Mở Bài
Chủ đề năng lượng tái tạo và đổi mới công nghệ đã trở thành một trong những chủ đề phổ biến nhất trong kỳ thi IELTS Reading trong những năm gần đây. Với bối cảnh toàn cầu đang chuyển hướng mạnh mẽ sang các nguồn năng lượng sạch, khả năng đọc hiểu và phân tích các bài viết học thuật về lĩnh vực này là kỹ năng thiết yếu không chỉ cho kỳ thi IELTS mà còn cho việc học tập và làm việc trong môi trường quốc tế.
Trong bài viết này, bạn sẽ được trải nghiệm một bộ đề thi IELTS Reading hoàn chỉnh với 3 passages theo đúng chuẩn thi thật, từ mức độ dễ đến khó. Mỗi passage được thiết kế tỉ mỉ để phản ánh chính xác độ khó và phong cách của đề thi Cambridge IELTS thực tế. Bạn sẽ nhận được 40 câu hỏi đa dạng với đầy đủ các dạng bài phổ biến, đáp án chi tiết kèm giải thích cụ thể, và bộ từ vựng quan trọng được phân loại theo từng passage.
Đề thi này phù hợp cho học viên đang hướng tới band điểm từ 5.0 trở lên, với cấu trúc rõ ràng giúp bạn làm quen với áp lực thời gian, rèn luyện kỹ năng skimming, scanning và phân tích thông tin phức tạp – những yếu tố quyết định thành công trong phần thi Reading.
Hướng Dẫn Làm Bài IELTS Reading
Tổng Quan Về IELTS Reading Test
IELTS Reading Test kéo dài 60 phút với 3 passages và tổng cộng 40 câu hỏi. Điểm quan trọng là bạn phải hoàn thành cả 3 passages trong thời gian này, bao gồm cả việc chuyển đáp án vào answer sheet. Không có thời gian bổ sung cho việc chuyển đáp án như trong phần Listening.
Phân bổ thời gian khuyến nghị:
- Passage 1 (Easy): 15-17 phút – Đây là passage dễ nhất, bạn nên tận dụng để ghi điểm tối đa
- Passage 2 (Medium): 18-20 phút – Độ khó tăng lên, cần đọc kỹ hơn và paraphrase nhiều
- Passage 3 (Hard): 23-25 phút – Passage khó nhất với từ vựng học thuật và cấu trúc phức tạp
Mỗi câu trả lời đúng được 1 điểm, không có điểm âm cho câu sai. Điều này có nghĩa bạn nên trả lời tất cả các câu hỏi, ngay cả khi phải đoán.
Các Dạng Câu Hỏi Trong Đề Này
Đề thi mẫu này bao gồm 7 dạng câu hỏi phổ biến nhất:
- Multiple Choice – Chọn đáp án đúng trong số các phương án cho trước
- True/False/Not Given – Xác định thông tin đúng, sai hay không được đề cập
- Yes/No/Not Given – Xác định ý kiến của tác giả đồng ý, không đồng ý hay không đề cập
- Matching Headings – Nối tiêu đề phù hợp với các đoạn văn
- Summary Completion – Hoàn thành đoạn tóm tắt bằng từ trong bài
- Matching Features – Nối thông tin với các đối tượng được đề cập
- Short-answer Questions – Trả lời ngắn gọn các câu hỏi
Mỗi dạng câu hỏi yêu cầu một kỹ năng và chiến lược khác nhau, vì vậy việc luyện tập đa dạng là rất quan trọng.
IELTS Reading Practice Test
PASSAGE 1 – The Dawn of a Clean Energy Revolution
Độ khó: Easy (Band 5.0-6.5)
Thời gian đề xuất: 15-17 phút
The global energy landscape is undergoing a transformation unlike anything seen since the Industrial Revolution. Renewable energy sources such as solar, wind, and hydroelectric power are no longer considered alternative or experimental options. Instead, they have become mainstream solutions to the world’s growing energy demands and environmental challenges. This shift is not merely about replacing fossil fuels; it represents a fundamental change in how humanity generates, distributes, and consumes energy.
The transition to renewable energy has proven to be a powerful catalyst for technological innovation across multiple sectors. Between 2010 and 2020, the cost of solar photovoltaic (PV) panels decreased by approximately 90%, making solar energy economically competitive with traditional fossil fuel sources in many regions. This dramatic price reduction was achieved through continuous improvements in manufacturing processes, materials science, and economies of scale. Similarly, wind turbine technology has advanced significantly, with modern turbines producing more than 200 times the electricity of their counterparts from the 1980s.
Energy storage has emerged as one of the most critical areas of innovation driven by the renewable energy sector. Unlike fossil fuel power plants that can generate electricity on demand, solar and wind energy are intermittent sources – they only produce power when the sun shines or the wind blows. This inherent characteristic has created an urgent need for efficient battery systems that can store excess energy during peak production times and release it when needed. The result has been a surge in battery technology development, particularly lithium-ion batteries, which have seen their costs fall by nearly 97% since 1991.
The smart grid revolution represents another area where renewable energy has driven technological advancement. Traditional electrical grids were designed as one-way systems, with power flowing from large centralized power plants to consumers. However, renewable energy systems often involve distributed generation, where thousands of small producers – from individual homes with rooftop solar panels to community wind farms – feed electricity into the network. This complexity requires sophisticated digital systems to manage energy flows, balance supply and demand in real-time, and maintain grid stability. As a result, innovations in artificial intelligence, data analytics, and communication technologies have been accelerated to meet these challenges.
The transportation sector illustrates how renewable energy has spurred innovation beyond electricity generation itself. The push for sustainable transport has led to remarkable advances in electric vehicle (EV) technology. Modern electric cars now offer ranges exceeding 400 kilometers on a single charge, with some models reaching over 600 kilometers. Charging infrastructure has expanded rapidly, and new ultra-fast charging technologies can now replenish 80% of a battery’s capacity in less than 30 minutes. These developments were driven by the availability of clean electricity from renewable sources, making electric vehicles a genuinely sustainable alternative to petrol and diesel cars.
Materials science has also benefited enormously from the renewable energy push. The quest for more efficient solar panels has led to innovations in semiconductor materials, including perovskite solar cells that promise even higher efficiency rates than traditional silicon-based panels. Wind turbine manufacturers have developed advanced composite materials that allow for longer, lighter, and stronger turbine blades, capable of capturing more energy from the wind. These material innovations often find applications in other industries, from aerospace to construction, demonstrating the spillover effects of renewable energy research.
The digitalization of energy systems has been accelerated by renewable energy adoption. Smart meters, energy management systems, and mobile applications allow consumers to monitor their energy consumption in real-time, encouraging more efficient usage patterns. These technologies also enable demand response programs, where consumers can automatically reduce their electricity use during peak periods in exchange for lower rates. This consumer engagement was rarely possible with traditional energy systems and represents a paradigm shift in how people interact with energy services.
Perhaps most significantly, the renewable energy sector has created entirely new industries and economic opportunities. The International Renewable Energy Agency (IRENA) reports that the renewable energy sector employed approximately 12 million people worldwide in 2020, a number that continues to grow rapidly. These jobs span from manufacturing and installation to research and development, maintenance, and system integration. Many regions that were previously economically dependent on fossil fuel industries are now successfully transitioning to become renewable energy hubs, demonstrating the economic resilience that comes with technological innovation.
Minh họa cuộc cách mạng năng lượng tái tạo thúc đẩy đổi mới công nghệ toàn cầu
Questions 1-6
Do the following statements agree with the information given in Reading Passage 1?
Write:
- TRUE if the statement agrees with the information
- FALSE if the statement contradicts the information
- NOT GIVEN if there is no information on this
- Renewable energy is still considered an experimental option by most countries.
- The cost of solar photovoltaic panels decreased by 90% between 2010 and 2020.
- Modern wind turbines generate more than 200 times the electricity of turbines from the 1980s.
- Solar and wind energy can produce power continuously regardless of weather conditions.
- Traditional electrical grids were designed to handle two-way power flows.
- The renewable energy sector employed 12 million people worldwide in 2020.
Questions 7-10
Complete the sentences below.
Choose NO MORE THAN THREE WORDS from the passage for each answer.
- Energy storage has become critical because solar and wind are __ that only produce power under certain conditions.
- The renewable energy sector has required __ to manage the complexity of distributed generation systems.
- Modern electric vehicles can now travel over 400 kilometers on a __.
- Smart meters and energy management systems enable __ where consumers reduce electricity use during busy periods.
Questions 11-13
Choose the correct letter, A, B, C or D.
-
According to the passage, what has been the main driver for battery technology development?
- A) The need for electric vehicles
- B) The intermittent nature of renewable energy sources
- C) Government regulations
- D) Consumer demand for portable devices
-
What does the passage suggest about material innovations from renewable energy research?
- A) They are only useful in the energy sector
- B) They have limited applications
- C) They benefit other industries as well
- D) They are too expensive for widespread use
-
The passage indicates that regions dependent on fossil fuels are:
- A) Refusing to adopt renewable energy
- B) Struggling economically
- C) Successfully transitioning to renewable energy hubs
- D) Requiring international financial assistance
PASSAGE 2 – Renewable Energy as a Driver of Innovation Ecosystems
Độ khó: Medium (Band 6.0-7.5)
Thời gian đề xuất: 18-20 phút
The relationship between renewable energy and technological innovation extends far beyond the energy sector itself, creating what researchers call “innovation ecosystems” – complex networks of interconnected technological advancements, policy frameworks, business models, and social changes that reinforce and amplify each other. Understanding this ecosystem approach is crucial for appreciating how renewable energy acts as a catalyst for broader economic transformation.
One of the most compelling examples of this ecosystem effect is the convergence of renewable energy with information and communication technologies (ICT). The integration has given rise to the concept of “prosumers” – consumers who also produce energy. This transformation has been made possible by the combination of affordable rooftop solar panels, smart inverters, battery storage systems, and sophisticated software platforms that allow households to generate, store, consume, and even sell electricity back to the grid. The German Energiewende (energy transition) provides a notable case study: by 2020, over 1.7 million small-scale renewable energy installations had been deployed across the country, with many homeowners using mobile applications to optimize their energy production and consumption patterns in real-time.
This decentralization of energy production has necessitated entirely new regulatory frameworks and market structures. Traditional energy markets were designed for unidirectional flows from large producers to passive consumers, with prices set through relatively simple supply-demand mechanisms. However, when millions of distributed producers enter the market, each with varying levels of production and consumption at different times, the market becomes exponentially more complex. This complexity has driven innovation in blockchain technology, peer-to-peer trading platforms, and algorithmic pricing systems. For instance, the Brooklyn Microgrid project in New York enables neighbors to buy and sell solar energy directly to each other using blockchain technology, bypassing traditional utility companies entirely.
The manufacturing sector has also experienced profound innovation driven by renewable energy demands. The production of solar panels, wind turbines, and batteries requires precision engineering at scales previously uncommon in energy equipment manufacturing. Solar cell production, for example, demands cleanroom environments comparable to semiconductor manufacturing, with contamination levels measured in parts per billion. This requirement has led to innovations in manufacturing automation, quality control systems, and materials handling. German and Chinese manufacturers have developed fully automated production lines where robots handle every step from raw silicon processing to panel assembly, achieving both higher quality consistency and lower production costs.
Materials science represents perhaps the most scientifically intensive area of innovation spurred by renewable energy. The quest for higher-efficiency solar cells has led researchers to explore exotic materials and novel physical phenomena. Perovskite solar cells, which have achieved laboratory efficiencies exceeding 25% in less than a decade of research, exemplify this accelerated innovation cycle. These cells use crystalline structures that can be manufactured at lower temperatures and on flexible substrates, potentially opening up applications impossible with traditional silicon panels, such as solar-generating windows or flexible solar fabric for clothing. The speed of advancement in this field has been remarkable – it took silicon solar cells over 60 years to reach similar efficiency levels.
Wind energy has driven equally impressive material innovations, particularly in composite materials. Modern wind turbine blades can exceed 80 meters in length and must withstand extreme mechanical stresses while remaining as light as possible. Meeting these requirements has led to the development of advanced fiber-reinforced composites using carbon fiber, glass fiber, and novel resins. Interestingly, these materials and manufacturing techniques are now being adopted by the automotive and aerospace industries, creating a cross-sectoral transfer of innovation. Boeing’s 787 Dreamliner, for instance, uses composite manufacturing techniques originally developed for wind turbine production.
The financial sector has evolved significantly in response to renewable energy’s rise, developing new instruments and approaches to capital allocation. Traditional project finance models used for power plant development often proved inadequate for renewable energy projects, which have different risk profiles – high upfront costs but low operating expenses, and performance that depends on weather patterns rather than fuel availability. This has led to innovations such as green bonds, yieldcos, power purchase agreements (PPAs), and sophisticated weather derivatives. The green bond market, which barely existed before 2007, reached over $500 billion in cumulative issuance by 2021, creating an entirely new asset class for investors.
The educational and research ecosystem surrounding renewable energy has expanded dramatically, creating feedback loops that further accelerate innovation. Universities worldwide have established specialized programs in renewable energy engineering, energy policy, and sustainability science. The number of scientific publications related to renewable energy technologies increased by over 600% between 2000 and 2020, according to bibliometric analyses. This research intensity has created a virtuous cycle: more research leads to better technologies, which attract more investment, which funds more research. Collaborative networks between universities, research institutions, and industry partners have become increasingly sophisticated, with many countries establishing renewable energy research clusters that bring together diverse expertise.
Perhaps most intriguingly, the renewable energy transition has driven innovation in social technologies – the organizational and social practices that enable technological adoption. Community energy projects, where local groups collectively own and operate renewable energy installations, have emerged as important innovation spaces. These projects often experiment with participatory decision-making processes, benefit-sharing mechanisms, and engagement strategies that differ markedly from traditional top-down energy infrastructure development. Denmark’s cooperative wind farms, which pioneered this approach in the 1970s, have now inspired similar models across Europe, Africa, and Asia.
Sơ đồ hệ sinh thái đổi mới công nghệ được thúc đẩy bởi năng lượng tái tạo
Questions 14-18
Choose the correct letter, A, B, C or D.
-
According to the passage, what is an “innovation ecosystem”?
- A) A single technology that creates change
- B) A network of interconnected advancements and changes
- C) A government policy promoting innovation
- D) A type of renewable energy technology
-
The term “prosumers” refers to people who:
- A) Only consume energy from the grid
- B) Produce energy professionally
- C) Both produce and consume energy
- D) Sell energy to utility companies
-
What challenge did traditional energy markets face with renewable energy?
- A) Lack of electricity supply
- B) Too few consumers
- C) Managing millions of distributed producers
- D) High electricity prices
-
Perovskite solar cells are significant because they:
- A) Reached 25% efficiency much faster than silicon cells
- B) Are cheaper than all other solar technologies
- C) Can only be used in laboratories
- D) Have been in development for 60 years
-
According to the passage, green bonds:
- A) Existed widely before 2007
- B) Reached $500 billion in cumulative issuance by 2021
- C) Are not attractive to investors
- D) Are only used for fossil fuel projects
Questions 19-23
Complete the summary below.
Choose NO MORE THAN TWO WORDS from the passage for each answer.
The renewable energy sector has driven innovation across multiple areas. In Germany, the energy transition has resulted in over 1.7 million small-scale installations, with homeowners using (19) __ to manage their energy in real-time. The Brooklyn Microgrid project uses (20) __ to enable direct energy trading between neighbors. In manufacturing, solar cell production requires (21) __ similar to those used in semiconductor manufacturing. Wind turbine blade development has led to innovations in (22) __ using carbon and glass fiber. The financial sector has developed new instruments including (23) __, which reached over $500 billion in cumulative issuance by 2021.
Questions 24-26
Do the following statements agree with the claims of the writer in Reading Passage 2?
Write:
- YES if the statement agrees with the claims of the writer
- NO if the statement contradicts the claims of the writer
- NOT GIVEN if it is impossible to say what the writer thinks about this
- Traditional project finance models were perfectly suitable for renewable energy projects.
- Scientific publications on renewable energy increased by over 600% between 2000 and 2020.
- Community energy projects are less efficient than traditional energy infrastructure development.
PASSAGE 3 – The Systemic Impact of Renewable Energy on Innovation Paradigms
Độ khó: Hard (Band 7.0-9.0)
Thời gian đề xuất: 23-25 phút
The ascendancy of renewable energy as a dominant force in global energy systems represents not merely a technological substitution but rather a fundamental restructuring of innovation processes themselves. This transformation challenges long-established paradigms of centralized, capital-intensive infrastructure development and introduces a new model characterized by modularity, distributed intelligence, and rapid iterative improvement. Understanding these systemic implications requires moving beyond simplistic narratives of technological progress to examine how renewable energy reconfigures the very mechanisms through which innovation occurs and diffuses throughout the economy.
The concept of “general purpose technologies” (GPTs) provides a valuable analytical framework for understanding renewable energy’s far-reaching impact. Economic historians identify GPTs as technologies that are pervasive, inherently improvable, and capable of spawning complementary innovations across multiple sectors. While electricity itself has long been recognized as a GPT, the transition to renewable energy sources creates what might be termed a “second-order GPT effect”. The decentralized, modular nature of solar and wind energy, combined with their integration with digital technologies, generates innovation opportunities that were structurally impossible with centralized fossil fuel systems. This represents a qualitative shift rather than simply a quantitative improvement.
The modularity inherent in renewable energy technologies fundamentally alters the innovation landscape. A conventional natural gas power plant represents a highly integrated, site-specific system where components are custom-engineered for particular installations. In contrast, solar photovoltaic systems consist of standardized modules that can be configured in virtually infinite combinations, from a single panel on a remote telecommunications tower to multi-gigawatt solar farms. This architectural flexibility creates what innovation theorists call “option value” – the ability to experiment, adapt, and reconfigure systems with relatively low switching costs. The implications are profound: innovation can occur at the component level without requiring wholesale system redesign, dramatically accelerating the pace of improvement and adaptation.
This modularity has also democratized the innovation process in unprecedented ways. The barriers to entry for contributing to renewable energy innovation are substantially lower than for conventional energy technologies. A small startup with a novel solar cell design or an improved inverter algorithm can potentially impact the industry without possessing the enormous capital resources required to build and test fossil fuel power plants or nuclear reactors. This has led to a proliferation of innovation actors – from established multinational corporations to university research labs, venture-backed startups, and even individual inventors. The resulting ecosystem exhibits characteristics of what complexity scientists term “distributed innovation”, where incremental improvements across thousands of independent actors collectively generate transformative change.
The integration of renewable energy with digital technologies creates feedback mechanisms that further intensify innovation dynamics. Sensors, artificial intelligence, and machine learning enable continuous optimization of renewable energy systems in ways impossible with conventional generation. Wind farms now use sophisticated algorithms that adjust individual turbine positions in real-time based on wind conditions, weather forecasts, and the performance of neighboring turbines, increasing overall energy capture by 10-20%. These optimization systems generate vast amounts of performance data, which in turn train more sophisticated algorithms, creating a self-reinforcing cycle of improvement. This represents what organizational theorists term “learning-by-using” – a mode of innovation that emerges from operational experience rather than formal research and development.
The economic characteristics of renewable energy also reshape innovation incentives and pathways. Once installed, solar and wind facilities have essentially zero marginal cost of production – the fuel is free, and operating expenses are minimal. This creates fundamentally different competitive dynamics than in conventional energy markets, where fuel costs represent a substantial portion of electricity prices. The result is what economists call a “race to zero” – intense competitive pressure to reduce upfront installation costs through continuous innovation. This differs markedly from fossil fuel technologies, where innovation often focused on incremental efficiency improvements to reduce ongoing fuel consumption. The renewable energy innovation trajectory thus emphasizes manufacturing efficiency, materials science, and installation logistics – domains where improvement curves can be remarkably steep.
However, the renewable energy transition also presents innovation challenges that differ qualitatively from those encountered with previous energy transitions. The intermittency of solar and wind resources creates system-level complexity that cannot be resolved through component-level innovation alone. Grid stability, frequency regulation, and voltage control – functions historically performed by the rotational inertia of large synchronous generators – must be reconceptualized for systems dominated by inverter-based renewable resources. This requires what engineering scholars call “architectural innovation” – changes in how system components interact even if the components themselves remain largely unchanged. The development of grid-forming inverters, virtual synchronous machines, and synthetic inertia represents this type of systemic innovation, drawing on power electronics, control theory, and computational algorithms.
The policy environment surrounding renewable energy has itself become a site of innovation, with governments and regulatory bodies experimenting with novel mechanisms to accelerate deployment while managing system transitions. Feed-in tariffs, renewable portfolio standards, contracts for difference, capacity markets, and carbon pricing schemes represent diverse policy innovations aimed at overcoming the market failures and incumbent advantages that slow energy transitions. Interestingly, many of these policy innovations exhibit learning effects similar to those observed in physical technologies – successive policy iterations become more sophisticated, better targeted, and more cost-effective as policymakers accumulate experience. Germany’s Renewable Energy Act has undergone numerous revisions since its introduction in 2000, each iteration incorporating lessons from previous implementations and adjusting mechanisms to address emerging challenges.
The social dimensions of innovation in renewable energy deserve particular attention, as they reveal how technological transitions reshape social practices, institutions, and power relationships. The rise of community energy, energy cooperatives, and citizen science projects around renewable energy represents what sociologists call “social innovation” – novel organizational forms and practices that challenge established norms. These initiatives often serve as “niche spaces” where alternative configurations of technology, ownership, and governance can develop relatively protected from mainstream market pressures. Some innovations emerging from these niches – such as participatory planning processes or local benefit-sharing schemes – may eventually influence mainstream energy governance, though this translation process is often contested and incomplete.
The geopolitical implications of renewable energy-driven innovation are profound and still unfolding. The fossil fuel era created specific patterns of international interdependence, with energy security depending on access to geographically concentrated oil and gas reserves. Renewable energy potentially reconfigures these relationships, as solar and wind resources are more evenly distributed globally. However, the manufacturing of renewable energy equipment has its own geography, currently dominated by China, which controls substantial portions of the solar panel, wind turbine, and battery supply chains. This has sparked what some analysts call a “cleantech race” – strategic competition among nations to develop domestic innovation capabilities and manufacturing capacity in renewable energy technologies. The innovation dynamics of this competition differ from previous technological contests, as the technologies are inherently replicable and much of the relevant knowledge is publicly available, shifting competition towards manufacturing excellence, supply chain control, and application innovation rather than foundational technology development.
Minh họa tác động hệ thống của năng lượng tái tạo lên các mô hình đổi mới công nghệ toàn cầu
Questions 27-31
Choose the correct letter, A, B, C or D.
-
According to the passage, renewable energy represents:
- A) A simple technological replacement
- B) A fundamental restructuring of innovation processes
- C) An incremental improvement in energy generation
- D) A temporary solution to energy problems
-
The concept of “general purpose technologies” (GPTs) refers to technologies that:
- A) Are used only in the energy sector
- B) Have limited applications
- C) Are pervasive, improvable, and spawn complementary innovations
- D) Cannot be improved over time
-
What does the passage suggest about modularity in renewable energy?
- A) It makes systems more complicated
- B) It slows down innovation
- C) It increases switching costs
- D) It allows innovation at component level without system redesign
-
According to the passage, the zero marginal cost of renewable energy production creates:
- A) Higher electricity prices
- B) Pressure to reduce upfront installation costs
- C) Less competitive markets
- D) Increased fuel consumption focus
-
The term “architectural innovation” in the passage refers to:
- A) Changes in building design
- B) New component technologies
- C) Changes in how system components interact
- D) Innovations in solar panel manufacturing
Questions 32-36
Complete each sentence with the correct ending, A-H, below.
- The modularity of renewable energy creates
- Small startups can impact the renewable energy industry because
- Wind farms using AI and machine learning demonstrate
- Community energy projects serve as
- China’s dominance in renewable manufacturing has sparked
Possible endings:
A) a self-reinforcing cycle of improvement through learning-by-using.
B) niche spaces where alternative configurations can develop.
C) barriers to entry are substantially lower than for conventional energy.
D) strategic competition among nations for innovation capabilities.
E) option value through the ability to experiment with low switching costs.
F) challenges that cannot be resolved through policy alone.
G) resistance from fossil fuel industries.
H) complete energy independence for all countries.
Questions 37-40
Do the following statements agree with the claims of the writer in Reading Passage 3?
Write:
- YES if the statement agrees with the claims of the writer
- NO if the statement contradicts the claims of the writer
- NOT GIVEN if it is impossible to say what the writer thinks about this
- Conventional natural gas power plants offer more architectural flexibility than solar photovoltaic systems.
- Germany’s Renewable Energy Act has been revised multiple times since 2000 to incorporate lessons learned.
- Renewable energy will completely eliminate international energy interdependence within the next decade.
- The cleantech race focuses on manufacturing excellence and supply chain control rather than just foundational technology development.
Answer Keys – Đáp Án
PASSAGE 1: Questions 1-13
- FALSE
- TRUE
- TRUE
- FALSE
- FALSE
- TRUE
- intermittent sources
- sophisticated digital systems
- single charge
- demand response programs
- B
- C
- C
PASSAGE 2: Questions 14-26
- B
- C
- C
- A
- B
- mobile applications
- blockchain technology
- cleanroom environments
- composite materials
- green bonds
- NO
- YES
- NOT GIVEN
PASSAGE 3: Questions 27-40
- B
- C
- D
- B
- C
- E
- C
- A
- B
- D
- NO
- YES
- NOT GIVEN
- YES
Giải Thích Đáp Án Chi Tiết
Passage 1 – Giải Thích
Câu 1: FALSE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: renewable energy, experimental option
- Vị trí trong bài: Đoạn 1, dòng 2-3
- Giải thích: Câu hỏi nói năng lượng tái tạo “still considered experimental” (vẫn được coi là thử nghiệm). Tuy nhiên, bài đọc khẳng định rõ ràng “they have become mainstream solutions” (chúng đã trở thành giải pháp chủ đạo), điều này trái ngược hoàn toàn với “experimental option” nên đáp án là FALSE.
Câu 2: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: cost, solar photovoltaic panels, 90%, 2010-2020
- Vị trí trong bài: Đoạn 2, dòng 3-4
- Giải thích: Bài viết nêu rõ “Between 2010 and 2020, the cost of solar photovoltaic (PV) panels decreased by approximately 90%”, hoàn toàn khớp với thông tin trong câu hỏi.
Câu 4: FALSE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: solar and wind energy, produce power continuously
- Vị trí trong bài: Đoạn 3, dòng 2-3
- Giải thích: Câu hỏi nói năng lượng mặt trời và gió có thể sản xuất điện liên tục “regardless of weather conditions” (bất kể điều kiện thời tiết). Tuy nhiên, bài viết nêu rõ chúng là “intermittent sources – they only produce power when the sun shines or the wind blows” (nguồn gián đoạn – chỉ sản xuất điện khi có nắng hoặc gió), mâu thuẫn trực tiếp với câu hỏi.
Câu 7: intermittent sources
- Dạng câu hỏi: Sentence Completion
- Từ khóa: energy storage, solar and wind
- Vị trí trong bài: Đoạn 3, dòng 2-3
- Giải thích: Bài viết nêu “solar and wind energy are intermittent sources – they only produce power when the sun shines or the wind blows”. Câu hỏi cần điền vào chỗ trống về đặc điểm của năng lượng mặt trời và gió, đáp án chính xác là “intermittent sources”.
Câu 11: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: main driver, battery technology development
- Vị trí trong bài: Đoạn 3
- Giải thích: Đoạn 3 giải thích rõ ràng rằng sự gián đoạn của năng lượng tái tạo đã tạo ra “an urgent need for efficient battery systems” và dẫn đến “a surge in battery technology development”. Đáp án B “The intermittent nature of renewable energy sources” là chính xác.
Câu 12: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: material innovations, renewable energy research
- Vị trí trong bài: Đoạn 6, dòng cuối
- Giải thích: Bài viết nêu rõ “These material innovations often find applications in other industries, from aerospace to construction, demonstrating the spillover effects”, tức là các đổi mới vật liệu cũng có lợi cho các ngành công nghiệp khác. Đáp án C là chính xác.
Passage 2 – Giải Thích
Câu 14: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: innovation ecosystem, definition
- Vị trí trong bài: Đoạn 1, dòng 1-3
- Giải thích: Đoạn đầu tiên định nghĩa “innovation ecosystems” là “complex networks of interconnected technological advancements, policy frameworks, business models, and social changes that reinforce and amplify each other”. Đáp án B “A network of interconnected advancements and changes” là tóm tắt chính xác nhất.
Câu 17: A
- Dạng câu hỏi: Multiple Choice
- Từ khóa: perovskite solar cells, significance
- Vị trí trong bài: Đoạn 5
- Giải thích: Bài viết nêu “Perovskite solar cells… have achieved laboratory efficiencies exceeding 25% in less than a decade of research” và so sánh “it took silicon solar cells over 60 years to reach similar efficiency levels”. Điều này cho thấy perovskite đạt hiệu suất 25% nhanh hơn nhiều so với silicon. Đáp án A là chính xác.
Câu 19: mobile applications
- Dạng câu hỏi: Summary Completion
- Từ khóa: Germany, homeowners, manage energy
- Vị trí trong bài: Đoạn 2, dòng cuối
- Giải thích: Bài viết nêu “many homeowners using mobile applications to optimize their energy production and consumption patterns in real-time”. Đáp án là “mobile applications”.
Câu 24: NO
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: traditional project finance models, suitable
- Vị trí trong bài: Đoạn 7, dòng 1-2
- Giải thích: Bài viết nêu rõ “Traditional project finance models used for power plant development often proved inadequate for renewable energy projects” (các mô hình tài chính dự án truyền thống thường không phù hợp cho các dự án năng lượng tái tạo). Câu hỏi nói chúng “perfectly suitable” (hoàn toàn phù hợp), điều này mâu thuẫn với quan điểm của tác giả. Đáp án là NO.
Passage 3 – Giải Thích
Câu 27: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: renewable energy represents
- Vị trí trong bài: Đoạn 1, dòng 1-2
- Giải thích: Câu đầu tiên của passage nêu rõ renewable energy “represents not merely a technological substitution but rather a fundamental restructuring of innovation processes themselves”. Đáp án B “A fundamental restructuring of innovation processes” là chính xác.
Câu 29: D
- Dạng câu hỏi: Multiple Choice
- Từ khóa: modularity, renewable energy
- Vị trí trong bài: Đoạn 3
- Giải thích: Đoạn 3 giải thích “innovation can occur at the component level without requiring wholesale system redesign, dramatically accelerating the pace of improvement”. Đáp án D trùng khớp với ý này.
Câu 32: E
- Dạng câu hỏi: Matching Sentence Endings
- Từ khóa: modularity, creates
- Vị trí trong bài: Đoạn 3
- Giải thích: Đoạn 3 nêu “This architectural flexibility creates what innovation theorists call ‘option value’ – the ability to experiment, adapt, and reconfigure systems with relatively low switching costs”. Đáp án E “option value through the ability to experiment with low switching costs” khớp chính xác.
Câu 37: NO
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: conventional natural gas power plants, architectural flexibility, solar photovoltaic
- Vị trí trong bài: Đoạn 3, dòng 1-4
- Giải thích: Bài viết nêu rõ “A conventional natural gas power plant represents a highly integrated, site-specific system” trong khi “solar photovoltaic systems consist of standardized modules that can be configured in virtually infinite combinations”. Điều này cho thấy hệ thống solar có tính linh hoạt cao hơn, ngược lại với câu hỏi. Đáp án là NO.
Câu 38: YES
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: Germany’s Renewable Energy Act, revised, 2000
- Vị trí trong bài: Đoạn 8, dòng cuối
- Giải thích: Bài viết nêu rõ “Germany’s Renewable Energy Act has undergone numerous revisions since its introduction in 2000, each iteration incorporating lessons from previous implementations”. Đáp án là YES.
Từ Vựng Quan Trọng Theo Passage
Passage 1 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| transformation | n | /ˌtrænsfəˈmeɪʃn/ | sự chuyển đổi, biến đổi | The global energy landscape is undergoing a transformation | undergo a transformation, complete transformation |
| mainstream | adj | /ˈmeɪnstriːm/ | chủ đạo, phổ biến | They have become mainstream solutions | mainstream solution, mainstream adoption |
| catalyst | n | /ˈkætəlɪst/ | chất xúc tác, động lực thúc đẩy | A powerful catalyst for technological innovation | act as a catalyst, catalyst for change |
| intermittent | adj | /ˌɪntəˈmɪtənt/ | gián đoạn, không liên tục | Solar and wind energy are intermittent sources | intermittent sources, intermittent supply |
| sophisticated | adj | /səˈfɪstɪkeɪtɪd/ | tinh vi, phức tạp | Sophisticated digital systems to manage energy flows | sophisticated systems, sophisticated technology |
| distributed | adj | /dɪˈstrɪbjuːtɪd/ | phân tán, phân bổ | Distributed generation from many small producers | distributed generation, distributed network |
| spillover | n | /ˈspɪləʊvə/ | tác động lan tỏa | Spillover effects of renewable energy research | spillover effects, technological spillover |
| paradigm shift | n | /ˈpærədaɪm ʃɪft/ | thay đổi mô hình tư duy | Represents a paradigm shift in energy interaction | paradigm shift, major paradigm shift |
| resilience | n | /rɪˈzɪliəns/ | khả năng phục hồi, tính bền vững | Economic resilience from technological innovation | economic resilience, build resilience |
| spur | v | /spɜː/ | thúc đẩy, khuyến khích | Renewable energy has spurred innovation | spur innovation, spur growth |
| advent | n | /ˈædvent/ | sự ra đời, xuất hiện | The advent of renewable energy | advent of technology, with the advent of |
| capacity | n | /kəˈpæsəti/ | năng lực, dung lượng | Replenish 80% of battery’s capacity | battery capacity, production capacity |
Passage 2 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| ecosystem | n | /ˈiːkəʊsɪstəm/ | hệ sinh thái | Innovation ecosystems in renewable energy | innovation ecosystem, business ecosystem |
| convergence | n | /kənˈvɜːdʒəns/ | sự hội tụ, giao thoa | Convergence of renewable energy with ICT | technological convergence, convergence of ideas |
| prosumer | n | /prəʊˈsjuːmə/ | người vừa sản xuất vừa tiêu dùng | The concept of prosumers in energy | energy prosumer, prosumer model |
| decentralization | n | /diːˌsentrəlaɪˈzeɪʃn/ | sự phân quyền, phi tập trung | Decentralization of energy production | energy decentralization, decentralization process |
| precision | n | /prɪˈsɪʒn/ | độ chính xác | Precision engineering at unprecedented scales | precision engineering, with precision |
| exotic | adj | /ɪɡˈzɒtɪk/ | kỳ lạ, độc đáo | Explore exotic materials for solar cells | exotic materials, exotic technology |
| composite | n/adj | /ˈkɒmpəzɪt/ | vật liệu tổng hợp | Advanced composite materials for turbine blades | composite materials, composite structure |
| cross-sectoral | adj | /krɒs-ˈsektərəl/ | liên ngành | Cross-sectoral transfer of innovation | cross-sectoral collaboration, cross-sectoral impact |
| cumulative | adj | /ˈkjuːmjələtɪv/ | tích lũy, cộng dồn | Over $500 billion in cumulative issuance | cumulative effect, cumulative total |
| virtuous cycle | n | /ˈvɜːtʃuəs ˈsaɪkl/ | vòng lặp tích cực | Creating a virtuous cycle of research | virtuous cycle, enter a virtuous cycle |
| participatory | adj | /pɑːˈtɪsɪpətəri/ | có sự tham gia | Participatory decision-making processes | participatory approach, participatory model |
| pioneered | v | /ˌpaɪəˈnɪəd/ | tiên phong, đi đầu | Denmark’s cooperative wind farms pioneered this | pioneer an approach, pioneered the technology |
| algorithm | n | /ˈælɡərɪðəm/ | thuật toán | Algorithmic pricing systems | sophisticated algorithm, algorithm development |
| contamination | n | /kənˌtæmɪˈneɪʃn/ | sự nhiễm bẩn | Contamination levels measured in parts per billion | contamination level, prevent contamination |
| bibliometric | adj | /ˌbɪbliəʊˈmetrɪk/ | thuộc về đo lường xuất bản khoa học | According to bibliometric analyses | bibliometric analysis, bibliometric study |
Passage 3 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| ascendancy | n | /əˈsendənsi/ | sự vươn lên, chiếm ưu thế | The ascendancy of renewable energy | rise to ascendancy, gain ascendancy |
| paradigm | n | /ˈpærədaɪm/ | mô hình, khuôn mẫu | Challenges long-established paradigms | shift paradigm, new paradigm |
| modularity | n | /ˌmɒdjuˈlærəti/ | tính mô-đun hóa | The modularity inherent in renewable energy | system modularity, modularity benefits |
| diffuse | v | /dɪˈfjuːz/ | lan tỏa, phát tán | How innovation diffuses throughout the economy | diffuse innovation, diffuse knowledge |
| pervasive | adj | /pəˈveɪsɪv/ | lan rộng, thấm nhuần | Technologies that are pervasive | pervasive technology, pervasive influence |
| spawn | v | /spɔːn/ | sinh ra, tạo ra | Capable of spawning complementary innovations | spawn innovation, spawn new ideas |
| qualitative | adj | /ˈkwɒlɪtətɪv/ | thuộc về chất lượng | A qualitative shift rather than quantitative | qualitative change, qualitative analysis |
| architectural | adj | /ˌɑːkɪˈtektʃərəl/ | thuộc về kiến trúc (hệ thống) | Architectural innovation in system design | architectural innovation, architectural flexibility |
| proliferation | n | /prəˌlɪfəˈreɪʃn/ | sự gia tăng nhanh | A proliferation of innovation actors | proliferation of technology, rapid proliferation |
| intermittency | n | /ˌɪntəˈmɪtənsi/ | tính gián đoạn | The intermittency of solar and wind resources | intermittency problem, address intermittency |
| rotational inertia | n | /rəʊˈteɪʃənl ɪˈnɜːʃə/ | quán tính quay | Rotational inertia of large generators | provide rotational inertia, system inertia |
| incumbent | n/adj | /ɪnˈkʌmbənt/ | vị trí hiện tại, đương nhiệm | Incumbent advantages that slow transitions | incumbent industry, incumbent technology |
| geopolitical | adj | /ˌdʒiːəʊpəˈlɪtɪkl/ | thuộc về địa chính trị | Geopolitical implications of renewable energy | geopolitical implications, geopolitical shift |
| replicable | adj | /ˈreplɪkəbl/ | có thể sao chép | Technologies are inherently replicable | easily replicable, replicable model |
| reconceptualize | v | /ˌriːkənˈseptʃuəlaɪz/ | tái khái niệm hóa | Must be reconceptualized for renewable systems | reconceptualize approach, reconceptualize the problem |
| feedback mechanism | n | /ˈfiːdbæk ˈmekənɪzəm/ | cơ chế phản hồi | Creates feedback mechanisms that intensify innovation | positive feedback mechanism, feedback loop |
| economies of scale | n | /ɪˈkɒnəmiz əv skeɪl/ | hiệu quả theo quy mô | Achieved through economies of scale | achieve economies of scale, benefit from economies of scale |
| deployment | n | /dɪˈplɔɪmənt/ | triển khai, phát triển | Accelerate deployment of renewable energy | technology deployment, rapid deployment |
Kết Bài
Chủ đề “The Role Of Renewable Energy In Driving Technological Innovation” không chỉ phổ biến trong kỳ thi IELTS Reading mà còn phản ánh một trong những xu hướng quan trọng nhất của thế kỷ 21. Qua ba passages với độ khó tăng dần, bạn đã được tiếp cận với nhiều góc độ khác nhau về cách năng lượng tái tạo thúc đẩy đổi mới công nghệ – từ những thay đổi cơ bản trong công nghệ và kinh tế, đến các hệ sinh thái đổi mới phức tạp, và cuối cùng là những tác động mang tính hệ thống sâu rộng.
Đề thi mẫu này đã cung cấp đầy đủ 40 câu hỏi với 7 dạng bài khác nhau, giúp bạn làm quen với format thi thật và rèn luyện các kỹ năng cần thiết như skimming để nắm ý chính, scanning để tìm thông tin cụ thể, và đọc chi tiết để phân tích. Phần đáp án chi tiết không chỉ cung cấp câu trả lời mà còn giải thích rõ ràng vị trí thông tin, cách paraphrase, và lý do tại sao các đáp án khác không chính xác – những yếu tố quan trọng giúp bạn học hỏi từ mỗi câu hỏi.
Bộ từ vựng được phân loại theo từng passage cung cấp hơn 40 từ và cụm từ quan trọng với nghĩa, phiên âm, ví dụ và collocation. Đây là những từ vựng học thuật thường xuyên xuất hiện trong IELTS Reading, đặc biệt ở các chủ đề liên quan đến công nghệ, môi trường và phát triển bền vững. Việc nắm vững các từ này sẽ giúp bạn tự tin hơn không chỉ trong phần Reading mà còn trong Writing Task 2 khi viết về các chủ đề tương tự.
Hãy nhớ rằng, thành công trong IELTS Reading không chỉ đến từ kiến thức ngôn ngữ mà còn từ chiến lược làm bài hiệu quả và khả năng quản lý thời gian. Luyện tập thường xuyên với các đề thi mẫu chất lượng như thế này sẽ giúp bạn dần dần cải thiện tốc độ đọc, độ chính xác và sự tự tin – ba yếu tố quyết định band điểm cao trong kỳ thi IELTS.