ostensibly promoting sustainability.
The governance implications of decentralized ledger technology in supply chains raise profound questions about regulatory frameworks and jurisdictional authority. Traditional supply chain regulation operates through hierarchical governmental structures, with nation-states exercising sovereign authority over activities within their territories. Blockchain systems, by contrast, create transnational networks that exist somewhat independent of geographic boundaries, potentially challenging conventional regulatory paradigms. This jurisdictional ambiguity becomes particularly complex when smart contracts automatically enforce standards that may differ from local regulations or when consensus mechanisms determine the validity of sustainability claims without involvement from traditional certification bodies or governmental agencies. The emergence of what some theorists term “algorithmic governance“—where protocol rules embedded in code effectively determine permissible behaviors—raises normative questions about democratic accountability and the appropriate locus of authority in establishing and enforcing environmental standards.
Recent empirical research has begun to quantify the macroeconomic impacts of blockchain adoption in supply chains, with findings suggesting effects that extend beyond individual firm performance. A longitudinal study of manufacturing sectors in East Asian economies found that increased blockchain adoption correlated with a 12-18% reduction in supply chain emissions intensity over a five-year period, even after controlling for other technological improvements and regulatory changes. The mechanisms driving these gains appear multifaceted: enhanced visibility enables more precise inventory management, reducing the need for precautionary overproduction; improved coordination between supply chain partners minimizes inefficient transportation; and greater accountability incentivizes investment in cleaner production technologies. Interestingly, the study also identified spillover effects, whereby blockchain adoption by industry leaders prompted sustainability improvements among firms not directly using the technology, possibly through competitive pressures or knowledge diffusion.
The sociological dimensions of blockchain-enabled transparency reveal complex interactions between technology and social norms. Social practice theory suggests that consumption patterns are embedded in collectively held conventions rather than purely individual preferences. Blockchain’s capacity to make sustainability information readily accessible at the point of purchase may facilitate the evolution of new consumption norms wherein environmental verification becomes an expected aspect of commercial transactions. This normalization process could generate positive feedback loops: as sustainable purchasing becomes more common, it becomes more socially acceptable and expected, further increasing adoption. However, this process is not predetermined; research on consumer behavior indicates that information provision alone rarely suffices to change deeply ingrained practices. The effectiveness of blockchain transparency in shifting consumption patterns likely depends on factors including cultural context, socioeconomic status, product categories, and the presence of complementary institutional supports such as eco-labeling schemes or public awareness campaigns.
Critics have raised epistemological concerns about blockchain’s role in sustainability verification, questioning whether technological systems can adequately capture the qualitative complexity and contextual nuance inherent in environmental and social sustainability. While blockchain excels at recording that certain events occurred—a shipment departed, a payment was made, a certificate was issued—it cannot independently verify the substantive accuracy of the underlying claims. The aphorism “garbage in, garbage out” applies: blockchain can ensure that recorded information remains unaltered, but it cannot guarantee that the information was truthful when entered. This limitation is particularly significant for sustainability metrics that involve subjective assessments or require understanding of local ecological contexts. A blockchain may faithfully record that timber came from a “sustainably managed forest,” but determining whether that designation is genuinely warranted requires expert judgment about forest health, biodiversity impacts, and indigenous rights—assessments that cannot be reduced to simple data inputs.
The future trajectory of blockchain in sustainable supply chains will likely be shaped by ongoing technological evolution and institutional adaptation. Emerging hybrid models that combine blockchain’s transparency benefits with traditional governance mechanisms may address some current limitations. For instance, consortium blockchains governed by multi-stakeholder groups—including corporations, civil society organizations, and government representatives—could balance the need for commercial confidentiality with public accountability. The development of interoperability protocols may mitigate concerns about technological lock-in and reduce barriers for smaller participants. Furthermore, the integration of machine learning techniques with blockchain data could enable predictive analytics that not only document current sustainability performance but also identify emerging risks or opportunities for improvement.
Ultimately, blockchain’s contribution to supply chain sustainability should be understood as sociotechnical rather than purely technological. The technology provides infrastructural capabilities that enable new forms of coordination, verification, and accountability, but realizing these potentials requires complementary developments in regulatory frameworks, business models, consumer education, and social norms. The most successful implementations will likely be those that recognize this interdependence and pursue holistic strategies that address technical, economic, institutional, and social dimensions simultaneously. As supply chains represent critical leverage points for addressing global environmental challenges—from climate change to biodiversity loss to resource depletion—the thoughtful application of blockchain technology may contribute meaningfully to sustainability transitions, provided we remain cognizant of both its capabilities and limitations.
Ảnh hưởng kinh tế xã hội của công nghệ blockchain đối với phát triển bền vững toàn cầu
Questions 27-40
Questions 27-31: Multiple Choice
Choose the correct letter, A, B, C, or D.
-
According to the passage, how does blockchain affect information asymmetries in markets?
A. It increases them through added complexity
B. It reduces them, creating more efficient resource allocation
C. It has no significant effect on market information
D. It makes greenwashing easier for companies -
What concern does the passage raise about blockchain implementation in developing economies?
A. It may create barriers that exclude smaller producers
B. It works better in developed countries
C. It requires too much electricity
D. It violates local regulations -
The term “algorithmic governance” in the passage refers to:
A. Government control of blockchain systems
B. Traditional certification processes
C. Protocol rules in code determining permissible behaviors
D. Democratic voting systems -
According to the longitudinal study mentioned, what was the impact of blockchain adoption?
A. 5-10% reduction in supply chain emissions
B. 12-18% reduction in supply chain emissions intensity
C. No measurable impact on emissions
D. Increased emissions due to technology costs -
What limitation does the passage identify regarding blockchain’s verification capabilities?
A. It cannot record information accurately
B. It is too expensive to implement
C. It cannot independently verify the substantive accuracy of entered information
D. It only works for large companies
Questions 32-36: Matching Features
Match the following concepts (32-36) with the correct description (A-H).
Concepts:
32. Information asymmetries
33. Technological hegemony
34. Spillover effects
35. Social practice theory
36. Garbage in, garbage out
Descriptions:
A. When blockchain adoption by leaders improves sustainability among non-users
B. Consumption patterns are based on collective conventions
C. Differences in knowledge between market participants
D. Blockchain cannot guarantee input data truthfulness
E. Small companies benefit most from blockchain
F. Dominant firms impose requirements that consolidate their power
G. Government regulation of blockchain systems
H. Blockchain creates perfect information systems
Questions 37-40: Short-answer Questions
Answer the questions below using NO MORE THAN THREE WORDS from the passage for each answer.
- What type of models might combine blockchain benefits with traditional governance?
- What groups might govern consortium blockchains alongside corporations and government?
- What kind of analytics could machine learning enable when integrated with blockchain data?
- What does the passage describe blockchain’s contribution to sustainability as, rather than purely technological?
3. Answer Keys – Đáp Án
PASSAGE 1: Questions 1-13
- C
- B
- B
- A
- C
- FALSE
- TRUE
- NOT GIVEN
- TRUE
- B
- D
- G
- F
PASSAGE 2: Questions 14-26
- NO
- YES
- NO
- YES
- NO
- iii
- vi
- i
- ii
- iv
- Layer-2 solutions
- transaction throughput
- Internet of Things / IoT
PASSAGE 3: Questions 27-40
- B
- A
- C
- B
- C
- C
- F
- A
- B
- D
- Hybrid models
- Civil society organizations
- Predictive analytics
- Sociotechnical
4. Giải Thích Đáp Án Chi Tiết
Passage 1 – Giải Thích
Câu 1: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: main characteristic, blockchain valuable, supply chains
- Vị trí trong bài: Đoạn 2, dòng 1-4
- Giải thích: Bài đọc nói rõ “once information is entered into the blockchain, it cannot be altered or deleted, and all participants in the network can view the same information simultaneously.” Đây là đặc điểm chính làm cho blockchain có giá trị, được paraphrase trong đáp án C là “Information recorded cannot be altered and is visible to all.”
Câu 2: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: Walmart, trace contaminated produce, blockchain
- Vị trí trong bài: Đoạn 4, dòng 3-5
- Giải thích: Bài viết nêu rõ con số cụ thể “With blockchain, this process now takes just 2.2 seconds.” Đây là thông tin trực tiếp không cần paraphrase.
Câu 3: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: blockchain, combat counterfeiting
- Vị trí trong bài: Đoạn 5, dòng 3-6
- Giải thích: Đoạn văn giải thích “Blockchain’s verification capabilities help ensure that products claiming to be organic, fair-trade, or sustainably sourced actually meet those criteria.” Điều này được paraphrase thành “verifying that products meet claimed standards.”
Câu 6: FALSE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: blockchain, specifically designed, supply chain management
- Vị trí trong bài: Đoạn 1, dòng 2-3
- Giải thích: Bài đọc nói rõ “Originally developed as the underlying technology for cryptocurrencies like Bitcoin,” chứng tỏ blockchain không được thiết kế đặc biệt cho quản lý chuỗi cung ứng. Statement mâu thuẫn với thông tin.
Câu 7: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: fashion industry, criticized, environmental, labor issues
- Vị trí trong bài: Đoạn 3, dòng 2-3
- Giải thích: Đoạn văn nêu “the fashion industry, which has long faced criticism for its environmental impact and poor labor practices.” Statement phù hợp hoàn toàn với thông tin.
Câu 9: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: blockchain, reduce food waste, faster identification, contaminated products
- Vị trí trong bài: Đoạn 4, dòng 5-7
- Giải thích: Bài viết nêu “reduces food waste by allowing companies to quickly identify and remove only the affected products.” Statement là paraphrase chính xác của thông tin này.
Câu 10: B
- Dạng câu hỏi: Matching Information
- Từ khóa: description, blockchain works, technology
- Vị trí trong bài: Đoạn 2 (Paragraph B)
- Giải thích: Đoạn B giải thích chi tiết “blockchain is a distributed ledger technology that records transactions…” và các đặc điểm kỹ thuật của blockchain.
Câu 11: D
- Dạng câu hỏi: Matching Information
- Từ khóa: blockchain reducing food safety response time
- Vị trí trong bài: Đoạn 4 (Paragraph D)
- Giải thích: Đoạn D đưa ra ví dụ cụ thể về Walmart và thời gian truy xuất nguồn gốc sản phẩm giảm từ gần một tuần xuống 2.2 giây.
Câu 12: G
- Dạng câu hỏi: Matching Information
- Từ khóa: obstacles, widespread blockchain adoption
- Vị trí trong bài: Đoạn 7 (Paragraph G)
- Giải thích: Đoạn G bắt đầu với “However, implementing blockchain technology is not without challenges” và liệt kê các thách thức như đầu tư ban đầu, yêu cầu tất cả các bên tham gia sử dụng cùng hệ thống.
Câu 13: F
- Dạng câu hỏi: Matching Information
- Từ khóa: tracking environmental impact, supply chains
- Vị trí trong bài: Đoạn 6 (Paragraph F)
- Giải thích: Đoạn F thảo luận về “carbon footprint tracking” và cách blockchain ghi lại carbon emissions ở mỗi giai đoạn của chuỗi cung ứng.
Passage 2 – Giải Thích
Câu 14: NO
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: Proof-of-work, suitable, sustainability-focused
- Vị trí trong bài: Đoạn 2, dòng 1-4
- Giải thích: Tác giả nêu rõ PoW “carbon-intensive” và “incompatible with sustainability goals,” cho thấy quan điểm rõ ràng là không phù hợp.
Câu 15: YES
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: smart contracts, reduce need, manual verification
- Vị trí trong bài: Đoạn 3, dòng 6-8
- Giải thích: Tác giả nêu smart contracts tạo ra “self-regulating system that reduces the need for manual auditing,” thể hiện quan điểm đồng ý với statement.
Câu 16: NO
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: all blockchain systems, completely transparent
- Vị trí trong bài: Đoạn 6, dòng 1-2
- Giải thích: Tác giả chỉ ra “companies often need to protect proprietary information” và thảo luận về selective transparency, cho thấy không đồng ý với việc tất cả hệ thống phải hoàn toàn minh bạch.
Câu 17: YES
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: integration, blockchain, IoT, AI, enhance sustainability
- Vị trí trong bài: Đoạn 8, dòng 1-3
- Giải thích: Tác giả nêu “the integration of blockchain with other emerging technologies promises to further enhance sustainability applications,” thể hiện quan điểm tích cực.
Câu 18: NO
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: blockchain systems, completely immune, cybersecurity threats
- Vị trí trong bài: Đoạn 9, dòng 2-3
- Giải thích: Tác giả nêu “The decentralized nature of blockchain makes it resilient against certain types of attacks, but not immune,” rõ ràng phủ nhận việc hoàn toàn miễn nhiễm.
Câu 19: iii (Energy consumption problems and their solutions)
- Dạng câu hỏi: Matching Headings
- Vị trí: Paragraph B
- Giải thích: Đoạn B thảo luận về vấn đề tiêu thụ năng lượng của PoW và các giải pháp thay thế như PoS, PoA, DPoS.
Câu 20: vi (Automated enforcement of sustainability requirements)
- Dạng câu hỏi: Matching Headings
- Vị trí: Paragraph C
- Giải thích: Đoạn C tập trung vào smart contracts và cách chúng tự động thực thi các tiêu chuẩn môi trường.
Câu 21: i (The challenge of connecting different information systems)
- Dạng câu hỏi: Matching Headings
- Vị trí: Paragraph D
- Giải thích: Đoạn D thảo luận về interoperability và thách thức tích hợp blockchain với các hệ thống thông tin khác nhau.
Câu 22: ii (Converting environmental benefits into digital assets)
- Dạng câu hỏi: Matching Headings
- Vị trí: Paragraph E
- Giải thích: Đoạn E giải thích về tokenization và cách biến carbon credits, renewable energy certificates thành tài sản số.
Câu 23: iv (Balancing openness with commercial confidentiality)
- Dạng câu hỏi: Matching Headings
- Vị trí: Paragraph F
- Giải thích: Đoạn F thảo luận về data integrity, privacy và cách cân bằng giữa transparency và bảo vệ thông tin độc quyền.
Câu 24: Layer-2 solutions
- Dạng câu hỏi: Summary Completion
- Từ khóa: technical innovations, processing speed
- Vị trí trong bài: Đoạn 7, dòng 3-4
- Giải thích: Bài viết liệt kê “Layer-2 solutions, sidechains, and sharding techniques” như các giải pháp tăng tốc độ xử lý.
Câu 25: transaction throughput
- Dạng câu hỏi: Summary Completion
- Từ khóa: improved, practical, complex global supply networks
- Vị trí trong bài: Đoạn 7, dòng 4-5
- Giải thích: Bài viết sử dụng thuật ngữ “transaction throughput” để chỉ khả năng xử lý giao dịch đã được cải thiện.
Câu 26: Internet of Things / IoT
- Dạng câu hỏi: Summary Completion
- Từ khóa: sensors, automatically record data
- Vị trí trong bài: Đoạn 8, dòng 2
- Giải thích: “Internet of Things (IoT) sensors can automatically record environmental data” là thông tin trực tiếp trong bài.
Passage 3 – Giải Thích
Câu 27: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: blockchain, information asymmetries, markets
- Vị trí trong bài: Đoạn 2, dòng 2-4
- Giải thích: Bài viết nêu “The technology’s capacity to reduce information asymmetries…creates conditions for more efficient resource allocation.”
Câu 28: A
- Dạng câu hỏi: Multiple Choice
- Từ khóa: concern, blockchain implementation, developing economies
- Vị trí trong bài: Đoạn 3, dòng 3-6
- Giải thích: Đoạn văn chỉ ra “suppliers may lack the financial capacity or technological infrastructure to participate” và “digital divide could paradoxically undermine sustainability goals by excluding producers.”
Câu 29: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: algorithmic governance, refers to
- Vị trí trong bài: Đoạn 4, dòng 7-8
- Giải thích: Bài viết định nghĩa rõ ràng “algorithmic governance” là “where protocol rules embedded in code effectively determine permissible behaviors.”
Câu 30: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: longitudinal study, impact, blockchain adoption
- Vị trí trong bài: Đoạn 5, dòng 2-3
- Giải thích: Nghiên cứu cho thấy “12-18% reduction in supply chain emissions intensity over a five-year period.”
Câu 31: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: limitation, blockchain’s verification capabilities
- Vị trí trong bài: Đoạn 7, dòng 3-5
- Giải thích: Bài viết nêu “blockchain can ensure that recorded information remains unaltered, but it cannot guarantee that the information was truthful when entered.”
Câu 32: C (Information asymmetries – Differences in knowledge between market participants)
- Dạng câu hỏi: Matching Features
- Vị trí trong bài: Đoạn 2
- Giải thích: Information asymmetries trong kinh tế học đề cập đến sự khác biệt về thông tin giữa các bên tham gia thị trường.
Câu 33: F (Technological hegemony – Dominant firms impose requirements that consolidate their power)
- Dạng câu hỏi: Matching Features
- Vị trí trong bài: Đoạn 3
- Giải thích: Bài viết mô tả “technological hegemony” là khi công ty lớn áp đặt yêu cầu công nghệ để củng cố quyền lực thị trường.
Câu 34: A (Spillover effects – When blockchain adoption by leaders improves sustainability among non-users)
- Dạng câu hỏi: Matching Features
- Vị trí trong bài: Đoạn 5
- Giải thích: Nghiên cứu xác định “spillover effects” là khi việc áp dụng blockchain của các công ty dẫn đầu thúc đẩy cải thiện bền vững ở các công ty không sử dụng công nghệ.
Câu 35: B (Social practice theory – Consumption patterns are based on collective conventions)
- Dạng câu hỏi: Matching Features
- Vị trí trong bài: Đoạn 6
- Giải thích: Bài viết giải thích “Social practice theory suggests that consumption patterns are embedded in collectively held conventions.”
Câu 36: D (Garbage in, garbage out – Blockchain cannot guarantee input data truthfulness)
- Dạng câu hỏi: Matching Features
- Vị trí trong bài: Đoạn 7
- Giải thích: Aphorism “garbage in, garbage out” được sử dụng để chỉ ra rằng blockchain không thể đảm bảo tính chính xác của dữ liệu đầu vào.
Câu 37: Hybrid models
- Dạng câu hỏi: Short-answer Questions
- Từ khóa: models, combine blockchain benefits, traditional governance
- Vị trí trong bài: Đoạn 8, dòng 2
- Giải thích: “Emerging hybrid models that combine blockchain’s transparency benefits with traditional governance mechanisms.”
Câu 38: Civil society organizations
- Dạng câu hỏi: Short-answer Questions
- Từ khóa: govern consortium blockchains, alongside corporations, government
- Vị trí trong bài: Đoạn 8, dòng 3-4
- Giải thích: “Consortium blockchains governed by multi-stakeholder groups—including corporations, civil society organizations, and government representatives.”
Câu 39: Predictive analytics
- Dạng câu hỏi: Short-answer Questions
- Từ khóa: machine learning, integrated with blockchain data, enable
- Vị trí trong bài: Đoạn 8, dòng 6
- Giải thích: “The integration of machine learning techniques with blockchain data could enable predictive analytics.”
Câu 40: Sociotechnical
- Dạng câu hỏi: Short-answer Questions
- Từ khóa: blockchain’s contribution, sustainability, described as, rather than purely technological
- Vị trí trong bài: Đoạn 9, dòng 1
- Giải thích: “Ultimately, blockchain’s contribution to supply chain sustainability should be understood as sociotechnical rather than purely technological.”
5. Từ Vựng Quan Trọng Theo Passage
Passage 1 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| revolutionary | adj | /ˌrevəˈluːʃənəri/ | mang tính cách mạng | blockchain has emerged as a revolutionary tool | revolutionary technology, revolutionary approach |
| distributed ledger | n | /dɪˈstrɪbjuːtɪd ˈledʒər/ | sổ cái phân tán | blockchain is a distributed ledger technology | distributed ledger technology, distributed ledger system |
| immutable | adj | /ɪˈmjuːtəbl/ | không thể thay đổi | makes the records immutable and transparent | immutable records, immutable data |
| traceability | n | /ˌtreɪsəˈbɪləti/ | khả năng truy xuất nguồn gốc | improved traceability through blockchain | supply chain traceability, product traceability |
| sustainability | n | /səˌsteɪnəˈbɪləti/ | tính bền vững | enhancing sustainability practices | environmental sustainability, corporate sustainability |
| environmental impact | n | /ɪnˌvaɪrənˈmentl ˈɪmpækt/ | tác động môi trường | criticized for its environmental impact | reduce environmental impact, assess environmental impact |
| unprecedented | adj | /ʌnˈpresɪdentɪd/ | chưa từng có | unprecedented level of transparency | unprecedented access, unprecedented scale |
| permanently recorded | adj + v | /ˈpɜːmənəntli rɪˈkɔːdɪd/ | được ghi lại vĩnh viễn | each step is permanently recorded | permanently recorded data, permanently recorded information |
| foodborne illnesses | n | /ˈfuːdbɔːn ˈɪlnəsɪz/ | bệnh do thực phẩm | helps prevent foodborne illnesses | prevent foodborne illnesses, reduce foodborne illnesses |
| combat fraud | v | /ˈkɒmbæt frɔːd/ | chống gian lận | plays a crucial role in combating fraud | combat fraud and counterfeiting, combat fraud effectively |
| carbon footprint | n | /ˈkɑːbən ˈfʊtprɪnt/ | dấu chân carbon | involves carbon footprint tracking | reduce carbon footprint, measure carbon footprint |
| initial investment | n | /ɪˈnɪʃl ɪnˈvestmənt/ | đầu tư ban đầu | require significant initial investment | require initial investment, substantial initial investment |
Passage 2 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| transformative potential | n | /trænsˈfɔːmətɪv pəˈtenʃl/ | tiềm năng biến đổi | reveals the transformative potential | transformative potential of technology, realize transformative potential |
| consensus mechanism | n | /kənˈsensəs ˈmekənɪzəm/ | cơ chế đồng thuận | requiring specialized consensus mechanisms | consensus mechanism design, proof-of-stake consensus mechanism |
| carbon-intensive | adj | /ˈkɑːbən ɪnˈtensɪv/ | tốn nhiều carbon | This carbon-intensive approach | carbon-intensive process, carbon-intensive industry |
| smart contracts | n | /smɑːt ˈkɒntræks/ | hợp đồng thông minh | involves smart contracts | execute smart contracts, deploy smart contracts |
| self-regulating system | n | /self ˈreɡjuleɪtɪŋ ˈsɪstəm/ | hệ thống tự điều chỉnh | creating a self-regulating system | implement self-regulating system, develop self-regulating system |
| interoperability | n | /ˌɪntərˌɒpərəˈbɪləti/ | khả năng tương tác | Interoperability remains a challenge | ensure interoperability, achieve interoperability |
| seamlessly integrate | v | /ˈsiːmləsli ˈɪntɪɡreɪt/ | tích hợp liền mạch | can seamlessly integrate with existing systems | seamlessly integrate technology, seamlessly integrate platforms |
| tokenization | n | /ˌtəʊkənaɪˈzeɪʃn/ | mã hóa thành token | The concept of tokenization | asset tokenization, blockchain tokenization |
| transparent marketplace | n | /trænsˈpærənt ˈmɑːkɪtpleɪs/ | thị trường minh bạch | creating a transparent marketplace | establish transparent marketplace, operate transparent marketplace |
| data integrity | n | /ˈdeɪtə ɪnˈteɡrəti/ | tính toàn vẹn dữ liệu | Data integrity and privacy | ensure data integrity, maintain data integrity |
| cryptographic techniques | n | /ˌkrɪptəˈɡræfɪk tekˈniːks/ | kỹ thuật mã hóa | Advanced cryptographic techniques | apply cryptographic techniques, use cryptographic techniques |
| zero-knowledge proofs | n | /ˈzɪərəʊ ˈnɒlɪdʒ pruːfs/ | chứng minh không tiết lộ | such as zero-knowledge proofs | implement zero-knowledge proofs, utilize zero-knowledge proofs |
| scalability | n | /ˌskeɪləˈbɪləti/ | khả năng mở rộng | The scalability of blockchain systems | improve scalability, enhance scalability |
| transaction throughput | n | /trænˈzækʃn ˈθruːpʊt/ | lưu lượng giao dịch | increased transaction throughput | high transaction throughput, improve transaction throughput |
| convergence of technologies | n | /kənˈvɜːdʒəns əv tekˈnɒlədʒiz/ | sự hội tụ công nghệ | This convergence of technologies | technology convergence, digital convergence |
Passage 3 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| paradigmatic shift | n | /ˌpærədɪɡˈmætɪk ʃɪft/ | sự chuyển đổi mô hình | catalyzing a paradigmatic shift | paradigmatic shift in thinking, undergo paradigmatic shift |
| stakeholder engagement | n | /ˈsteɪkhəʊldər ɪnˈɡeɪdʒmənt/ | sự tham gia của các bên liên quan | stakeholder engagement in sustainable development | enhance stakeholder engagement, promote stakeholder engagement |
| information asymmetries | n | /ˌɪnfəˈmeɪʃn əˈsɪmətriz/ | sự bất cân xứng thông tin | reduce information asymmetries | reduce information asymmetries, address information asymmetries |
| market failure | n | /ˈmɑːkɪt ˈfeɪljər/ | thất bại thị trường | source of market failure | lead to market failure, correct market failure |
| greenwashing | n | /ˈɡriːnwɒʃɪŋ/ | tẩy xanh (quảng cáo giả về môi trường) | companies engaging in greenwashing | prevent greenwashing, expose greenwashing |
| competitive advantages | n | /kəmˈpetətɪv ədˈvɑːntɪdʒɪz/ | lợi thế cạnh tranh | gain competitive advantages | sustainable competitive advantages, maintain competitive advantages |
| principal-agent problems | n | /ˈprɪnsəpl ˈeɪdʒənt ˈprɒbləmz/ | vấn đề ủy thác đại diện | addresses the principal-agent problems | resolve principal-agent problems, mitigate principal-agent problems |
| barriers to entry | n | /ˈbæriəz tuː ˈentri/ | rào cản gia nhập | create barriers to entry | lower barriers to entry, reduce barriers to entry |
| digital divide | n | /ˈdɪdʒɪtl dɪˈvaɪd/ | khoảng cách kỹ thuật số | resulting digital divide | bridge digital divide, widen digital divide |
| technological hegemony | n | /ˌteknəˈlɒdʒɪkl hɪˈdʒeməni/ | bá quyền công nghệ | form of technological hegemony | technological hegemony concerns, challenge technological hegemony |
| jurisdictional ambiguity | n | /ˌdʒʊərɪsˈdɪkʃənl æmbɪˈɡjuːəti/ | sự mơ hồ về quyền tài phán | This jurisdictional ambiguity | resolve jurisdictional ambiguity, address jurisdictional ambiguity |
| algorithmic governance | n | /ˌælɡəˈrɪðmɪk ˈɡʌvənəns/ | quản trị thuật toán | emergence of algorithmic governance | algorithmic governance systems, implement algorithmic governance |
| longitudinal study | n | /ˌlɒndʒɪˈtjuːdɪnl ˈstʌdi/ | nghiên cứu dọc | A longitudinal study found | conduct longitudinal study, longitudinal study results |
| spillover effects | n | /ˈspɪləʊvər ɪˈfekts/ | hiệu ứng lan tỏa | identified spillover effects | positive spillover effects, generate spillover effects |
| social practice theory | n | /ˈsəʊʃl ˈpræktɪs ˈθɪəri/ | lý thuyết thực hành xã hội | Social practice theory suggests | apply social practice theory, social practice theory perspective |
| positive feedback loops | n | /ˈpɒzətɪv ˈfiːdbæk luːps/ | vòng phản hồi tích cực | generate positive feedback loops | create positive feedback loops, positive feedback loops mechanism |
| epistemological concerns | n | /ɪˌpɪstəməˈlɒdʒɪkl kənˈsɜːnz/ | mối quan tâm nhận thức luận | raised epistemological concerns | address epistemological concerns, epistemological concerns about |
| garbage in, garbage out | phrase | /ˈɡɑːbɪdʒ ɪn ˈɡɑːbɪdʒ aʊt/ | rác vào, rác ra | The aphorism “garbage in, garbage out” | garbage in garbage out principle, avoid garbage in garbage out |
| sociotechnical | adj | /ˌsəʊsiəʊˈteknɪkl/ | xã hội-kỹ thuật | should be understood as sociotechnical | sociotechnical systems, sociotechnical approach |
Kết Bài
Chủ đề “How blockchain is enhancing sustainability in supply chains” không chỉ phản ánh xu hướng công nghệ hiện đại mà còn là một trong những topic xuất hiện ngày càng nhiều trong các đề thi IELTS Reading gần đây. Qua đề thi mẫu hoàn chỉnh này, bạn đã được thực hành với ba passages có độ khó tăng dần từ Easy đến Hard, hoàn toàn phù hợp với cấu trúc thi thật.
Đề thi cung cấp đầy đủ 40 câu hỏi với bảy dạng khác nhau, giúp bạn làm quen với mọi format câu hỏi có thể gặp trong kỳ thi. Passage 1 giới thiệu các khái niệm cơ bản về blockchain và ứng dụng trong chuỗi cung ứng bền vững với từ vựng dễ tiếp cận. Passage 2 đi sâu vào cơ sở kỹ thuật và các thách thức triển khai, yêu cầu khả năng hiểu sâu hơn. Passage 3 phân tích các tác động kinh tế-xã hội ở mức độ học thuật cao, thách thức người học ở band điểm 7.0 trở lên.
Phần đáp án chi tiết không chỉ cung cấp đáp án đúng mà còn giải thích cặn kẽ vị trí thông tin, kỹ thuật paraphrase và logic suy luận, giúp bạn tự đánh giá và rút kinh nghiệm hiệu quả. Bộ từ vựng được phân loại theo từng passage với đầy đủ phiên âm, nghĩa và collocation sẽ là tài liệu quý giá để bạn nâng cao vốn từ chuyên ngành.
Hãy thực hành đề thi này trong điều kiện mô phỏng thi thật, tuân thủ thời gian quy định cho từng passage. Sau khi hoàn thành, đối chiếu đáp án cẩn thận và phân tích kỹ những câu sai để hiểu rõ nguyên nhân. Việc luyện tập thường xuyên với các đề thi chất lượng như thế này sẽ giúp bạn tự tin hơn và đạt được band điểm mục tiêu trong kỳ thi IELTS Reading sắp tới.