Mở bài
Trong bối cảnh cuộc cách mạng công nghệ 4.0 đang diễn ra mạnh mẽ, chủ đề “The Impact Of Automation On Service Industries” (Tác động của tự động hóa đến ngành dịch vụ) đã trở thành một trong những đề tài xuất hiện thường xuyên trong kỳ thi IELTS Reading. Với tần suất lặp lại cao trong các đề thi từ năm 2018 đến nay, chủ đề này không chỉ phản ánh xu hướng phát triển của xã hội mà còn đòi hỏi người học có kiến thức nền tảng về công nghệ, kinh tế và xã hội học.
Bài viết này cung cấp một bộ đề thi IELTS Reading hoàn chỉnh với 3 passages được thiết kế theo đúng chuẩn Cambridge IELTS, từ mức độ Easy đến Hard. Bạn sẽ được trải nghiệm đầy đủ các dạng câu hỏi phổ biến nhất như Multiple Choice, True/False/Not Given, Matching Headings, và Summary Completion. Mỗi passage đi kèm với 13-14 câu hỏi, đáp án chi tiết có giải thích cụ thể, cùng bảng từ vựng chuyên ngành giúp bạn nắm vững kiến thức và kỹ năng làm bài.
Đề thi này phù hợp cho học viên từ band 5.0 trở lên, đặc biệt hữu ích cho những ai đang nhắm đến band điểm 7.0-8.0 trong phần Reading.
Hướng dẫn làm bài IELTS Reading
Tổng Quan Về IELTS Reading Test
IELTS Reading Test là một phần thi quan trọng đánh giá khả năng đọc hiểu tiếng Anh học thuật của bạn. Bài thi bao gồm:
- Thời gian: 60 phút cho 3 passages (không có thời gian phụ để chép đáp án)
- Tổng số câu hỏi: 40 câu
- Phân bổ thời gian khuyến nghị:
- Passage 1: 15-17 phút (độ khó thấp nhất)
- Passage 2: 18-20 phút (độ khó trung bình)
- Passage 3: 23-25 phút (độ khó cao nhất)
Mỗi câu trả lời đúng được 1 điểm. Band score cuối cùng được quy đổi từ số câu đúng theo bảng chuyển đổi chuẩn của IELTS.
Các Dạng Câu Hỏi Trong Đề Này
Đề thi mẫu này bao gồm 7 dạng câu hỏi phổ biến nhất:
- Multiple Choice – Câu hỏi trắc nghiệm nhiều lựa chọn
- True/False/Not Given – Xác định tính đúng sai của thông tin
- Matching Information – Nối thông tin với đoạn văn tương ứng
- Matching Headings – Nối tiêu đề với đoạn văn
- Summary Completion – Hoàn thành đoạn tóm tắt
- Matching Features – Nối đặc điểm với danh mục
- Short-answer Questions – Câu hỏi ngắn yêu cầu trả lời cụ thể
IELTS Reading Practice Test
PASSAGE 1 – Automation Transforms Customer Service
Độ khó: Easy (Band 5.0-6.5)
Thời gian đề xuất: 15-17 phút
The service sector has undergone a remarkable transformation in recent years, largely driven by advances in automation technology. From self-service kiosks at airports to chatbots handling customer inquiries, automation is reshaping how businesses interact with their customers. This shift represents not just a technological upgrade but a fundamental change in the operational model of service industries worldwide.
In the hospitality industry, automation has made significant inroads. Hotels now offer mobile check-in systems that allow guests to bypass the traditional reception desk entirely. Using a smartphone app, travelers can select their room, receive a digital key, and head straight to their accommodation. This technology not only reduces waiting times but also allows hotels to operate with smaller front-desk teams during off-peak hours. The Hilton hotel chain, for instance, reported that 60% of their guests now prefer digital check-in options, a figure that has doubled since 2018.
Restaurants and cafes have similarly embraced automation. Many establishments now feature tablet-based ordering systems at tables, eliminating the need for servers to take orders manually. Customers can browse the menu at their own pace, customize their meals, and even pay the bill without waiting for staff assistance. Some restaurants have gone further by introducing robotic servers that deliver food from the kitchen to tables. While these robots cannot replace the interpersonal warmth of human servers, they excel at repetitive tasks and can work continuously without breaks.
The banking sector provides perhaps the most visible example of automation’s impact. Traditional bank branches, once bustling with customers conducting routine transactions, have seen dramatic decreases in foot traffic. Automated teller machines (ATMs) have been around for decades, but the latest generation offers far more sophisticated services. Modern ATMs can process loan applications, sell insurance products, and even conduct video conferences with human advisors. Meanwhile, mobile banking apps allow customers to perform virtually any banking operation from their phones, from transferring money to applying for mortgages. A 2022 study found that 73% of banking customers in developed countries now use mobile apps as their primary banking channel.
In retail environments, automation has transformed the shopping experience. Self-checkout lanes, once viewed with skepticism by consumers, are now commonplace in supermarkets and department stores. These systems use barcode scanners and weight sensors to process purchases with minimal human intervention. Amazon has taken this concept further with its “Just Walk Out” technology, which uses computer vision and sensor fusion to automatically detect what items customers take from shelves. Shoppers simply enter the store, select their products, and leave – the system automatically charges their account, eliminating checkout lines entirely.
The transportation sector demonstrates how automation can enhance both efficiency and safety. Ride-sharing companies like Uber and Lyft use sophisticated algorithms to match drivers with passengers, calculate optimal routes, and adjust prices based on demand. Meanwhile, autonomous vehicles are being tested in pilot programs worldwide. Though fully self-driving taxis remain several years away from widespread adoption, the technology promises to reduce labor costs significantly while potentially improving road safety.
However, automation in service industries is not without challenges and limitations. Many customers, particularly older demographics, prefer human interaction and find automated systems confusing or impersonal. A survey conducted across European markets revealed that 45% of respondents over 65 feel frustrated when forced to use self-service technology. Additionally, automated systems can struggle with complex or unusual requests that fall outside their programming. When a hotel booking goes wrong or a restaurant order has special dietary requirements, human judgment and flexibility remain essential.
Technical failures also pose significant risks. When automated systems malfunction, they can disrupt service delivery entirely. In 2021, a software glitch at a major airline caused check-in kiosks to fail across multiple airports, resulting in long queues and flight delays. Such incidents highlight the importance of maintaining human staff as backup and ensuring robust technical support systems.
Despite these challenges, the trend toward automation in service industries shows no signs of slowing. Industry analysts predict that by 2030, routine customer interactions in most service sectors will be predominantly automated, with human employees focusing on complex problem-solving and relationship building. This evolution will require workers to develop new skills and adapt to roles that emphasize creativity, empathy, and critical thinking – qualities that remain difficult for machines to replicate.
Questions 1-5
Choose the correct letter, A, B, C, or D.
-
According to the passage, what percentage of Hilton guests now prefer digital check-in?
A. 30%
B. 45%
C. 60%
D. 73% -
The primary advantage of tablet-based ordering systems in restaurants is that they:
A. completely replace human servers
B. allow customers to control their dining pace
C. cook food more efficiently
D. reduce food costs -
Modern ATMs differ from traditional ones because they:
A. only dispense cash
B. are located in more convenient places
C. can offer more complex financial services
D. require less maintenance -
What does the passage say about Amazon’s “Just Walk Out” technology?
A. It has replaced all traditional checkout systems
B. It uses visual technology to track purchases
C. It requires customers to scan items manually
D. It only works in small stores -
According to the survey mentioned, what percentage of people over 65 find self-service technology frustrating?
A. 30%
B. 45%
C. 60%
D. 73%
Questions 6-10
Do the following statements agree with the information given in the passage?
Write:
- TRUE if the statement agrees with the information
- FALSE if the statement contradicts the information
- NOT GIVEN if there is no information on this
-
Hotels that use mobile check-in can reduce their front-desk staff during quiet periods.
-
Robotic servers in restaurants are better than humans at providing emotional connection with customers.
-
The majority of banking customers in developed nations prefer using mobile apps over visiting branches.
-
Self-checkout systems in retail stores use only barcode scanning technology.
-
Fully autonomous taxis are already widely available in most major cities.
Questions 11-13
Complete the sentences below.
Choose NO MORE THAN TWO WORDS from the passage for each answer.
-
When automated hotel booking systems encounter problems, __ and flexibility are still necessary.
-
In 2021, a __ at an airline caused check-in kiosks to stop working.
-
By 2030, human employees in service industries will likely focus on tasks requiring __ and relationship building.
Tự động hóa trong ngành dịch vụ khách sạn với hệ thống check-in di động và robot phục vụ
PASSAGE 2 – The Economic Implications of Service Automation
Độ khó: Medium (Band 6.0-7.5)
Thời gian đề xuất: 18-20 phút
The rapid proliferation of automation technologies across service industries has sparked intense debate among economists, policymakers, and business leaders regarding its broader economic ramifications. While proponents emphasize efficiency gains and cost reductions, critics warn of potential job displacement and widening inequality. Understanding these complex dynamics requires examining both the immediate impacts and longer-term structural changes that automation brings to service economies.
A. Productivity and Profitability
From a business perspective, automation in service industries offers compelling financial incentives. Companies implementing automated systems typically report substantial productivity improvements – McKinsey research indicates that automation can increase productivity by 20-40% in customer service operations. This enhanced efficiency translates directly into reduced operational costs. A call center employing chatbots can handle exponentially more inquiries than one relying solely on human agents, with chatbots capable of managing thousands of simultaneous conversations at a fraction of the cost. Similarly, automated inventory management systems in retail can optimize stock levels with greater precision than manual approaches, minimizing both overstocking and stockouts.
The profit margins achieved through automation can be substantial. Self-service kiosks in fast-food restaurants, for instance, reduce labor costs while simultaneously increasing average transaction values – studies show customers ordering through kiosks spend 15-30% more than those ordering from human cashiers, possibly due to reduced social pressure and more time to browse menu options. These economic advantages have accelerated adoption rates, particularly among multinational corporations seeking competitive edges in saturated markets.
B. Labor Market Disruption
However, these productivity gains come with significant social costs. The most immediate concern is employment displacement. Research from Oxford University estimates that 47% of jobs in developed economies face high risk of automation within the next two decades, with service sector positions particularly vulnerable. Roles involving routine cognitive tasks – such as data entry, basic customer service, and transaction processing – are especially susceptible to technological substitution.
The impact varies considerably across different demographic groups. Workers with lower educational attainment typically occupy positions most amenable to automation, raising concerns about exacerbated inequality. A bank teller requiring only a high school diploma faces greater displacement risk than a financial advisor with professional qualifications. This stratification could intensify existing socioeconomic divides, as displaced workers may lack the skills to transition into emerging roles that require advanced technical or interpersonal capabilities.
Moreover, the geographical distribution of automation’s impact is uneven. Urban centers with diverse economic bases may absorb displaced workers more easily than smaller communities heavily dependent on specific service industries. A town whose economy revolves around a large call center faces devastating consequences if that facility closes due to automation, whereas a major city offers more alternative employment opportunities.
C. The Skill Premium and Wage Polarization
Automation contributes to a phenomenon economists call wage polarization – the simultaneous growth of high-wage and low-wage employment, with middle-income jobs declining. As routine service jobs disappear, labor demand bifurcates into two categories: highly-skilled positions requiring creativity, complex problem-solving, or advanced technical knowledge, and low-skilled jobs involving non-routine manual tasks difficult to automate, such as cleaning or personal care.
This creates a skill premium, where workers with specialized expertise command increasingly high salaries while those without face stagnant or declining wages. The gap between a software engineer designing automation systems and a retail worker displaced by them continues to widen. Data from the United States shows that while wages for college-educated workers in technical fields have risen 15% since 2010, wages for workers with only high school education have barely kept pace with inflation.
D. Consumer Welfare Considerations
The economic impact of automation extends to consumers, who generally benefit from lower prices and improved convenience. Automated services can operate 24/7, providing accessibility that human-staffed operations cannot match economically. Banking apps allow transactions at midnight; automated customer service handles inquiries during holidays. This temporal flexibility represents genuine value for consumers managing busy schedules.
Price reductions resulting from lower operating costs can make services more accessible to broader populations. Discount airlines using automated booking and check-in systems offer fares that would be impossible with traditional full-service models. Similarly, robo-advisors provide basic investment management services at fees far below those of human financial planners, democratizing access to wealth management tools previously available only to affluent clients.
However, these benefits distribute unevenly across consumer segments. Digital automation favors those comfortable with technology while potentially marginalizing elderly or less technologically literate populations. The closure of bank branches in favor of digital services may save money for most customers but creates hardship for elderly individuals who struggle with mobile apps and prefer face-to-face assistance.
E. Macroeconomic Implications
At the macro level, widespread automation in service industries raises fundamental questions about economic structure. If automation significantly reduces labor demand, aggregate consumption could decline as unemployed or underemployed workers have less disposable income. This creates a potential paradox – businesses automate to reduce costs, but if too many businesses do so simultaneously, they may collectively undermine the consumer spending that drives demand for their services.
Some economists advocate for policy interventions to address these challenges, including universal basic income, enhanced social safety nets, or tax structures that incentivize employment over automation. Others argue that historical precedents suggest technological displacement is temporary – past industrial revolutions eventually created more jobs than they destroyed, albeit requiring transition periods and workforce reskilling. The service automation revolution may follow similar patterns, though the pace and scale of current changes exceed previous transformations.
Questions 14-19
The passage has five sections, A-E. Which section contains the following information?
Write the correct letter, A-E.
-
Discussion of how automation affects different age groups of consumers
-
Information about the percentage of jobs at risk from automation
-
Examples of how customers spend more money with automated systems
-
Explanation of why certain geographical areas suffer more from automation
-
Mention of potential government responses to automation challenges
-
Data comparing wage growth between different education levels
Questions 20-23
Choose FOUR letters, A-H.
Which FOUR of the following are mentioned in the passage as benefits of automation in service industries?
A. Reduced environmental impact
B. Higher productivity levels
C. Improved service availability times
D. Better workplace safety
E. Lower consumer prices
F. Increased employee satisfaction
G. More accurate inventory control
H. Enhanced data security
Questions 24-26
Complete the summary below.
Choose NO MORE THAN TWO WORDS from the passage for each answer.
Automation creates a pattern called (24) __, where middle-income jobs decrease while both high-wage and low-wage positions increase. This happens because routine jobs disappear, but positions requiring (25) __ or technical knowledge remain in demand, as do jobs involving non-routine manual work. As a result, there is a growing (26) __ between highly-skilled workers who earn more and less-educated workers whose wages remain flat.
PASSAGE 3 – Reconceptualizing Service: The Human Element in an Automated Age
Độ khó: Hard (Band 7.0-9.0)
Thời gian đề xuất: 23-25 phút
The discourse surrounding automation in service industries has predominantly centered on technological capabilities and economic metrics, yet this instrumental framing obscures more fundamental questions about the ontological nature of service itself. As algorithmic systems and artificial intelligence increasingly mediate interactions traditionally characterized by human reciprocity, scholars across disciplines are reconceptualizing what constitutes service and interrogating whether certain intrinsic qualities resist technological replication. This theoretical reconsideration has profound implications not merely for business strategy but for our understanding of social relations, emotional labor, and the phenomenology of human experience in late-stage capitalism.
Classical economic theory conceptualizes service as intangible output characterized by simultaneity of production and consumption, heterogeneity, perishability, and inseparability from the service provider – the so-called IHIP characteristics. However, automation problematizes these definitional boundaries. When an AI-powered chatbot resolves a customer inquiry, the inseparability criterion becomes ambiguous: the service is delivered by code executing on servers potentially thousands of miles from the customer, yet the interaction occurs in real-time. Similarly, automation’s capacity for standardization challenges the heterogeneity assumption – each automated interaction can be qualitatively identical, unlike human services which vary based on the provider’s idiosyncratic characteristics and affective state.
This taxonomic disruption has prompted scholars like Stephen Vargo and Robert Lusch to propose service-dominant logic as an alternative framework, positioning service not as a category of output but as the fundamental basis of exchange – the application of competencies (knowledge and skills) for the benefit of another party. Under this conceptualization, goods themselves are merely distribution mechanisms for service. Automation, then, represents not the elimination of service but its embedding within technological artifacts. A self-driving vehicle still provides transportation service; it merely encapsulates that service within an automated system rather than delivering it through a human driver. This framework suggests continuity rather than rupture, though it arguably underplays the qualitative differences that concern critics.
Those differences center primarily on what sociologist Arlie Hochschild termed “emotional labor” – the management of feelings to create publicly observable facial and bodily displays. In service encounters, emotional labor serves instrumental functions (calming an angry customer) but also carries intrinsic value as authentic human connection. A nurse’s compassionate bedside manner does more than facilitate clinical treatment; it provides psychological comfort with therapeutic properties independent of medical intervention. Similarly, a skilled bartender or hairstylist creates ambient intimacy through conversation and attentiveness, transforming transactional exchanges into social rituals that fulfill human needs for recognition and belonging.
Automation’s limitations regarding emotional labor remain substantial despite advances in affective computing – systems designed to recognize and respond to human emotions. While AI can detect vocal stress patterns or analyze facial expressions, generating contextually appropriate empathetic responses requires nuanced understanding of cultural codes, biographical particulars, and interpersonal dynamics that exceed current computational capabilities. Moreover, even technically adequate automated empathy may fail phenomenologically – research in human-computer interaction demonstrates that users respond differently to identical words depending on whether they believe the source is human or machine, suggesting that authenticity itself constitutes a crucial variable. The ontological status of the empathizer matters, not merely the behavioral manifestation of empathy.
This authenticity imperative connects to broader philosophical debates about artificial intelligence and consciousness. If, as philosopher John Searle argues in his Chinese Room thought experiment, syntactic processing of symbols (which computers perform) differs fundamentally from semantic understanding (which humans possess), then automated systems might simulate service interactions without genuinely comprehending them. A chatbot can be programmed to respond “I understand how frustrating that must be” without possessing any phenomenal experience of frustration – its “understanding” is merely pattern-matching against training data. Whether this philosophical distinction matters pragmatically depends on one’s theoretical commitments: functionalists would argue that behaviorally indistinguishable outputs are equivalent regardless of underlying mechanisms, while phenomenologists insist that subjective experience constitutes an irreducible dimension of human service encounters.
The co-production aspect of service further complicates automation dynamics. Service scholars emphasize that service value emerges through collaborative processes involving both provider and recipient. A personal trainer doesn’t simply prescribe exercises; they motivate, adjust techniques based on observed struggles, and build rapport that enhances client commitment. Medical diagnosis exemplifies this dialogic quality – physicians integrate biomedical knowledge with patient narratives, using clinical judgment to navigate ambiguous symptoms and competing treatment priorities. Algorithmic diagnosis, while potentially more accurate for pattern recognition, struggles with the interpretive flexibility required when patients present atypical symptoms or when treatment decisions involve value trade-offs between competing goods (longevity versus quality of life, for instance).
Yet technological determinism – the assumption that technology’s characteristics inevitably dictate social outcomes – should be resisted. How automation impacts service industries depends substantially on implementation choices shaped by regulatory frameworks, labor organizing, consumer preferences, and organizational cultures. The same technology can be deployed to deskill workers and maximize cost-cutting or to augment human capabilities and enhance service quality. Some healthcare systems use AI to handle administrative burdens, freeing physicians to spend more time in meaningful patient interaction; others use it to increase patient loads per doctor, intensifying rather than alleviating time pressures.
Moreover, automation creates opportunities for entirely new service modalities. Telemedicine platforms combine automated triage systems with human consultation, providing access to medical advice in underserved areas. Hybrid models emerge where AI handles routine elements while seamlessly escalating complex cases to human experts. Rather than wholesale substitution, the future likely involves reconfigured divisions of labor where human workers occupy supervisory, exception-handling, and high-touch relationship roles while automation manages repetitive, high-volume transactions. This complementarity approach suggests co-evolution of human and machine capabilities rather than zero-sum competition.
The normative dimensions of these developments warrant emphasis. Decisions about service automation are not merely technical optimizations but reflect implicit values about human dignity, social solidarity, and desirable futures. A society that automates elder care to minimize costs makes different ethical commitments than one investing in human caregivers, regardless of whether automated systems prove functionally adequate. These choices shape not only labor markets but the texture of daily life – the quotidian interactions through which we experience community and construct meaning. As automation advances, we face not simply an economic transition but a cultural inflection point requiring democratic deliberation about the kind of society we wish to inhabit.
Questions 27-31
Choose the correct letter, A, B, C, or D.
-
According to the passage, classical service characteristics (IHIP) are challenged by automation because:
A. automated services cannot be consumed
B. automation makes services more perishable
C. automated services can be standardized and delivered remotely
D. customers prefer human interaction -
Vargo and Lusch’s service-dominant logic suggests that:
A. automation eliminates true service
B. service is the application of competencies for others’ benefit
C. goods are more important than services
D. automation cannot provide real value -
The passage indicates that Arlie Hochschild’s concept of “emotional labor” refers to:
A. any work that causes stress
B. physically demanding service work
C. managing emotions to create public displays
D. labor that requires no technical skill -
According to research mentioned in the passage, users respond differently to empathy depending on:
A. the time of day
B. whether they believe the source is human or machine
C. the language used
D. the cost of the service -
John Searle’s Chinese Room thought experiment suggests that:
A. computers can never process language
B. Chinese is too complex for computers
C. processing symbols differs from genuine understanding
D. all AI will eventually achieve consciousness
Questions 32-36
Do the following statements agree with the claims of the writer in the passage?
Write:
- YES if the statement agrees with the claims of the writer
- NO if the statement contradicts the claims of the writer
- NOT GIVEN if it is impossible to say what the writer thinks about this
-
Affective computing systems can currently generate empathetic responses as nuanced as those of humans.
-
The philosophical difference between syntactic processing and semantic understanding has practical implications for service quality.
-
Co-production in service encounters means that value is created through collaboration between provider and recipient.
-
Technological determinism accurately predicts how automation will impact service industries.
-
Automated elder care systems are currently more effective than human caregivers.
Questions 37-40
Complete each sentence with the correct ending, A-G, below.
-
Healthcare systems that use AI for administrative tasks
-
Hybrid service models where AI handles routine elements
-
The future division of labor in service industries
-
Decisions about automating elder care services
A. reflect ethical values about human dignity and social priorities.
B. will completely eliminate the need for human workers.
C. allow doctors more time for patient interaction.
D. represent complementarity rather than simple substitution.
E. are impossible to implement effectively.
F. demonstrate zero-sum competition between humans and machines.
G. require workers to have medical qualifications.
Tự động hóa trong ngành y tế và chăm sóc sức khỏe với hệ thống AI hỗ trợ bác sĩ
Answer Keys – Đáp Án
PASSAGE 1: Questions 1-13
- C
- B
- C
- B
- B
- TRUE
- FALSE
- TRUE
- FALSE
- FALSE
- human judgment
- software glitch
- complex problem-solving
PASSAGE 2: Questions 14-26
- D
- B
- A
- B
- E
- C
20-23. B, C, E, G (in any order) - wage polarization
- complex problem-solving
- skill premium
PASSAGE 3: Questions 27-40
- C
- B
- C
- B
- C
- NO
- YES
- YES
- NO
- NOT GIVEN
- C
- D
- D
- A
Giải Thích Đáp Án Chi Tiết
Passage 1 – Giải Thích
Câu 1: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: Hilton guests, digital check-in, percentage
- Vị trí trong bài: Đoạn 2, dòng 6-7
- Giải thích: Bài viết nói rõ “The Hilton hotel chain, for instance, reported that 60% of their guests now prefer digital check-in options”. Đây là thông tin trực tiếp không cần paraphrase.
Câu 2: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: tablet-based ordering, primary advantage
- Vị trí trong bài: Đoạn 3, dòng 2-3
- Giải thích: Câu “Customers can browse the menu at their own pace” được paraphrase thành “allow customers to control their dining pace”. Đây là lợi ích chính được nhấn mạnh.
Câu 6: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: mobile check-in, reduce front-desk staff, quiet periods
- Vị trí trong bài: Đoạn 2, dòng 4-5
- Giải thích: Bài viết nói “allows hotels to operate with smaller front-desk teams during off-peak hours”, trong đó “off-peak hours” = “quiet periods” và “smaller teams” = “reduce staff”.
Câu 7: FALSE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: robotic servers, emotional connection
- Vị trí trong bài: Đoạn 3, dòng 6-7
- Giải thích: Bài viết nói rõ “these robots cannot replace the interpersonal warmth of human servers”, mâu thuẫn trực tiếp với câu hỏi.
Câu 11: human judgment
- Dạng câu hỏi: Sentence Completion
- Từ khóa: hotel booking, problems, flexibility
- Vị trí trong bài: Đoạn 7, dòng 4-5
- Giải thích: Câu “human judgment and flexibility remain essential” cung cấp đáp án trực tiếp. Cần chú ý giới hạn “NO MORE THAN TWO WORDS”.
Passage 2 – Giải Thích
Câu 14: D
- Dạng câu hỏi: Matching Information
- Từ khóa: automation, different age groups, consumers
- Vị trí trong bài: Section D, đoạn 3
- Giải thích: Section D thảo luận về “elderly or less technologically literate populations” và cách automation ảnh hưởng khác nhau đến các nhóm người tiêu dùng theo độ tuổi.
Câu 15: B
- Dạng câu hỏi: Matching Information
- Từ khóa: percentage, jobs at risk, automation
- Vị trí trong bài: Section B, đoạn 1
- Giải thích: Section B đề cập “47% of jobs in developed economies face high risk of automation”, đây là dữ liệu phần trăm cụ thể về công việc có nguy cơ bị tự động hóa.
Câu 20-23: B, C, E, G
- Dạng câu hỏi: Multiple Selection
- Giải thích:
- B (Higher productivity): Section A nói “increase productivity by 20-40%”
- C (Service availability): Section D nói “Automated services can operate 24/7”
- E (Lower prices): Section D nói “lower prices” cho người tiêu dùng
- G (Inventory control): Section A nói “optimize stock levels with greater precision”
Câu 24: wage polarization
- Dạng câu hỏi: Summary Completion
- Từ khóa: middle-income jobs decrease
- Vị trí trong bài: Section C, đoạn 1
- Giải thích: Thuật ngữ “wage polarization” được định nghĩa rõ ràng trong đoạn này như một hiện tượng kinh tế cụ thể.
Passage 3 – Giải Thích
Câu 27: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: IHIP characteristics, challenged by automation
- Vị trí trong bài: Đoạn 2, dòng 4-8
- Giải thích: Bài viết giải thích automation làm mờ đi các đặc điểm IHIP vì dịch vụ có thể được chuẩn hóa (standardization challenges heterogeneity) và cung cấp từ xa (inseparability becomes ambiguous).
Câu 32: NO
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: affective computing, empathetic responses, nuanced
- Vị trí trong bài: Đoạn 5, dòng 2-4
- Giải thích: Bài viết nói rõ “generating contextually appropriate empathetic responses requires nuanced understanding…that exceed current computational capabilities”, nghĩa là hiện tại chưa đạt được mức độ tinh tế như con người.
Câu 34: YES
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: co-production, collaboration, provider, recipient
- Vị trí trong bài: Đoạn 7, dòng 1-2
- Giải thích: Bài viết khẳng định “service value emerges through collaborative processes involving both provider and recipient”, hoàn toàn đồng ý với quan điểm trong câu hỏi.
Câu 37: C
- Dạng câu hỏi: Sentence Matching
- Từ khóa: Healthcare systems, AI, administrative tasks
- Vị trí trong bài: Đoạn 8, dòng 4-5
- Giải thích: Bài viết nói “Some healthcare systems use AI to handle administrative burdens, freeing physicians to spend more time in meaningful patient interaction”, khớp chính xác với đáp án C.
Từ Vựng Quan Trọng Theo Passage
Passage 1 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| self-service kiosk | n | /self ˈsɜːvɪs ˈkiːɒsk/ | quầy tự phục vụ | self-service kiosks at airports | automated kiosk, check-in kiosk |
| chatbot | n | /ˈtʃætbɒt/ | robot trò chuyện tự động | chatbots handling customer inquiries | AI-powered chatbot, customer service chatbot |
| operational model | n | /ˌɒpəˈreɪʃənl ˈmɒdl/ | mô hình vận hành | fundamental change in the operational model | business operational model |
| mobile check-in | n | /ˈməʊbaɪl tʃek ɪn/ | check-in qua điện thoại | Hotels now offer mobile check-in systems | digital check-in, online check-in |
| interpersonal warmth | n | /ˌɪntəˈpɜːsənl wɔːmθ/ | sự ấm áp trong giao tiếp | cannot replace the interpersonal warmth | human warmth, personal touch |
| repetitive tasks | n | /rɪˈpetətɪv tɑːsks/ | công việc lặp đi lặp lại | excel at repetitive tasks | routine tasks, mundane tasks |
| automated teller machine | n | /ˈɔːtəmeɪtɪd ˈtelə məˈʃiːn/ | máy rút tiền tự động | ATMs have been around for decades | cash machine, ATM services |
| mobile banking app | n | /ˈməʊbaɪl ˈbæŋkɪŋ æp/ | ứng dụng ngân hàng di động | mobile banking apps allow customers | digital banking, online banking |
| barcode scanner | n | /ˈbɑːkəʊd ˈskænə/ | máy quét mã vạch | use barcode scanners to process purchases | laser scanner, optical scanner |
| computer vision | n | /kəmˈpjuːtə ˈvɪʒn/ | thị giác máy tính | uses computer vision to detect items | AI vision, visual recognition |
| sensor fusion | n | /ˈsensə ˈfjuːʒn/ | tích hợp cảm biến | computer vision and sensor fusion | multi-sensor integration |
| autonomous vehicle | n | /ɔːˈtɒnəməs ˈviːəkl/ | phương tiện tự hành | autonomous vehicles are being tested | self-driving car, driverless vehicle |
Passage 2 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| rapid proliferation | n | /ˈræpɪd prəˌlɪfəˈreɪʃn/ | sự gia tăng nhanh chóng | rapid proliferation of automation | widespread proliferation, technology proliferation |
| economic ramifications | n | /ˌiːkəˈnɒmɪk ˌræmɪfɪˈkeɪʃnz/ | hậu quả kinh tế | broader economic ramifications | social ramifications, far-reaching ramifications |
| job displacement | n | /dʒɒb dɪsˈpleɪsmənt/ | mất việc làm, thay thế lao động | potential job displacement | labor displacement, workforce displacement |
| widening inequality | n | /ˈwaɪdnɪŋ ˌɪnɪˈkwɒləti/ | bất bình đẳng gia tăng | widening inequality concerns | growing inequality, income inequality |
| structural changes | n | /ˈstrʌktʃərəl ˈtʃeɪndʒɪz/ | thay đổi cấu trúc | longer-term structural changes | fundamental changes, systemic changes |
| financial incentives | n | /faɪˈnænʃl ɪnˈsentɪvz/ | ưu đãi tài chính | compelling financial incentives | economic incentives, monetary incentives |
| productivity improvements | n | /ˌprɒdʌkˈtɪvəti ɪmˈpruːvmənts/ | cải thiện năng suất | substantial productivity improvements | efficiency gains, performance improvements |
| simultaneous conversations | n | /ˌsɪmlˈteɪniəs ˌkɒnvəˈseɪʃnz/ | cuộc trò chuyện đồng thời | handle thousands of simultaneous conversations | concurrent interactions, parallel communications |
| profit margins | n | /ˈprɒfɪt ˈmɑːdʒɪnz/ | tỷ suất lợi nhuận | profit margins achieved through automation | operating margins, net margins |
| competitive edges | n | /kəmˈpetətɪv edʒɪz/ | lợi thế cạnh tranh | seeking competitive edges | strategic advantage, market advantage |
| routine cognitive tasks | n | /ruːˈtiːn ˈkɒɡnətɪv tɑːsks/ | công việc tri thức thông thường | roles involving routine cognitive tasks | repetitive mental work, standard procedures |
| technological substitution | n | /ˌteknəˈlɒdʒɪkl ˌsʌbstɪˈtjuːʃn/ | thay thế bằng công nghệ | susceptible to technological substitution | automation replacement, tech displacement |
| socioeconomic divides | n | /ˌsəʊsiəʊˌiːkəˈnɒmɪk dɪˈvaɪdz/ | khoảng cách kinh tế xã hội | intensify socioeconomic divides | social gaps, economic disparities |
| wage polarization | n | /weɪdʒ ˌpəʊləraɪˈzeɪʃn/ | phân cực tiền lương | phenomenon called wage polarization | income polarization, salary divergence |
| skill premium | n | /skɪl ˈpriːmiəm/ | phụ cấp kỹ năng | creates a skill premium | education premium, qualification bonus |
Ảnh hưởng kinh tế của tự động hóa trong ngành dịch vụ đến thị trường lao động
Passage 3 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| ontological nature | n | /ˌɒntəˈlɒdʒɪkl ˈneɪtʃə/ | bản chất sinh tồn | ontological nature of service | fundamental nature, essential being |
| algorithmic systems | n | /ˌælɡəˈrɪðmɪk ˈsɪstəmz/ | hệ thống thuật toán | algorithmic systems mediate interactions | computational systems, algorithm-driven systems |
| human reciprocity | n | /ˈhjuːmən ˌresɪˈprɒsəti/ | sự trao đổi qua lại giữa người | characterized by human reciprocity | mutual exchange, interpersonal exchange |
| phenomenology | n | /fɪˌnɒmɪˈnɒlədʒi/ | hiện tượng học | phenomenology of human experience | philosophical phenomenology, experiential analysis |
| IHIP characteristics | n | /aɪ eɪtʃ aɪ piː ˌkærəktəˈrɪstɪks/ | đặc điểm IHIP (vô hình, không đồng nhất, dễ hỏng, không tách rời) | so-called IHIP characteristics | service characteristics, defining features |
| taxonomic disruption | n | /ˌtæksəˈnɒmɪk dɪsˈrʌpʃn/ | sự phá vỡ phân loại | taxonomic disruption challenges definitions | categorical disruption, classificatory upheaval |
| service-dominant logic | n | /ˈsɜːvɪs ˈdɒmɪnənt ˈlɒdʒɪk/ | logic chủ đạo về dịch vụ | service-dominant logic as framework | SDL theory, value co-creation logic |
| emotional labor | n | /ɪˈməʊʃənl ˈleɪbə/ | lao động cảm xúc | Arlie Hochschild termed “emotional labor” | affective work, feeling work |
| ambient intimacy | n | /ˈæmbiənt ɪnˈtɪməsi/ | sự thân mật ngầm định | creates ambient intimacy through conversation | background closeness, casual connection |
| affective computing | n | /əˈfektɪv kəmˈpjuːtɪŋ/ | điện toán cảm xúc | advances in affective computing | emotion AI, sentiment computing |
| contextually appropriate | adj | /kənˈtekstʃuəli əˈprəʊpriət/ | phù hợp với ngữ cảnh | contextually appropriate empathetic responses | situationally suitable, context-sensitive |
| phenomenologically | adv | /fɪˌnɒmɪnəˈlɒdʒɪkli/ | về mặt hiện tượng học | fail phenomenologically | experientially, from lived experience |
| authenticity imperative | n | /ˌɔːθenˈtɪsəti ɪmˈperətɪv/ | yêu cầu tính chân thực | authenticity imperative connects to debates | genuineness requirement, realness necessity |
| Chinese Room thought experiment | n | /tʃaɪˈniːz ruːm θɔːt ɪkˈsperɪmənt/ | thí nghiệm tư duy Phòng Trung Quốc | Searle’s Chinese Room thought experiment | philosophical thought experiment |
| syntactic processing | n | /sɪnˈtæktɪk ˈprəʊsesɪŋ/ | xử lý cú pháp | syntactic processing of symbols | grammatical parsing, structural analysis |
| semantic understanding | n | /sɪˈmæntɪk ˌʌndəˈstændɪŋ/ | hiểu nghĩa | differs from semantic understanding | meaning comprehension, conceptual grasp |
| phenomenal experience | n | /fɪˈnɒmɪnl ɪkˈspɪəriəns/ | trải nghiệm hiện tượng | any phenomenal experience of frustration | conscious experience, subjective feeling |
| co-production | n | /kəʊ prəˈdʌkʃn/ | đồng sản xuất | co-production aspect of service | collaborative creation, joint production |
| dialogic quality | n | /ˌdaɪəˈlɒdʒɪk ˈkwɒləti/ | tính chất đối thoại | exemplifies this dialogic quality | conversational nature, interactive character |
| technological determinism | n | /ˌteknəˈlɒdʒɪkl dɪˈtɜːmɪnɪzəm/ | thuyết quyết định công nghệ | technological determinism should be resisted | tech inevitability, technological fatalism |
| normative dimensions | n | /ˈnɔːmətɪv daɪˈmenʃnz/ | chiều hướng chuẩn mực | normative dimensions of developments | ethical aspects, value considerations |
| quotidian interactions | n | /kwɒˈtɪdiən ˌɪntərˈækʃnz/ | tương tác hàng ngày | quotidian interactions shape community | everyday encounters, daily exchanges |
| cultural inflection point | n | /ˈkʌltʃərəl ɪnˈflekʃn pɔɪnt/ | điểm uốn văn hóa | cultural inflection point requiring deliberation | cultural turning point, societal crossroads |
Kết bài
Qua bộ đề thi IELTS Reading mẫu về chủ đề “The impact of automation on service industries”, bạn đã được trải nghiệm một bài thi hoàn chỉnh với cấu trúc và độ khó tăng dần từ band 5.0 đến 9.0. Ba passages đã cung cấp góc nhìn đa chiều về tác động của tự động hóa: từ những thay đổi cơ bản trong các ngành dịch vụ (Passage 1), đến những hệ quả kinh tế phức tạp (Passage 2), và cuối cùng là những vấn đề triết học sâu sắc về bản chất của dịch vụ trong kỷ nguyên tự động hóa (Passage 3).
Bộ đề này không chỉ giúp bạn làm quen với 7 dạng câu hỏi phổ biến trong IELTS Reading mà còn trang bị cho bạn kỹ năng xác định thông tin, phân tích paraphrase, và quản lý thời gian hiệu quả. Phần đáp án chi tiết với giải thích cụ thể về vị trí thông tin và cách paraphrase sẽ giúp bạn hiểu rõ cách giám khảo thiết kế câu hỏi và tránh những lỗi phổ biến.
Hãy nhớ rằng việc luyện tập thường xuyên với các đề thi có độ khó tăng dần là chìa khóa để cải thiện band điểm Reading. Bảng từ vựng chuyên ngành về automation và service industries cũng sẽ hỗ trợ đắc lực không chỉ cho phần Reading mà còn cho Writing Task 2 và Speaking Part 3 khi gặp các chủ đề liên quan đến công nghệ và thị trường lao động.
Chúc bạn ôn tập hiệu quả và đạt được band điểm mong muốn trong kỳ thi IELTS sắp tới. Hãy tiếp tục thực hành với các chủ đề đa dạng khác trên VN.IELTS.NET để nâng cao kỹ năng Reading một cách toàn diện. Một số chủ đề liên quan mà bạn có thể tham khảo bao gồm Effects of automation on job displacement để hiểu sâu hơn về vấn đề mất việc làm do công nghệ, hoặc Impact of artificial intelligence on creative industries để khám phá cách AI ảnh hưởng đến các ngành sáng tạo. Nếu bạn quan tâm đến các giải pháp kinh tế hiện đại, Role of the gig economy in modern employment cung cấp cái nhìn về mô hình việc làm linh hoạt. Để nắm bắt xu hướng công nghệ rộng hơn, đừng bỏ qua The role of technology in enhancing productivity. Cuối cùng, bạn cũng có thể tìm hiểu thêm về các vấn đề môi trường thông qua Top strategies for reducing plastic use để làm phong phú vốn từ vựng và kiến thức nền.