IELTS Reading: Vai trò của năng lượng tái tạo trong giảm phát thải công nghiệp – Đề thi mẫu có đáp án chi tiết

Mở bài

Chủ đề năng lượng tái tạo và tác động của nó đến phát thải công nghiệp là một trong những đề tài xuất hiện thường xuyên trong bài thi IELTS Reading. Với xu hướng toàn cầu hóa và sự quan tâm ngày càng tăng về biến đổi khí hậu, các bài đọc liên quan đến năng lượng sạch, giảm phát thải và chuyển đổi công nghiệp xanh đã trở thành nội dung phổ biến trong các đề thi IELTS thực tế.

Bài viết này cung cấp một bộ đề thi IELTS Reading hoàn chỉnh với ba passages theo đúng chuẩn Cambridge, tăng dần về độ khó từ Easy đến Hard. Bạn sẽ được thực hành với đầy đủ 40 câu hỏi thuộc nhiều dạng khác nhau như Multiple Choice, True/False/Not Given, Matching Headings, và Summary Completion. Mỗi câu hỏi đều có đáp án chính xác kèm giải thích chi tiết giúp bạn hiểu rõ phương pháp làm bài và cách paraphrase thông tin.

Đề thi này phù hợp cho học viên từ band 5.0 trở lên, giúp bạn làm quen với cấu trúc bài thi thực tế, nâng cao kỹ năng đọc hiểu học thuật và tích lũy vốn từ vựng chuyên ngành về môi trường và năng lượng. Hãy dành đúng 60 phút để hoàn thành toàn bộ ba passages như trong kỳ thi thật.

1. Hướng dẫn làm bài IELTS Reading

Tổng Quan Về IELTS Reading Test

Bài thi IELTS Reading bao gồm 3 passages với tổng cộng 40 câu hỏi cần hoàn thành trong vòng 60 phút. Không có thời gian bổ sung để chép đáp án sang phiếu trả lời, vì vậy bạn cần quản lý thời gian chặt chẽ ngay từ đầu.

Phân bổ thời gian khuyến nghị:

  • Passage 1 (Easy): 15-17 phút cho 13 câu hỏi
  • Passage 2 (Medium): 18-20 phút cho 13 câu hỏi
  • Passage 3 (Hard): 23-25 phút cho 14 câu hỏi

Lưu ý rằng độ khó tăng dần qua mỗi passage, vì vậy đừng dành quá nhiều thời gian cho phần đầu. Hãy đọc kỹ instructions của mỗi dạng câu hỏi để tránh mất điểm oan.

Các Dạng Câu Hỏi Trong Đề Này

Đề thi mẫu này bao gồm đầy đủ các dạng câu hỏi phổ biến nhất trong IELTS Reading:

  1. Multiple Choice – Câu hỏi trắc nghiệm nhiều lựa chọn
  2. True/False/Not Given – Xác định thông tin đúng, sai hay không được đề cập
  3. Summary Completion – Hoàn thành đoạn tóm tắt với từ cho sẵn
  4. Matching Headings – Nối tiêu đề phù hợp với đoạn văn
  5. Yes/No/Not Given – Xác định ý kiến tác giả
  6. Sentence Completion – Hoàn thành câu với từ trong bài
  7. Matching Features – Nối thông tin với đặc điểm tương ứng

2. IELTS Reading Practice Test

PASSAGE 1 – The Rise of Solar Power in Manufacturing

Độ khó: Easy (Band 5.0-6.5)

Thời gian đề xuất: 15-17 phút

The integration of renewable energy sources into industrial operations has become one of the most significant trends in modern manufacturing. Among various forms of clean energy, solar power has emerged as a particularly attractive option for factories and production facilities worldwide. This shift represents not only an environmental imperative but also an increasingly economically viable strategy for businesses seeking to reduce their operational costs.

Solar panel technology has advanced dramatically over the past two decades. The efficiency rates of photovoltaic cells have improved from around 15% in the early 2000s to over 22% in current commercial models, with some experimental designs achieving even higher rates. This improvement means that factories can generate more electricity from the same roof space, making solar installation more practical even for facilities with limited area. Additionally, the cost of solar panels has decreased by approximately 90% since 2010, removing one of the major barriers to adoption that existed previously.

Manufacturing plants are particularly well-suited for solar energy adoption due to several factors. First, factories typically have large, flat rooftops that provide ideal surfaces for solar panel installation. A medium-sized manufacturing facility might have 50,000 square feet of roof space, which could accommodate a solar array capable of generating 500-750 kilowatts of power. Second, industrial operations consume electricity during daylight hours when solar generation is at its peak, creating a natural alignment between energy production and demand. This synchronization eliminates many of the storage challenges that affect residential solar systems.

The environmental benefits of industrial solar adoption extend far beyond the immediate reduction in electricity consumption from fossil fuel sources. When a factory switches to solar power, it directly reduces its carbon footprint by eliminating emissions associated with grid electricity, which in many regions still comes predominantly from coal or natural gas plants. A typical 500-kilowatt solar installation can prevent approximately 600 tons of carbon dioxide emissions annually, equivalent to removing 130 gasoline-powered vehicles from the road for one year.

However, the transition to solar power in manufacturing is not without challenges. Initial capital investment remains substantial, with a commercial solar installation costing between $1,000 and $1,500 per kilowatt of capacity. For a medium-sized facility, this could mean an upfront expenditure of $500,000 to $750,000. Although government incentives, tax credits, and the long-term savings on electricity bills typically result in a payback period of 6-8 years, many companies struggle to allocate such significant funds, particularly smaller manufacturers operating on tight margins.

Energy storage represents another technical hurdle. While industrial operations align well with solar generation during normal business hours, factories that run multiple shifts or operate 24/7 must still draw power from the grid during evening and nighttime hours. Battery storage systems that could provide power during these periods remain expensive, though costs are declining. Some facilities have addressed this by implementing hybrid systems that combine solar generation with traditional grid power, optimizing the use of renewable energy while maintaining reliable operations.

Despite these obstacles, adoption rates continue to climb. Industry analysts predict that by 2030, approximately 30% of manufacturing facilities in developed nations will have significant solar capacity installed. This growth is driven not only by environmental concerns but also by corporate sustainability commitments and increasing pressure from consumers who favor products manufactured with clean energy. Major corporations have begun requiring their suppliers to demonstrate progress toward renewable energy targets, creating a ripple effect throughout manufacturing supply chains.

The success stories are compelling. A textile factory in California installed a 1.2-megawatt solar array in 2019 and reported annual electricity cost savings of $180,000, with the system expected to pay for itself within seven years. An automotive parts manufacturer in Germany reduced its carbon emissions by 45% after transitioning to solar-powered operations, while simultaneously cutting its energy expenses by one-third. These examples demonstrate that environmental responsibility and economic benefit can align when it comes to renewable energy adoption in industry.

Nhà máy sản xuất với hệ thống pin mặt trời công suất lớn trên mái nhàNhà máy sản xuất với hệ thống pin mặt trời công suất lớn trên mái nhà

Questions 1-13

Questions 1-5: Multiple Choice

Choose the correct letter, A, B, C, or D.

1. According to the passage, current commercial solar panels have an efficiency rate of:
A. 15%
B. Over 22%
C. 90%
D. 500-750 kilowatts

2. What is mentioned as a major advantage of factories for solar installation?
A. They operate only during daytime
B. They have large, flat rooftops
C. They consume less electricity than homes
D. They receive government subsidies

3. The typical payback period for a commercial solar installation is:
A. 2-3 years
B. 4-5 years
C. 6-8 years
D. 10-12 years

4. A 500-kilowatt solar installation can prevent how much CO2 emissions annually?
A. 130 tons
B. 500 tons
C. 600 tons
D. 750 tons

5. By 2030, what percentage of manufacturing facilities in developed nations are predicted to have solar capacity?
A. 15%
B. 22%
C. 30%
D. 45%

Questions 6-9: True/False/Not Given

Do the following statements agree with the information given in the passage?

Write:

  • TRUE if the statement agrees with the information
  • FALSE if the statement contradicts the information
  • NOT GIVEN if there is no information on this

6. The cost of solar panels has decreased by 90% since 2010.

7. All manufacturing facilities operate during daylight hours only.

8. Battery storage systems are becoming more affordable over time.

9. Solar panels require regular cleaning to maintain efficiency.

Questions 10-13: Sentence Completion

Complete the sentences below. Choose NO MORE THAN TWO WORDS from the passage for each answer.

10. Factories that operate continuously throughout day and night must still use __ during non-daylight hours.

11. Many companies are adopting solar power due to pressure from __ who prefer clean energy products.

12. Major corporations now require their __ to show progress in renewable energy adoption.

13. A textile factory in California achieved annual savings of __ after installing solar panels.


PASSAGE 2 – Wind Energy Integration in Heavy Industry

Độ khó: Medium (Band 6.0-7.5)

Thời gian đề xuất: 18-20 phút

The decarbonization of heavy industry represents one of the most formidable challenges in the global effort to mitigate climate change. Sectors such as steel production, cement manufacturing, and chemical processing are inherently energy-intensive and have historically relied on fossil fuels not merely for electricity but also as essential components of their production processes. The advent of wind energy as a mature, cost-competitive renewable resource has opened new pathways for these industries to reduce their greenhouse gas emissions substantially, though the transition involves complex technical and economic considerations.

Wind power has experienced remarkable growth over the past decade, with global installed capacity increasing from 198 gigawatts in 2010 to over 743 gigawatts by 2020. This expansion has been driven by dramatic improvements in turbine technology, particularly the development of larger, more efficient machines capable of generating power even at lower wind speeds. Modern offshore wind turbines can reach heights exceeding 200 meters and feature rotor diameters spanning 220 meters, enabling them to capture substantially more energy than their predecessors. The levelized cost of energy from wind has decreased by nearly 70% since 2009, making it economically competitive with conventional power sources in many markets.

For heavy industry, the integration of wind energy presents both opportunities and obstacles distinct from those encountered in lighter manufacturing. The primary challenge lies in the intermittent nature of wind resources. Unlike solar power, which follows a predictable daily cycle, wind generation can fluctuate significantly over short periods, creating supply variability that is particularly problematic for industrial processes requiring continuous, stable power inputs. A steel mill’s electric arc furnace, for instance, demands consistent electrical supply to maintain the precise temperatures necessary for metal processing. Any significant variation in power availability can compromise product quality or necessitate costly production interruptions.

Several innovative approaches have emerged to address these integration challenges. One increasingly popular solution involves power purchase agreements (PPAs) in which industrial facilities contract directly with wind farm operators to purchase electricity at fixed rates over extended periods, typically 10-25 years. These arrangements provide price certainty for manufacturers while guaranteeing revenue streams for renewable energy developers, facilitating investment in new wind capacity. As of 2021, corporate PPAs accounted for approximately 31% of all new renewable energy capacity additions globally, with heavy industry representing a growing segment of this market.

Demand response strategies offer another mechanism for aligning industrial operations with wind energy availability. Certain manufacturing processes exhibit flexibility in their timing, allowing production to be shifted to periods when wind generation is high and electricity prices are correspondingly low. Aluminum smelting, for example, involves electrolysis processes that can be modulated within certain parameters without significantly affecting output quality. Some smelters have implemented sophisticated control systems that automatically adjust their power consumption in response to real-time electricity pricing signals, effectively functioning as large-scale demand-side management resources that help stabilize the grid while reducing their energy costs.

The geographical dimension of wind energy integration cannot be overlooked. Heavy industrial facilities are often located based on proximity to raw materials, transportation infrastructure, or existing industrial clusters, rather than optimal wind resources. A cement plant situated inland, far from coastal areas with strong, consistent winds, faces inherent disadvantages in accessing wind power compared to a facility located in a wind-rich region. This spatial mismatch has spurred investment in long-distance transmission infrastructure capable of delivering wind-generated electricity from remote generation sites to industrial load centers. However, such infrastructure projects face substantial regulatory hurdles, community opposition, and construction costs that can exceed $2 million per mile for high-voltage transmission lines.

Hybrid renewable systems combining wind with other energy sources represent a promising avenue for industrial decarbonization. By pairing wind turbines with solar arrays, battery storage, and hydrogen production facilities, industrial operations can create more reliable and flexible energy supplies. When wind generation exceeds immediate demand, excess electricity can be directed to electrolyzers that produce green hydrogen—a clean fuel with diverse industrial applications. This hydrogen can subsequently power furnaces, serve as a chemical feedstock, or be stored for later use in fuel cells to generate electricity during periods of low renewable output. Several steel manufacturers are actively exploring hydrogen-based production processes that could eliminate carbon emissions entirely while leveraging renewable electricity sources.

The case of the Port of Rotterdam in the Netherlands illustrates the potential of integrated renewable energy systems in heavy industry. The port, which hosts numerous energy-intensive industries including refineries and chemical plants, has developed an ambitious plan to become a major hydrogen hub powered by massive offshore wind farms in the North Sea. The initiative involves constructing approximately 2,000 megawatts of offshore wind capacity by 2030, with much of the generated electricity dedicated to hydrogen production. This hydrogen will replace natural gas and other fossil fuels in industrial processes, potentially reducing the port’s industrial emissions by 50% by 2030 and achieving carbon neutrality by 2050. The project exemplifies how strategic infrastructure investment and policy support can enable wholesale transformation of industrial energy systems.

Tương tự như impact of renewable energy on international trade policies, chính sách hỗ trợ đóng vai trò then chốt trong thúc đẩy các dự án năng lượng tái tạo quy mô lớn phục vụ công nghiệp nặng.

Despite these promising developments, significant barriers remain. The capital requirements for transitioning heavy industry to renewable energy are substantial, often requiring billions of dollars in infrastructure investment that must compete with other corporate priorities. Additionally, many industrial facilities operate within thin profit margins in highly competitive global markets, making it difficult to justify investments with payback periods extending beyond a few years. Policy interventions—including carbon pricing mechanisms, renewable energy mandates, and targeted subsidies—will likely prove essential in accelerating the pace of industrial decarbonization through wind energy adoption.

Questions 14-26

Questions 14-18: Yes/No/Not Given

Do the following statements agree with the views of the writer in the passage?

Write:

  • YES if the statement agrees with the views of the writer
  • NO if the statement contradicts the views of the writer
  • NOT GIVEN if it is impossible to say what the writer thinks about this

14. Heavy industry’s transition to renewable energy is more straightforward than that of light manufacturing.

15. Modern offshore wind turbines are significantly more efficient than earlier models.

16. Wind energy is now cheaper than solar energy in most markets.

17. Power purchase agreements benefit both industrial facilities and renewable energy developers.

18. All aluminum smelting processes can easily adjust to variable energy supply.

Questions 19-22: Matching Headings

The passage has nine paragraphs. Choose the correct heading for paragraphs 3, 5, 7, and 8 from the list of headings below.

List of Headings:

  • i. The growth of corporate renewable energy contracts
  • ii. Challenges of wind power variability for continuous industrial processes
  • iii. Flexible manufacturing operations responding to energy availability
  • iv. The need for better electricity transmission networks
  • v. Combined renewable energy systems for industrial use
  • vi. A European port’s transformation plan
  • vii. Financial obstacles to industrial energy transition
  • viii. The declining cost of wind technology

19. Paragraph 3
20. Paragraph 5
21. Paragraph 7
22. Paragraph 8

Questions 23-26: Summary Completion

Complete the summary below. Choose NO MORE THAN TWO WORDS from the passage for each answer.

The Port of Rotterdam has developed a comprehensive plan to reduce industrial emissions through renewable energy. The port aims to construct significant 23. __ in the North Sea, with a target capacity of 2,000 megawatts by 2030. Much of the electricity will be used for 24. __, creating a clean fuel to replace fossil fuels in industrial operations. This initiative could reduce the port’s emissions by 50% by 2030, with the ultimate goal of achieving 25. __ by 2050. However, such transformations require substantial 26. __ and supportive policies to overcome financial barriers.


PASSAGE 3 – Geothermal Energy and the Transformation of Industrial Heat Production

Độ khó: Hard (Band 7.0-9.0)

Thời gian đề xuất: 23-25 phút

The discourse surrounding renewable energy adoption in industrial contexts has traditionally centered on electricity generation, with solar photovoltaics and wind turbines dominating both academic literature and policy frameworks. However, this emphasis overlooks a critical dimension of industrial energy consumption: process heat, which accounts for approximately 70% of total energy demand in manufacturing sectors globally. The production of high-temperature heat for industrial applications—ranging from food processing to glass manufacturing to petroleum refining—has remained stubbornly dependent on fossil fuel combustion, representing a substantial and often overlooked component of industrial carbon emissions. Recent technological advances in geothermal energy systems, particularly enhanced geothermal systems (EGS) and advanced heat pump technology, are beginning to challenge this paradigm, offering pathways to decarbonize industrial heating processes that were previously considered economically or technically infeasible.

Geothermal energy exploits the thermal gradient that exists between the Earth’s surface and its interior, where temperatures increase by approximately 25-30°C per kilometer of depth in most geological formations. Conventional geothermal resources, which have been utilized for electricity generation and direct heating applications for over a century, require specific geological conditions: high subsurface temperatures, adequate permeability to allow fluid circulation, and accessible depths typically less than three kilometers. These requirements restrict conventional geothermal development to tectonically active regions characterized by recent volcanic activity or tectonic plate boundaries. Consequently, despite its considerable potential, conventional geothermal energy supplies less than 1% of global electricity generation and an even smaller fraction of industrial heat demand.

Enhanced geothermal systems represent a paradigm shift in geothermal resource accessibility. Unlike conventional hydrothermal systems that depend on naturally occurring reservoirs, EGS creates artificial reservoirs in hot, dry rock formations through hydraulic stimulation—a process that involves injecting high-pressure fluids to create fracture networks that enhance rock permeability. This technological innovation dramatically expands the geographical scope of viable geothermal resources, potentially making geothermal energy accessible in regions lacking conventional hydrothermal features. The U.S. Geological Survey estimates that EGS resources in the United States alone could provide over 100,000 megawatts of electricity generation capacity, substantially exceeding current total U.S. nuclear capacity, while simultaneously offering vast quantities of industrial-grade heat.

The integration of geothermal systems for industrial process heat presents distinct advantages relative to combustion-based heating methods. Geothermal installations provide baseload energy—continuous, weather-independent operation—addressing the intermittency challenges that plague other renewable technologies. The capacity factor of geothermal facilities typically exceeds 90%, compared to 25-35% for solar and 35-45% for wind installations. For industries requiring constant thermal energy inputs, this reliability proves invaluable. Furthermore, geothermal systems produce negligible greenhouse gas emissions during operation; while some naturally occurring gases may be released from geothermal fluids, these emissions are typically less than 5% of those from equivalent fossil fuel combustion, and closed-loop systems can eliminate emissions entirely.

The thermodynamic efficiency of geothermal industrial applications merits particular attention. Many industrial processes require moderate-temperature heat in the range of 100-200°C—temperatures readily achievable through direct use of geothermal fluids or through heat pump amplification of lower-temperature resources. In contrast, generating high-temperature heat through electricity—even renewable electricity—incurs substantial conversion losses. Directly utilizing geothermal thermal energy for process heating eliminates these intermediate conversion steps, achieving overall system efficiencies that can exceed 70%, compared to 30-40% for electricity-based heating systems. This thermodynamic advantage translates into both economic benefits and reduced primary energy consumption.

Several industrial sectors have begun pioneering geothermal heat integration with noteworthy results. New Zealand’s pulp and paper industry has operated geothermal-heated facilities since the 1960s, with mills in the Taupo region utilizing geothermal steam for wood drying, pulp digestion, and various heating applications. The Kawerau geothermal field supplies approximately 220 megawatts of thermal energy to local industries, displacing fossil fuel consumption equivalent to roughly 1.5 million barrels of oil annually. In Iceland, approximately 90% of space heating derives from geothermal sources, and numerous industrial operations—including aluminum smelting, fish processing, and greenhouse agriculture—leverage geothermal heat. The Hellisheiði geothermal plant, located 30 kilometers from Reykjavik, provides both electricity and district heating while hosting an innovative carbon capture and storage (CCS) project that mineralizes CO2 by injecting it into basaltic rock formations, where it permanently solidifies within two years.

Để hiểu rõ hơn về electric cars and global oil demand, việc thay thế nhiên liệu hóa thạch trong các ngành công nghiệp có mối liên hệ mật thiết với xu hướng chuyển đổi năng lượng toàn cầu.

Despite these successes, substantial techno-economic barriers constrain broader geothermal adoption in industrial settings. Upfront capital costs for geothermal development are considerable, with drilling operations representing 30-50% of total project expenditure. Deep geothermal wells can cost $5-10 million each, and most projects require multiple wells to ensure adequate resource extraction and injection capacity. The inherent geological uncertainty associated with subsurface conditions introduces substantial financial risk; even extensive preliminary surveys cannot guarantee that drilling will encounter adequate temperatures and permeabilities at projected depths. This risk profile complicates project financing, as conventional lenders typically demand higher returns for geothermal projects compared to more predictable renewable technologies, increasing the weighted average cost of capital and extending payback periods.

Technological limitations present additional challenges, particularly for high-temperature industrial applications. While geothermal resources can readily supply heat below 200°C, many industrial processes—including cement production, steel manufacturing, and certain chemical synthesis operations—require temperatures exceeding 500°C or even 1,000°C. Although theoretical pathways exist for achieving these temperatures through concentrated geothermal systems or hybrid configurations combining geothermal with other energy sources, commercial implementations remain limited. Advanced heat pump technologies incorporating high-temperature working fluids and novel thermodynamic cycles show promise for elevating moderate geothermal temperatures to levels suitable for more demanding applications, but these systems require further development and cost reduction before achieving widespread commercial viability.

The policy and regulatory environment critically influences geothermal industrial adoption. Successful geothermal development clusters in Iceland, New Zealand, and parts of the western United States have benefited from supportive governmental frameworks that streamline permitting processes, provide exploration incentives, and mitigate early-stage development risks. In contrast, regions lacking such policy support have witnessed minimal geothermal deployment despite adequate geological potential. Risk mitigation instruments—including government-backed loan guarantees, exploration insurance programs, and grant funding for initial drilling—can substantially enhance project economic viability by reducing the cost of capital and protecting developers from geological uncertainties. Furthermore, carbon pricing mechanisms and fossil fuel subsidy elimination would improve the competitive position of geothermal systems relative to incumbent heating technologies, accelerating market penetration.

The trajectory of geothermal energy in industrial decarbonization will likely depend on continued technological innovation, particularly in drilling efficiency, reservoir characterization, and heat utilization systems. Emerging technologies such as advanced drilling techniques borrowed from the oil and gas sector, machine learning applications for resource assessment, and supercritical geothermal systems targeting extremely high temperatures and pressures could substantially reduce costs and expand resource availability. When này những khía cạnh tương tự xuất hiện trong how does renewable energy adoption affect global power structures?, cho thấy ảnh hưởng rộng lớn của năng lượng tái tạo vượt ra ngoài phạm vi kỹ thuật.

Simultaneously, the growing urgency of industrial decarbonization, driven by tightening emissions regulations and corporate sustainability commitments, is stimulating increased investment in geothermal research and deployment. As technological maturity improves and economic barriers diminish, geothermal energy may transition from a niche resource utilized primarily in geologically favorable locations to a mainstream component of industrial energy systems globally, providing the reliable, low-carbon heat necessary for genuine industrial transformation.

Hệ thống năng lượng địa nhiệt cung cấp nhiệt cho nhà máy công nghiệp hiện đạiHệ thống năng lượng địa nhiệt cung cấp nhiệt cho nhà máy công nghiệp hiện đại

Questions 27-40

Questions 27-31: Multiple Choice

Choose the correct letter, A, B, C, or D.

27. According to the passage, what percentage of industrial energy consumption is used for process heat?
A. 25%
B. 50%
C. 70%
D. 90%

28. Enhanced geothermal systems differ from conventional geothermal by:
A. Operating at lower temperatures
B. Creating artificial reservoirs through hydraulic stimulation
C. Producing more greenhouse gas emissions
D. Being limited to volcanic regions

29. The capacity factor of geothermal facilities is typically:
A. 25-35%
B. 35-45%
C. 70%
D. Over 90%

30. What percentage of total project costs do drilling operations represent in geothermal development?
A. 10-20%
B. 30-50%
C. 60-70%
D. 80-90%

31. The Hellisheiði geothermal plant in Iceland is notable for:
A. Being the world’s largest geothermal facility
B. Powering aluminum smelting operations
C. Hosting a carbon capture and storage project
D. Operating at extremely high temperatures

Questions 32-36: Matching Features

Match each statement (32-36) with the correct country or region (A-E).

Countries/Regions:
A. United States
B. New Zealand
C. Iceland
D. Taupo region
E. Reykjavik

32. Has geothermal resources estimated to exceed 100,000 megawatts
33. Uses geothermal energy for 90% of space heating
34. Operates geothermal-heated pulp and paper mills since the 1960s
35. The Kawerau geothermal field supplies thermal energy to local industries
36. Located 30 kilometers from a major geothermal plant with CCS technology

Questions 37-40: Short-answer Questions

Answer the questions below. Choose NO MORE THAN THREE WORDS AND/OR A NUMBER from the passage for each answer.

37. What type of rock formations does carbon dioxide solidify in at the Hellisheiði plant?

38. What two factors make geothermal project financing difficult according to conventional lenders?

39. What temperature range is required for many high-temperature industrial processes like cement production?

40. What three types of government support can enhance geothermal project viability?


3. Answer Keys – Đáp Án

PASSAGE 1: Questions 1-13

  1. B
  2. B
  3. C
  4. C
  5. C
  6. TRUE
  7. FALSE
  8. TRUE
  9. NOT GIVEN
  10. grid power / the grid
  11. consumers
  12. suppliers
  13. $180,000

PASSAGE 2: Questions 14-26

  1. NO
  2. YES
  3. NOT GIVEN
  4. YES
  5. NO
  6. ii
  7. iii
  8. v
  9. vi
  10. offshore wind (farms)
  11. hydrogen production
  12. carbon neutrality
  13. infrastructure investment

PASSAGE 3: Questions 27-40

  1. C
  2. B
  3. D
  4. B
  5. C
  6. A
  7. C
  8. B
  9. D
  10. E
  11. basaltic rock formations
  12. geological uncertainty
  13. 500°C / 1,000°C (exceeding 500°C)
  14. loan guarantees / exploration insurance / grant funding (any three)

4. Giải Thích Đáp Án Chi Tiết

Passage 1 – Giải Thích

Câu 1: B – Over 22%

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: efficiency rates, current commercial solar panels
  • Vị trí trong bài: Đoạn 2, dòng 2-3
  • Giải thích: Bài đọc nói rõ “The efficiency rates of photovoltaic cells have improved from around 15% in the early 2000s to over 22% in current commercial models.” Đáp án B chính xác phản ánh thông tin này. Đáp án A (15%) là hiệu suất của các tấm pin cũ, không phải hiện tại.

Câu 2: B – They have large, flat rooftops

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: major advantage, factories, solar installation
  • Vị trí trong bài: Đoạn 3, dòng 2-3
  • Giải thích: Đoạn văn chỉ ra “First, factories typically have large, flat rooftops that provide ideal surfaces for solar panel installation.” Đây là lợi thế cấu trúc vật lý rõ ràng nhất được đề cập.

Câu 3: C – 6-8 years

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: typical payback period, commercial solar installation
  • Vị trí trong bài: Đoạn 5, dòng 3-4
  • Giải thích: Bài viết nêu “the long-term savings on electricity bills typically result in a payback period of 6-8 years.” Con số này xuất hiện trực tiếp trong văn bản.

Câu 4: C – 600 tons

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: 500-kilowatt solar installation, prevent, CO2 emissions annually
  • Vị trí trong bài: Đoạn 4, dòng 4-5
  • Giải thích: Thông tin chính xác: “A typical 500-kilowatt solar installation can prevent approximately 600 tons of carbon dioxide emissions annually.”

Câu 6: TRUE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: cost of solar panels, decreased by 90%, since 2010
  • Vị trí trong bài: Đoạn 2, dòng cuối
  • Giải thích: Bài viết khẳng định “the cost of solar panels has decreased by approximately 90% since 2010”, hoàn toàn trùng khớp với câu hỏi.

Câu 7: FALSE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: all manufacturing facilities, operate, daylight hours only
  • Vị trí trong bài: Đoạn 6, dòng 2-3
  • Giải thích: Bài viết nói rõ “factories that run multiple shifts or operate 24/7 must still draw power from the grid during evening and nighttime hours”, chứng tỏ không phải tất cả nhà máy chỉ hoạt động ban ngày.

Câu 8: TRUE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: battery storage systems, becoming more affordable
  • Vị trí trong bài: Đoạn 6, dòng 4-5
  • Giải thích: Câu “Battery storage systems… remain expensive, though costs are declining” cho thấy chi phí đang giảm, tức là đang trở nên phải chăng hơn.

Câu 10: grid power / the grid

  • Dạng câu hỏi: Sentence Completion
  • Từ khóa: operate continuously, day and night, use during non-daylight hours
  • Vị trí trong bài: Đoạn 6, dòng 2-3
  • Giải thích: “factories that run multiple shifts or operate 24/7 must still draw power from the grid during evening and nighttime hours” – từ “grid” hoặc “grid power” là đáp án chính xác.

Câu 11: consumers

  • Dạng câu hỏi: Sentence Completion
  • Từ khóa: pressure from, prefer clean energy products
  • Vị trí trong bài: Đoạn 7, dòng 3-4
  • Giải thích: Bài viết đề cập “increasing pressure from consumers who favor products manufactured with clean energy.”

Câu 12: suppliers

  • Dạng câu hỏi: Sentence Completion
  • Từ khóa: major corporations, require, progress in renewable energy
  • Vị trí trong bài: Đoạn 7, dòng 4-5
  • Giải thích: “Major corporations have begun requiring their suppliers to demonstrate progress toward renewable energy targets.”

Câu 13: $180,000

  • Dạng câu hỏi: Sentence Completion
  • Từ khóa: textile factory, California, annual savings
  • Vị trí trong bài: Đoạn 8, dòng 2-3
  • Giải thích: “A textile factory in California… reported annual electricity cost savings of $180,000.”

Passage 2 – Giải Thích

Câu 14: NO

  • Dạng câu hỏi: Yes/No/Not Given
  • Từ khóa: heavy industry transition, more straightforward, light manufacturing
  • Vị trí trong bài: Đoạn 1 và 3
  • Giải thích: Tác giả nhấn mạnh “the transition involves complex technical and economic considerations” và “presents both opportunities and obstacles distinct from those encountered in lighter manufacturing”, cho thấy quan điểm trái ngược với câu hỏi.

Câu 15: YES

  • Dạng câu hỏi: Yes/No/Not Given
  • Từ khóa: modern offshore wind turbines, significantly more efficient, earlier models
  • Vị trí trong bài: Đoạn 2, dòng 3-6
  • Giải thích: Bài viết nêu rõ turbine hiện đại “can reach heights exceeding 200 meters” và “enabling them to capture substantially more energy than their predecessors”, thể hiện hiệu suất cao hơn đáng kể.

Câu 17: YES

  • Dạng câu hỏi: Yes/No/Not Given
  • Từ khóa: power purchase agreements, benefit, industrial facilities, renewable energy developers
  • Vị trí trong bài: Đoạn 4, dòng 3-5
  • Giải thích: “These arrangements provide price certainty for manufacturers while guaranteeing revenue streams for renewable energy developers” – rõ ràng cả hai bên đều được lợi.

Câu 19: ii – Challenges of wind power variability for continuous industrial processes

  • Dạng câu hỏi: Matching Headings
  • Vị trí: Đoạn 3
  • Giải thích: Đoạn này tập trung vào “the intermittent nature of wind resources” và các vấn đề mà “supply variability” gây ra cho các quy trình công nghiệp yêu cầu nguồn điện liên tục.

Câu 20: iii – Flexible manufacturing operations responding to energy availability

  • Dạng câu hỏi: Matching Headings
  • Vị trí: Đoạn 5
  • Giải thích: Đoạn văn mô tả “demand response strategies” và cách các quy trình sản xuất linh hoạt như “aluminum smelting” có thể điều chỉnh theo khả năng cung cấp năng lượng gió.

Câu 21: v – Combined renewable energy systems for industrial use

  • Dạng câu hỏi: Matching Headings
  • Vị trí: Đoạn 7
  • Giải thích: Đoạn này thảo luận về “hybrid renewable systems combining wind with other energy sources” như solar, battery storage và hydrogen production.

Câu 22: vi – A European port’s transformation plan

  • Dạng câu hỏi: Matching Headings
  • Vị trí: Đoạn 8
  • Giải thích: Toàn bộ đoạn văn mô tả chi tiết về “Port of Rotterdam” ở Hà Lan và kế hoạch chuyển đổi năng lượng của cảng này.

Câu 23: offshore wind (farms)

  • Dạng câu hỏi: Summary Completion
  • Vị trí trong bài: Đoạn 8, dòng 2-4
  • Giải thích: “constructing approximately 2,000 megawatts of offshore wind capacity” – cụm “offshore wind” hoặc “offshore wind farms” là đáp án chính xác.

Câu 24: hydrogen production

  • Dạng câu hỏi: Summary Completion
  • Vị trí trong bài: Đoạn 8, dòng 4-5
  • Giải thích: “with much of the generated electricity dedicated to hydrogen production” – từ “hydrogen production” xuất hiện trực tiếp.

Câu 25: carbon neutrality

  • Dạng câu hỏi: Summary Completion
  • Vị trí trong bài: Đoạn 8, dòng 6-7
  • Giải thích: Mục tiêu cuối cùng được nêu là “achieving carbon neutrality by 2050.”

Passage 3 – Giải Thích

Câu 27: C – 70%

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: percentage, industrial energy consumption, process heat
  • Vị trí trong bài: Đoạn 1, dòng 3-4
  • Giải thích: Bài viết nêu rõ “process heat, which accounts for approximately 70% of total energy demand in manufacturing sectors globally.”

Câu 28: B – Creating artificial reservoirs through hydraulic stimulation

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: Enhanced geothermal systems differ, conventional geothermal
  • Vị trí trong bài: Đoạn 3, dòng 2-4
  • Giải thích: “Unlike conventional hydrothermal systems that depend on naturally occurring reservoirs, EGS creates artificial reservoirs in hot, dry rock formations through hydraulic stimulation” – đây là sự khác biệt chính.

Câu 29: D – Over 90%

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: capacity factor, geothermal facilities, typically
  • Vị trí trong bài: Đoạn 4, dòng 3-4
  • Giải thích: “The capacity factor of geothermal facilities typically exceeds 90%” – đáp án D chính xác.

Câu 30: B – 30-50%

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: percentage, drilling operations, project costs
  • Vị trí trong bài: Đoạn 7, dòng 2-3
  • Giải thích: “drilling operations representing 30-50% of total project expenditure” – con số này xuất hiện rõ ràng.

Câu 31: C – Hosting a carbon capture and storage project

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: Hellisheiði geothermal plant, Iceland, notable for
  • Vị trí trong bài: Đoạn 6, dòng 6-8
  • Giải thích: Nhà máy này được mô tả là “hosting an innovative carbon capture and storage (CCS) project.”

Câu 32: A (United States)

  • Dạng câu hỏi: Matching Features
  • Vị trí trong bài: Đoạn 3, dòng 6-7
  • Giải thích: “The U.S. Geological Survey estimates that EGS resources in the United States alone could provide over 100,000 megawatts of electricity generation capacity.”

Câu 33: C (Iceland)

  • Dạng câu hỏi: Matching Features
  • Vị trí trong bài: Đoạn 6, dòng 4-5
  • Giải thích: “In Iceland, approximately 90% of space heating derives from geothermal sources.”

Câu 34: B (New Zealand)

  • Dạng câu hỏi: Matching Features
  • Vị trí trong bài: Đoạn 6, dòng 1-2
  • Giải thích: “New Zealand’s pulp and paper industry has operated geothermal-heated facilities since the 1960s.”

Câu 37: basaltic rock formations

  • Dạng câu hỏi: Short-answer Questions
  • Từ khóa: carbon dioxide solidify, Hellisheiði plant, rock formations
  • Vị trí trong bài: Đoạn 6, dòng 7-9
  • Giải thích: “mineralizes CO2 by injecting it into basaltic rock formations, where it permanently solidifies” – cụm “basaltic rock formations” là đáp án.

Câu 38: geological uncertainty

  • Dạng câu hỏi: Short-answer Questions
  • Từ khóa: factors, geothermal project financing difficult, conventional lenders
  • Vị trí trong bài: Đoạn 7, dòng 5-7
  • Giải thích: Bài viết đề cập “The inherent geological uncertainty associated with subsurface conditions introduces substantial financial risk” và “lenders typically demand higher returns for geothermal projects.”

Câu 40: loan guarantees / exploration insurance / grant funding (any three)

  • Dạng câu hỏi: Short-answer Questions
  • Từ khóa: three types, government support, enhance, geothermal project viability
  • Vị trí trong bài: Đoạn 9, dòng 4-6
  • Giải thích: “Risk mitigation instruments—including government-backed loan guarantees, exploration insurance programs, and grant funding for initial drilling” – ba loại hỗ trợ chính phủ được liệt kê rõ ràng.

5. Từ Vựng Quan Trọng Theo Passage

Passage 1 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
renewable energy n /rɪˈnjuːəbl ˈenədʒi/ năng lượng tái tạo renewable energy sources into industrial operations renewable energy sources, renewable energy adoption
photovoltaic adj /ˌfəʊtəʊvɒlˈteɪɪk/ quang điện photovoltaic cells have improved photovoltaic cells, photovoltaic panels
efficiency rate n /ɪˈfɪʃnsi reɪt/ tỷ lệ hiệu suất efficiency rates of photovoltaic cells improve efficiency rates, high efficiency rate
carbon footprint n /ˈkɑːbən ˈfʊtprɪnt/ dấu chân carbon, lượng phát thải CO2 directly reduces its carbon footprint reduce carbon footprint, measure carbon footprint
solar array n /ˈsəʊlə əˈreɪ/ hệ thống pin mặt trời solar array capable of generating power install solar array, large solar array
initial capital investment n /ɪˈnɪʃl ˈkæpɪtl ɪnˈvestmənt/ đầu tư vốn ban đầu initial capital investment remains substantial require initial capital investment, high initial capital investment
payback period n /ˈpeɪbæk ˈpɪəriəd/ thời gian hoàn vốn payback period of 6-8 years short payback period, calculate payback period
hybrid system n /ˈhaɪbrɪd ˈsɪstəm/ hệ thống lai, hệ thống kết hợp implementing hybrid systems hybrid system approach, efficient hybrid system
sustainability commitment n /səˌsteɪnəˈbɪləti kəˈmɪtmənt/ cam kết bền vững corporate sustainability commitments demonstrate sustainability commitment, strong sustainability commitment
supply chain n /səˈplaɪ tʃeɪn/ chuỗi cung ứng throughout manufacturing supply chains global supply chain, manage supply chain
economically viable adj /ˌiːkəˈnɒmɪkli ˈvaɪəbl/ khả thi về mặt kinh tế economically viable strategy economically viable option, prove economically viable
synchronization n /ˌsɪŋkrənaɪˈzeɪʃn/ sự đồng bộ hóa creating a natural synchronization achieve synchronization, perfect synchronization

Passage 2 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
decarbonization n /diːˌkɑːbənaɪˈzeɪʃn/ giảm phát thải carbon decarbonization of heavy industry industrial decarbonization, achieve decarbonization
energy-intensive adj /ˈenədʒi ɪnˈtensɪv/ tiêu tốn nhiều năng lượng energy-intensive and have historically relied energy-intensive industry, energy-intensive processes
greenhouse gas emissions n /ˈɡriːnhaʊs ɡæs ɪˈmɪʃnz/ khí thải nhà kính reduce their greenhouse gas emissions cut greenhouse gas emissions, monitor greenhouse gas emissions
intermittent nature n /ˌɪntəˈmɪtənt ˈneɪtʃə/ tính chất gián đoạn intermittent nature of wind resources deal with intermittent nature, overcome intermittent nature
levelized cost of energy n /ˈlevəlaɪzd kɒst əv ˈenədʒi/ chi phí năng lượng được cân bằng levelized cost of energy from wind calculate levelized cost of energy, reduce levelized cost of energy
power purchase agreement n /ˈpaʊə ˈpɜːtʃəs əˈɡriːmənt/ hợp đồng mua điện power purchase agreements (PPAs) sign power purchase agreement, negotiate power purchase agreement
demand response n /dɪˈmɑːnd rɪˈspɒns/ phản ứng theo nhu cầu demand response strategies offer implement demand response, effective demand response
electrolysis n /ɪˌlekˈtrɒləsɪs/ điện phân involves electrolysis processes water electrolysis, electrolysis technology
spatial mismatch n /ˈspeɪʃl ˈmɪsmætʃ/ sự không phù hợp về không gian This spatial mismatch has spurred address spatial mismatch, overcome spatial mismatch
transmission infrastructure n /trænzˈmɪʃn ˈɪnfrəstrʌktʃə/ cơ sở hạ tầng truyền tải long-distance transmission infrastructure build transmission infrastructure, upgrade transmission infrastructure
green hydrogen n /ɡriːn ˈhaɪdrədʒən/ hydro xanh produce green hydrogen generate green hydrogen, green hydrogen production
carbon neutrality n /ˈkɑːbən njuːˈtræləti/ trung hòa carbon achieving carbon neutrality by 2050 reach carbon neutrality, carbon neutrality target
regulatory hurdle n /ˈreɡjələtəri ˈhɜːdl/ rào cản quy định substantial regulatory hurdles face regulatory hurdles, overcome regulatory hurdles
fuel cell n /ˈfjuːəl sel/ pin nhiên liệu stored for later use in fuel cells hydrogen fuel cell, fuel cell technology

Passage 3 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Nghĩa tiếng Việt Ví dụ từ bài Collocation
process heat n /ˈprəʊses hiːt/ nhiệt công nghệ critical dimension of industrial energy consumption: process heat industrial process heat, require process heat
geothermal energy n /ˌdʒiːəʊˈθɜːml ˈenədʒi/ năng lượng địa nhiệt geothermal energy exploits the thermal gradient harness geothermal energy, geothermal energy systems
enhanced geothermal system n /ɪnˈhɑːnst ˌdʒiːəʊˈθɜːml ˈsɪstəm/ hệ thống địa nhiệt nâng cao Enhanced geothermal systems represent a paradigm shift develop enhanced geothermal systems, EGS technology
hydraulic stimulation n /haɪˈdrɔːlɪk ˌstɪmjuˈleɪʃn/ kích thích thủy lực through hydraulic stimulation apply hydraulic stimulation, hydraulic stimulation process
baseload energy n /ˈbeɪsləʊd ˈenədʒi/ năng lượng cơ sở Geothermal installations provide baseload energy supply baseload energy, reliable baseload energy
capacity factor n /kəˈpæsəti ˈfæktə/ hệ số công suất capacity factor of geothermal facilities high capacity factor, improve capacity factor
closed-loop system n /kləʊzd luːp ˈsɪstəm/ hệ thống vòng kín closed-loop systems can eliminate emissions implement closed-loop system, efficient closed-loop system
thermodynamic efficiency n /ˌθɜːməʊdaɪˈnæmɪk ɪˈfɪʃnsi/ hiệu suất nhiệt động thermodynamic efficiency of geothermal industrial applications maximize thermodynamic efficiency, high thermodynamic efficiency
conversion loss n /kənˈvɜːʃn lɒs/ tổn thất chuyển đổi incurs substantial conversion losses minimize conversion losses, reduce conversion losses
carbon capture and storage n /ˈkɑːbən ˈkæptʃə ənd ˈstɔːrɪdʒ/ thu giữ và lưu trữ carbon carbon capture and storage (CCS) project implement carbon capture and storage, CCS technology
basaltic rock n /bəˈsɔːltɪk rɒk/ đá bazan injecting it into basaltic rock formations basaltic rock formation, basaltic rock layer
techno-economic barrier n /ˌteknəʊ iːkəˈnɒmɪk ˈbæriə/ rào cản kỹ thuật-kinh tế substantial techno-economic barriers constrain overcome techno-economic barriers, address techno-economic barriers
geological uncertainty n /ˌdʒiːəˈlɒdʒɪkl ʌnˈsɜːtnti/ bất định địa chất inherent geological uncertainty associated manage geological uncertainty, reduce geological uncertainty
weighted average cost of capital n /ˈweɪtɪd ˈævərɪdʒ kɒst əv ˈkæpɪtl/ chi phí vốn bình quân gia quyền increasing the weighted average cost of capital calculate weighted average cost of capital, lower weighted average cost of capital
supercritical geothermal adj /ˌsuːpəˈkrɪtɪkl ˌdʒiːəʊˈθɜːml/ địa nhiệt siêu tới hạn supercritical geothermal systems targeting extremely high temperatures develop supercritical geothermal, supercritical geothermal technology
emissions regulation n /ɪˈmɪʃnz ˌreɡjuˈleɪʃn/ quy định về phát thải driven by tightening emissions regulations comply with emissions regulations, strict emissions regulations

Kết bài

Chủ đề vai trò của năng lượng tái tạo trong giảm phát thải công nghiệp không chỉ là một đề tài quan trọng trong bối cảnh biến đổi khí hậu toàn cầu mà còn là nội dung xuất hiện thường xuyên trong các đề thi IELTS Reading thực tế. Bộ đề thi mẫu này đã cung cấp cho bạn ba passages với độ khó tăng dần, từ Easy đến Hard, phản ánh chính xác cấu trúc và yêu cầu của kỳ thi IELTS chính thức.

Thông qua 40 câu hỏi đa dạng từ Multiple Choice, True/False/Not Given, Matching Headings đến Summary Completion, bạn đã có cơ hội rèn luyện đầy đủ các kỹ năng cần thiết để đạt band điểm cao. Phần đáp án chi tiết kèm giải thích cụ thể giúp bạn hiểu rõ cách xác định thông tin trong bài đọc, nhận diện paraphrase và áp dụng các chiến lược làm bài hiệu quả.

Đối với chủ đề này và impact of climate change on fishing industries, cả hai đều nhấn mạnh tầm quan trọng của việc thích ứng với biến đổi môi trường thông qua công nghệ và chính sách mới. Hơn nữa, electric scooters for reducing city traffic emissions cũng thể hiện xu hướng tương tự trong việc ứng dụng công nghệ sạch để giảm phát thải trong các lĩnh vực khác nhau.

Bộ từ vựng chuyên ngành về năng lượng, môi trường và công nghiệp được tổng hợp trong bài sẽ giúp bạn không chỉ trong phần Reading mà còn có thể ứng dụng vào Writing Task 2 khi gặp các đề bài liên quan. Hãy lưu lại những cụm từ và collocations quan trọng để sử dụng trong các bài viết học thuật của mình.

Để đạt kết quả tốt nhất, hãy thực hành thường xuyên với các đề thi mẫu tương tự, quản lý thời gian chặt chẽ và phát triển khả năng đọc lướt (skimming) cũng như đọc chi tiết (scanning). Chúc bạn ôn tập hiệu quả và đạt band điểm mong muốn trong kỳ thi IELTS sắp tới!

Previous Article

IELTS Speaking: Cách Trả Lời Chủ Đề "Describe A Person You Think Is A Good Listener" - Bài Mẫu Band 6-9

Next Article

IELTS Reading: Tác động của cải cách giáo dục đến thành tích học sinh - Đề thi mẫu có đáp án chi tiết

Write a Comment

Leave a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Đăng ký nhận thông tin bài mẫu

Để lại địa chỉ email của bạn, chúng tôi sẽ thông báo tới bạn khi có bài mẫu mới được biên tập và xuất bản thành công.
Chúng tôi cam kết không spam email ✨