Chủ đề Advances In Renewable Energy Storage (Tiến bộ trong lưu trữ năng lượng tái tạo) đang là một trong những đề tài nóng hổi xuất hiện ngày càng nhiều trong kỳ thi IELTS Reading. Với xu hướng toàn cầu chuyển đổi sang năng lượng xanh, các bài đọc về công nghệ lưu trữ năng lượng, pin, và hệ thống điện mặt trời thường xuyên được đưa vào đề thi IELTS Academic. Đây là chủ đề thuộc nhóm Science & Technology, yêu cầu thí sinh có khả năng đọc hiểu các khái niệm kỹ thuật và phân tích thông tin phức tạp.
Trong bài viết này, bạn sẽ nhận được một bộ đề thi hoàn chỉnh với 3 passages từ dễ đến khó, bao gồm 40 câu hỏi đa dạng giống như trong đề thi thật. Mỗi passage được thiết kế cẩn thận với độ dài và độ khó tăng dần, kèm theo đáp án chi tiết và giải thích rõ ràng về từng câu hỏi. Bạn cũng sẽ học được hơn 40 từ vựng quan trọng liên quan đến năng lượng tái tạo, cùng các chiến lược làm bài hiệu quả để đạt band điểm cao.
Đề thi này phù hợp cho học viên từ band 5.0 trở lên, giúp bạn làm quen với format thi thực tế và nâng cao kỹ năng đọc hiểu học thuật một cách bài bản.
Hướng Dẫn Làm Bài IELTS Reading
Tổng Quan Về IELTS Reading Test
IELTS Academic Reading Test kéo dài 60 phút và bao gồm 3 passages với tổng cộng 40 câu hỏi. Các passages được sắp xếp theo thứ tự độ khó tăng dần, từ dễ (Passage 1) đến khó (Passage 3). Mỗi câu trả lời đúng được tính 1 điểm, không có điểm âm cho câu trả lời sai.
Phân bổ thời gian khuyến nghị:
- Passage 1: 15-17 phút (độ khó: Easy)
- Passage 2: 18-20 phút (độ khó: Medium)
- Passage 3: 23-25 phút (độ khó: Hard)
Lưu ý rằng không có thời gian riêng để chép đáp án sang answer sheet, vì vậy bạn cần quản lý thời gian sao cho hoàn thành cả việc đọc, trả lời và ghi đáp án trong 60 phút.
Các Dạng Câu Hỏi Trong Đề Này
Đề thi mẫu này bao gồm 7 dạng câu hỏi phổ biến nhất trong IELTS Reading:
- Multiple Choice – Chọn đáp án đúng từ 3-4 lựa chọn
- True/False/Not Given – Xác định thông tin đúng, sai hoặc không được đề cập
- Yes/No/Not Given – Đánh giá ý kiến của tác giả
- Matching Headings – Nối tiêu đề với đoạn văn phù hợp
- Sentence Completion – Hoàn thành câu với từ trong bài
- Summary Completion – Điền từ vào đoạn tóm tắt
- Matching Features – Nối thông tin với nhóm/người tương ứng
IELTS Reading Practice Test
PASSAGE 1 – The Evolution of Battery Technology for Renewable Energy
Độ khó: Easy (Band 5.0-6.5)
Thời gian đề xuất: 15-17 phút
The global transition toward renewable energy sources such as solar and wind power has created an urgent need for effective energy storage solutions. Unlike traditional fossil fuel power plants that can generate electricity on demand, renewable energy sources are intermittent – they only produce power when the sun shines or the wind blows. This variability presents a significant challenge for maintaining a stable electricity grid and ensuring a consistent power supply for homes and businesses.
Battery technology has emerged as the most promising solution to this challenge. Over the past two decades, scientists and engineers have made remarkable progress in developing batteries that can store large amounts of energy efficiently and release it when needed. The most common type used today is the lithium-ion battery, the same technology found in smartphones and laptops, but scaled up to industrial sizes. These batteries can store electricity generated during peak production times and discharge it during periods of high demand or low renewable generation.
The development of modern energy storage began in earnest in the 1990s when researchers started exploring ways to improve battery capacity and lifespan. Early batteries were expensive, had limited storage capacity, and degraded quickly after repeated charging cycles. However, continuous innovation has dramatically reduced costs while improving performance. Between 2010 and 2020, the cost of lithium-ion batteries fell by nearly 90%, making them economically viable for grid-scale storage projects.
One of the key advantages of battery storage is its flexibility. Unlike large power plants that can take hours to start up or shut down, batteries can respond to changes in electricity demand within milliseconds. This rapid response capability is crucial for maintaining grid stability, especially as more renewable energy sources are connected to the power network. Grid operators can use batteries to smooth out fluctuations in supply and demand, preventing blackouts and ensuring a reliable power supply.
The scale of battery installations has grown exponentially in recent years. Small residential systems, often paired with rooftop solar panels, allow homeowners to store excess electricity generated during the day for use at night. Meanwhile, utility-scale battery farms containing thousands of individual battery units can store enough electricity to power entire cities for several hours. Australia’s Hornsdale Power Reserve, which opened in 2017, was one of the first large-scale battery installations and demonstrated the technology’s potential to transform energy grids.
Despite these advances, several challenges remain. Current battery technology still faces limitations in terms of energy density – the amount of energy that can be stored per unit of weight or volume. Researchers are exploring alternative materials and designs to create batteries that can store more energy in smaller, lighter packages. Another concern is the environmental impact of battery production and disposal. Lithium mining can damage ecosystems, and recycling old batteries is technically challenging and expensive.
Looking forward, scientists are investigating several promising alternatives to lithium-ion technology. Flow batteries, which store energy in liquid electrolytes, offer potentially longer lifespans and easier scalability. Solid-state batteries replace liquid components with solid materials, potentially offering greater safety and energy density. Meanwhile, some companies are developing sodium-ion batteries using more abundant and less expensive materials than lithium. Each of these technologies has different advantages and is suited to different applications, suggesting that the future of energy storage will likely involve a diverse mix of solutions rather than a single dominant technology.
The success of renewable energy ultimately depends on solving the storage challenge. As battery technology continues to improve and costs decrease, renewable energy becomes increasingly practical as a primary power source. Many energy experts predict that by 2030, the combination of cheap renewable generation and efficient storage will make clean energy more economical than fossil fuels in most markets, marking a historic turning point in how humanity produces and consumes electricity.
Questions 1-6
Do the following statements agree with the information given in Passage 1?
Write:
- TRUE if the statement agrees with the information
- FALSE if the statement contradicts the information
- NOT GIVEN if there is no information on this
- Renewable energy sources can produce electricity consistently throughout the day and night.
- Lithium-ion batteries are the same type used in personal electronic devices but larger in size.
- The cost of lithium-ion batteries decreased by approximately 90% between 2010 and 2020.
- Battery systems can adjust to changes in electricity demand faster than traditional power plants.
- The Hornsdale Power Reserve in Australia was the world’s first battery installation.
- All countries have adopted the same battery technology for their renewable energy storage needs.
Questions 7-10
Complete the sentences below.
Choose NO MORE THAN TWO WORDS from the passage for each answer.
- Unlike fossil fuel plants, renewable energy sources are __, producing power only under certain conditions.
- Early batteries had a short __ and would degrade after multiple charging cycles.
- Battery storage systems help grid operators prevent __ by balancing supply and demand.
- The __ of batteries refers to how much energy can be stored relative to their size or weight.
Questions 11-13
Choose the correct letter, A, B, C or D.
-
According to the passage, what is the main challenge with renewable energy sources?
- A) They are too expensive to build
- B) They only work in certain weather conditions
- C) They require too much maintenance
- D) They produce too much electricity
-
What does the passage say about residential battery systems?
- A) They are larger than utility-scale systems
- B) They are often combined with solar panels on houses
- C) They can power entire neighborhoods
- D) They are more expensive than grid-scale systems
-
What is mentioned as an environmental concern about current battery technology?
- A) Batteries produce greenhouse gases
- B) Lithium mining can harm natural environments
- C) Batteries are too heavy to transport
- D) Battery production requires too much water
PASSAGE 2 – Grid-Scale Energy Storage Systems and Their Impact
Độ khó: Medium (Band 6.0-7.5)
Thời gian đề xuất: 18-20 phút
The integration of renewable energy into national power grids represents one of the most significant technological shifts in modern history. However, this transition has revealed a fundamental incompatibility between the intermittent nature of renewable sources and the demand-driven requirements of electricity grids. Traditional power systems were designed around dispatchable generation – the ability to increase or decrease power output on command. Solar and wind energy, by contrast, generate electricity according to meteorological conditions rather than human need, creating a temporal mismatch between production and consumption that threatens grid stability.
Grid-scale energy storage systems have emerged as the critical infrastructure needed to bridge this gap. These installations, which can range from warehouse-sized battery arrays to massive pumped hydroelectric facilities, serve multiple functions beyond simple energy storage. They provide frequency regulation, maintaining the precise 50 or 60 Hz alternating current that modern electrical equipment requires. They offer voltage support, ensuring consistent power quality across transmission networks. Perhaps most importantly, they enable load shifting, storing excess energy during periods of low demand and releasing it during peak usage times, thereby maximizing the utilization of renewable generation capacity.
The economics of energy storage have undergone a remarkable transformation. A decade ago, storing electricity was prohibitively expensive for most applications, with costs exceeding $1,000 per kilowatt-hour for lithium-ion systems. Today, those costs have plummeted to approximately $150 per kilowatt-hour, with projections suggesting they will fall below $100 by 2025. This dramatic cost reduction has fundamentally altered the business case for storage, making it economically competitive with traditional peak power plants – often inefficient fossil fuel generators kept in reserve for high-demand periods.
The technological diversity of grid-scale storage reflects the varied requirements of different applications. Lithium-ion battery systems dominate the market for applications requiring rapid response times, typically from milliseconds to four hours of storage duration. Their high power density and fast charge-discharge cycles make them ideal for frequency regulation and peak shaving – reducing maximum demand on the grid. However, their relatively high cost per kilowatt-hour limits their use for longer-duration storage needs.
For applications requiring energy storage over longer periods, several alternative technologies are gaining traction. Flow batteries store energy in liquid electrolytes contained in external tanks, allowing storage capacity to be scaled independently of power output by simply adding more tank volume. While less energy-dense than lithium-ion technology, flow batteries offer advantages in longevity, with some designs capable of 10,000 or more charge-discharge cycles without significant degradation. Compressed air energy storage (CAES) uses excess electricity to compress air into underground caverns or tanks, later releasing it to drive turbines when power is needed. Though limited by geographical requirements for suitable underground formations, CAES installations can store energy for days or weeks, providing seasonal storage capability that shorter-duration technologies cannot match.
Pumped hydroelectric storage, the oldest and most established form of grid-scale storage, still accounts for over 90% of global energy storage capacity. These systems pump water uphill to a reservoir during periods of excess electricity generation, then release it through turbines to generate power when needed. The round-trip efficiency – the percentage of energy recovered relative to energy input – typically ranges from 70% to 85%, comparable to advanced battery systems. However, pumped hydro requires specific geographical features: substantial elevation differences and available water resources. These constraints limit where new installations can be built, though innovative concepts such as underground pumped hydro are being explored to overcome geographical limitations.
The deployment of grid-scale storage is reshaping electricity markets and regulatory frameworks. Traditional market structures, designed for unidirectional power flow from centralized generators to distributed consumers, are giving way to more complex systems where storage facilities act as both buyers and sellers of electricity. This has necessitated new market mechanisms and pricing structures that appropriately value the multiple services that storage provides. In some jurisdictions, storage facilities can participate simultaneously in multiple markets – providing capacity reserves, ancillary services, and arbitrage opportunities by buying electricity when prices are low and selling when prices are high.
The environmental implications of large-scale energy storage extend beyond enabling renewable energy deployment. By reducing the need for fossil fuel peaker plants, storage systems directly decrease greenhouse gas emissions. They also minimize transmission losses by storing energy closer to consumption points, improving overall grid efficiency. However, the production of storage technologies carries its own environmental footprint. Lithium extraction often involves intensive water use in water-scarce regions, while the manufacturing process for batteries requires significant energy input. The end-of-life disposal and recycling of batteries present additional challenges that the industry is still working to address comprehensively.
Looking ahead, analysts project exponential growth in grid-scale storage deployment. The International Energy Agency estimates that global storage capacity will need to increase more than tenfold by 2040 to support aggressive renewable energy targets. This expansion will require continued cost reductions, technological improvements, and supportive policy frameworks. Some experts advocate for a portfolio approach incorporating diverse storage technologies matched to specific applications and durations, while others anticipate that a few dominant technologies will emerge to capture the majority of the market. What remains certain is that energy storage has transitioned from a niche technology to an essential infrastructure component of the modern power grid.
Questions 14-19
Choose the correct letter, A, B, C or D.
-
What is described as the main problem with integrating renewable energy into power grids?
- A) Renewable energy is more expensive than fossil fuels
- B) Power generation does not always match when electricity is needed
- C) Renewable sources produce too little electricity
- D) Grid infrastructure is too old to handle renewable energy
-
According to the passage, what has happened to the cost of lithium-ion storage over the past decade?
- A) It has remained stable
- B) It has increased due to higher demand
- C) It has decreased by more than 80%
- D) It has become unpredictable
-
What advantage do flow batteries have over lithium-ion batteries?
- A) They are cheaper to manufacture
- B) They can undergo more charge-discharge cycles
- C) They respond faster to grid demands
- D) They require less space
-
What limitation does pumped hydroelectric storage face?
- A) It is less efficient than battery systems
- B) It can only store energy for short periods
- C) It needs specific landscape features to function
- D) It produces greenhouse gas emissions
-
How has energy storage changed electricity markets according to the passage?
- A) Markets have become simpler and easier to regulate
- B) Storage facilities now act as both consumers and providers of power
- C) Electricity prices have become fixed
- D) Only large companies can participate in energy trading
-
What does the passage suggest about the future of grid-scale storage?
- A) One technology will likely dominate the market
- B) Storage capacity needs to increase dramatically by 2040
- C) Growth will be limited by environmental concerns
- D) Costs will increase as demand grows
Questions 20-23
Complete the summary below.
Choose NO MORE THAN TWO WORDS from the passage for each answer.
Grid-scale energy storage systems perform several important functions. They help maintain the correct electrical frequency through (20) __ and ensure consistent power quality by providing (21) __. These systems also enable (22) __, which involves storing energy when demand is low and releasing it during (23) __ times, making better use of renewable energy generation.
Questions 24-26
Do the following statements agree with the claims of the writer in Passage 2?
Write:
- YES if the statement agrees with the claims of the writer
- NO if the statement contradicts the claims of the writer
- NOT GIVEN if it is impossible to say what the writer thinks about this
- Compressed air energy storage can be installed in any location regardless of geological conditions.
- The production and disposal of battery storage systems have negative environmental impacts.
- Most countries have already achieved their renewable energy storage targets for 2040.
PASSAGE 3 – Advanced Battery Chemistries and the Future of Energy Storage
Độ khó: Hard (Band 7.0-9.0)
Thời gian đề xuất: 23-25 phút
The contemporary energy storage landscape is dominated by lithium-ion technology, yet this supremacy masks a fundamental vulnerability: lithium-ion batteries, despite their revolutionary impact, possess inherent limitations that constrain their applicability for certain critical use cases. The electrochemical properties of lithium impose upper bounds on energy density, safety parameters, and cost structures that cannot be overcome through incremental improvements alone. Consequently, the scientific community has intensified research into alternative battery chemistries and novel storage paradigms that could complement or eventually supersede lithium-ion technology in specific applications or markets.
Among the most promising alternatives are solid-state batteries, which replace the liquid or gel electrolyte found in conventional batteries with a solid material, typically a ceramic or glass composite. This seemingly simple substitution yields profound advantages. Solid electrolytes are non-flammable, eliminating the primary safety hazard associated with lithium-ion batteries: the potential for thermal runaway, a cascading overheating reaction that can lead to fires or explosions. Moreover, solid electrolytes can potentially accommodate lithium metal anodes rather than the graphite anodes used in current lithium-ion cells. Lithium metal offers approximately ten times the theoretical capacity of graphite, suggesting the possibility of dramatically increased energy density – potentially enabling electric vehicles with 500-mile ranges or grid storage systems with unprecedented compactness.
However, the path from laboratory demonstration to commercial deployment of solid-state batteries has proven frustratingly protracted. The solid-liquid interface between the electrolyte and electrodes presents formidable challenges. As batteries charge and discharge, electrode materials expand and contract, potentially breaking contact with the rigid solid electrolyte and degrading performance over time. Additionally, lithium dendrites – microscopic metal filaments – can form during charging, potentially piercing the solid electrolyte and causing short circuits. Researchers are exploring various solutions, including composite electrolytes that combine solid and liquid phases, and novel solid materials with greater mechanical flexibility. Several companies claim they will commercialize solid-state batteries by the mid-2020s, though skeptics note that such predictions have been repeatedly postponed.
Another promising avenue involves sodium-ion batteries, which substitute abundant sodium for relatively scarce lithium. Sodium’s greater atomic mass results in lower energy density compared to lithium-ion technology – a disadvantage for mobile applications like electric vehicles where weight matters critically. However, for stationary applications such as grid storage, where weight is irrelevant, sodium-ion batteries offer compelling advantages. Sodium is roughly 1,000 times more abundant than lithium in the Earth’s crust and distributed more evenly geographically, potentially reducing supply chain vulnerabilities and geopolitical dependencies. Furthermore, sodium-ion batteries can be manufactured using similar production equipment as lithium-ion batteries, facilitating industry transition. Recent advances have improved sodium-ion performance to levels approaching lithium-ion technology, with several Chinese manufacturers beginning commercial production in 2023.
Multivalent ion batteries represent a more radical departure from conventional designs. Rather than using monovalent ions like lithium (Li⁺) or sodium (Na⁺) that carry a single positive charge, these batteries employ divalent or trivalent ions such as magnesium (Mg²⁺) or aluminum (Al³⁺). Because each ion carries multiple charges, fewer ions need to move through the electrolyte to store the same amount of energy, potentially enabling faster charging and higher energy density. Magnesium, in particular, offers the advantage of not forming dendrites, enhancing safety. However, multivalent ions interact more strongly with surrounding atoms, moving more sluggishly through electrode materials. This reduced ionic mobility has limited the power density and cycle life achievable with multivalent batteries. Overcoming this challenge requires discovering or designing new electrode materials with crystal structures that accommodate multivalent ions more readily – a formidable materials science challenge that has occupied researchers for over two decades with only incremental progress.
Beyond metal-ion batteries, redox flow batteries offer a fundamentally different architecture. Unlike conventional batteries where energy is stored in solid electrode materials, flow batteries store energy in liquid electrolytes containing dissolved redox-active species – chemicals that can be oxidized or reduced to store and release electrons. During operation, these electrolyte solutions are pumped through an electrochemical cell where oxidation and reduction reactions occur at inert electrodes. The key advantage of this design is the decoupling of power and energy capacity: power is determined by the size of the electrochemical cell, while energy capacity depends on the volume of electrolyte stored in external tanks. This means energy capacity can be increased simply by adding larger or more numerous tanks, an economically attractive scaling characteristic for long-duration storage applications.
Various flow battery chemistries are under development, each with distinct advantages and challenges. Vanadium redox flow batteries have achieved the most commercial success, with installations in several countries providing grid support services. However, vanadium’s relative scarcity and high cost constrain widespread deployment. Organic flow batteries using carbon-based molecules rather than metal ions promise dramatically lower costs and greater sustainability, as the active materials can potentially be synthesized from biomass or waste products. Yet organic electrolytes often suffer from electrochemical degradation over time, limiting cycle life. Aqueous flow batteries using water-based electrolytes are safer and less expensive than systems using organic solvents, but face limitations in voltage window that reduce energy density.
An intriguing frontier involves metal-air batteries, which store energy by oxidizing metal anodes and reducing oxygen from ambient air at the cathode. Since one electrode (oxygen) doesn’t need to be stored, these batteries theoretically offer extraordinary energy densities comparable to gasoline – a tantalizing prospect for electric aviation and long-haul trucking where weight is paramount. Lithium-air and zinc-air batteries have garnered particular attention. However, these systems face substantial technical obstacles. The oxygen reduction reaction at the cathode is slow and inefficient, requiring expensive catalysts. The reaction products can clog electrode pores, limiting how much energy can be extracted. And most metal-air batteries have proven difficult to recharge efficiently, with some functioning better as primary batteries (single-use) rather than rechargeable systems.
The trajectory of energy storage technology development suggests that the future will not be characterized by a single dominant solution, but rather a heterogeneous ecosystem of technologies optimized for different applications. Mobile applications demanding high energy density may eventually transition to solid-state or lithium-air batteries. Grid-scale applications with duration requirements of 4-12 hours might employ advanced lithium-ion or sodium-ion systems. Long-duration storage extending to days or weeks could utilize flow batteries, compressed air systems, or even more exotic technologies like thermal energy storage or power-to-gas systems that convert electricity into storable chemical fuels. This technological pluralism reflects the diverse requirements of a decarbonized energy system and ensures that limitations in any single technology or resource do not constrain the broader renewable energy transition.
Critically, the success of emerging storage technologies depends not only on technical performance but also on the complex interplay of manufacturing scalability, supply chain logistics, regulatory frameworks, and market structures. History offers cautionary tales of superior technologies that failed commercially due to inability to achieve economies of scale, establish secure material supplies, or navigate regulatory requirements. The lithium-ion battery’s current dominance stems not only from its performance characteristics but from decades of manufacturing optimization and billions of dollars in production infrastructure investment. Displacing this incumbent technology requires not merely equivalent or marginally better performance, but sufficient advantages to justify the disruption and investment required to build new manufacturing ecosystems. Nevertheless, the imperative to decarbonize the global economy provides unprecedented momentum and resources for energy storage innovation, suggesting that the coming decades will witness continued rapid evolution in both technologies and markets.
Questions 27-31
Complete the table below.
Choose NO MORE THAN THREE WORDS from the passage for each answer.
| Battery Type | Key Advantage | Main Challenge |
|---|---|---|
| Solid-state | Eliminates fire risk due to (27) __ | Problems with (28) __ between components |
| Sodium-ion | Uses (29) __ materials than lithium | Lower energy density due to sodium’s greater atomic mass |
| Multivalent ion | Can potentially charge faster | Ions have reduced (30) __ through materials |
| Metal-air | Exceptionally high energy density | Difficult to (31) __ efficiently |
Questions 32-36
Do the following statements agree with the information given in Passage 3?
Write:
- TRUE if the statement agrees with the information
- FALSE if the statement contradicts the information
- NOT GIVEN if there is no information on this
- Solid-state batteries have already replaced lithium-ion batteries in most electric vehicles.
- Sodium is more evenly distributed around the world than lithium.
- Multivalent ion batteries have been researched for more than twenty years.
- Vanadium redox flow batteries are the cheapest type of flow battery available.
- Flow batteries can increase their energy storage capacity by adding more liquid storage tanks.
Questions 37-40
Choose the correct letter, A, B, C or D.
-
What does the passage suggest about lithium-ion batteries?
- A) They will be completely replaced within five years
- B) They have fundamental limitations that cannot be solved by minor improvements
- C) They are no longer used in any applications
- D) They are the least expensive battery technology available
-
According to the passage, what is a key advantage of redox flow batteries?
- A) They are smaller than other battery types
- B) Power capacity and energy capacity can be scaled independently
- C) They use solid materials instead of liquids
- D) They last forever without degrading
-
What does the passage indicate about the future of energy storage technology?
- A) One new technology will replace all others
- B) Different technologies will be used for different purposes
- C) All technologies will become obsolete
- D) Costs will make new technologies impractical
-
What does the passage suggest is necessary for new battery technologies to succeed commercially?
- A) Only superior technical performance
- B) Government regulations prohibiting old technologies
- C) Technical performance plus manufacturing capability and market factors
- D) Lower costs than all existing alternatives
Answer Keys – Đáp Án
PASSAGE 1: Questions 1-13
- FALSE
- TRUE
- TRUE
- TRUE
- NOT GIVEN
- NOT GIVEN
- intermittent
- lifespan
- blackouts
- energy density
- B
- B
- B
PASSAGE 2: Questions 14-26
- B
- C
- B
- C
- B
- B
- frequency regulation
- voltage support
- load shifting
- peak usage
- NO
- YES
- NOT GIVEN
PASSAGE 3: Questions 27-40
- non-flammable (electrolyte)
- solid-liquid interface
- abundant
- ionic mobility
- recharge
- FALSE
- TRUE
- TRUE
- NOT GIVEN
- TRUE
- B
- B
- B
- C
Giải Thích Đáp Án Chi Tiết
Passage 1 – Giải Thích
Câu 1: FALSE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: renewable energy sources, produce electricity consistently
- Vị trí trong bài: Đoạn 1, dòng 3-5
- Giải thích: Bài viết nói rõ “renewable energy sources are intermittent – they only produce power when the sun shines or the wind blows”, nghĩa là chúng KHÔNG sản xuất điện một cách nhất quán suốt ngày đêm. Câu này mâu thuẫn với thông tin trong bài.
Câu 2: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: lithium-ion batteries, same type, personal electronic devices, larger
- Vị trí trong bài: Đoạn 2, dòng 4-6
- Giải thích: Bài viết nêu “the same technology found in smartphones and laptops, but scaled up to industrial sizes” – đúng với nội dung câu hỏi về việc pin lithium-ion là cùng loại nhưng lớn hơn.
Câu 3: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: cost, 90%, 2010-2020
- Vị trí trong bài: Đoạn 3, dòng 5-7
- Giải thích: Bài viết nêu rõ “Between 2010 and 2020, the cost of lithium-ion batteries fell by nearly 90%”, trùng khớp hoàn toàn với câu hỏi.
Câu 4: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: battery systems, adjust, faster, traditional power plants
- Vị trí trong bài: Đoạn 4, dòng 2-4
- Giải thích: Bài viết so sánh “Unlike large power plants that can take hours to start up or shut down, batteries can respond to changes in electricity demand within milliseconds” – rõ ràng pin phản ứng nhanh hơn nhiều.
Câu 5: NOT GIVEN
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: Hornsdale Power Reserve, world’s first
- Vị trí trong bài: Đoạn 5, dòng 4-6
- Giải thích: Bài viết chỉ nói đây là “one of the first large-scale battery installations” (một trong những cơ sở đầu tiên) chứ KHÔNG nói là cơ sở đầu tiên trên thế giới.
Câu 7: intermittent
- Dạng câu hỏi: Sentence Completion
- Từ khóa: fossil fuel plants, renewable energy sources
- Vị trí trong bài: Đoạn 1, dòng 3-4
- Giải thích: Từ “intermittent” mô tả đặc điểm của năng lượng tái tạo – không liên tục, chỉ hoạt động trong điều kiện nhất định.
Câu 10: energy density
- Dạng câu hỏi: Sentence Completion
- Từ khóa: how much energy, stored, size or weight
- Vị trí trong bài: Đoạn 6, dòng 3-4
- Giải thích: “Energy density” được định nghĩa là “the amount of energy that can be stored per unit of weight or volume” – trùng với ý nghĩa câu hỏi.
Câu 11: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: main challenge, renewable energy sources
- Vị trí trong bài: Đoạn 1
- Giải thích: Thách thức chính được nêu là tính “intermittent” – chỉ hoạt động trong điều kiện thời tiết cụ thể (when the sun shines or the wind blows), tương ứng với đáp án B.
Câu 13: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: environmental concern
- Vị trí trong bài: Đoạn 6, dòng 5-7
- Giải thích: Bài viết nêu rõ “Lithium mining can damage ecosystems” – khai thác lithium có thể làm tổn hại môi trường tự nhiên, đúng với đáp án B.
Công nghệ pin lithium-ion hiện đại dùng cho lưu trữ năng lượng tái tạo quy mô lớn
Passage 2 – Giải Thích
Câu 14: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: main problem, integrating renewable energy
- Vị trí trong bài: Đoạn 1, dòng 4-7
- Giải thích: Vấn đề chính là “temporal mismatch between production and consumption” – năng lượng được sản xuất theo điều kiện thời tiết chứ không theo nhu cầu, tương ứng với đáp án B.
Câu 15: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: cost, lithium-ion storage, past decade
- Vị trí trong bài: Đoạn 3, dòng 2-5
- Giải thích: Từ $1,000 xuống $150 per kilowatt-hour = giảm 85%, phù hợp với đáp án C “decreased by more than 80%”.
Câu 16: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: flow batteries, advantage, lithium-ion
- Vị trí trong bài: Đoạn 5, dòng 4-6
- Giải thích: “Flow batteries offer advantages in longevity, with some designs capable of 10,000 or more charge-discharge cycles” – nhiều chu kỳ sạc-xả hơn, đúng với đáp án B.
Câu 17: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: pumped hydroelectric storage, limitation
- Vị trí trong bài: Đoạn 6, dòng 5-8
- Giải thích: “Pumped hydro requires specific geographical features: substantial elevation differences and available water resources” – cần địa hình đặc biệt, tương ứng với đáp án C.
Câu 18: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: energy storage, changed electricity markets
- Vị trí trong bài: Đoạn 7, dòng 2-4
- Giải thích: “Storage facilities act as both buyers and sellers of electricity” – vừa mua vừa bán điện, đúng với đáp án B.
Câu 20-23: frequency regulation / voltage support / load shifting / peak usage
- Dạng câu hỏi: Summary Completion
- Vị trí trong bài: Đoạn 2, dòng 3-7
- Giải thích: Các chức năng được liệt kê rõ ràng: frequency regulation (điều chỉnh tần số), voltage support (hỗ trợ điện áp), load shifting (dịch chuyển tải), và peak usage times (thời gian cao điểm).
Câu 24: NO
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: compressed air energy storage, any location
- Vị trí trong bài: Đoạn 5, dòng 8-9
- Giải thích: Bài viết nêu rõ “limited by geographical requirements for suitable underground formations” – BỊ HẠN CHẾ bởi yêu cầu địa chất, mâu thuẫn với “any location”.
Câu 25: YES
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: production, disposal, battery storage, negative environmental impacts
- Vị trí trong bài: Đoạn 8, dòng 5-8
- Giải thích: Tác giả khẳng định “the production of storage technologies carries its own environmental footprint” và “end-of-life disposal and recycling of batteries present additional challenges” – đồng ý có tác động tiêu cực.
Hệ thống lưu trữ năng lượng điện lưới quy mô lớn với pin và công nghệ thủy điện bơm
Passage 3 – Giải Thích
Câu 27: non-flammable (electrolyte)
- Dạng câu hỏi: Table Completion
- Từ khóa: solid-state, eliminates fire risk
- Vị trí trong bài: Đoạn 2, dòng 4-6
- Giải thích: “Solid electrolytes are non-flammable, eliminating the primary safety hazard” – chất điện giải không cháy loại bỏ nguy cơ hỏa hoạn.
Câu 28: solid-liquid interface
- Dạng câu hỏi: Table Completion
- Từ khóa: solid-state, main challenge
- Vị trí trong bài: Đoạn 3, dòng 2-3
- Giải thích: “The solid-liquid interface between the electrolyte and electrodes presents formidable challenges” – bề mặt tiếp xúc rắn-lỏng là thách thức chính.
Câu 29: abundant
- Dạng câu hỏi: Table Completion
- Từ khóa: sodium-ion, key advantage
- Vị trí trong bài: Đoạn 4, dòng 5-7
- Giải thích: “Sodium is roughly 1,000 times more abundant than lithium” – natri phong phú hơn nhiều, đây là lợi thế về nguồn nguyên liệu.
Câu 30: ionic mobility
- Dạng câu hỏi: Table Completion
- Từ khóa: multivalent ion, main challenge
- Vị trí trong bài: Đoạn 5, dòng 7-8
- Giải thích: “This reduced ionic mobility has limited the power density” – tính di động ion giảm là vấn đề chính.
Câu 31: recharge
- Dạng câu hỏi: Table Completion
- Từ khóa: metal-air, difficult to
- Vị trí trong bài: Đoạn 8, dòng 7-8
- Giải thích: “Most metal-air batteries have proven difficult to recharge efficiently” – khó sạc lại hiệu quả.
Câu 32: FALSE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: solid-state batteries, already replaced, most electric vehicles
- Vị trí trong bài: Đoạn 3, dòng 7-8
- Giải thích: “Several companies claim they will commercialize solid-state batteries by the mid-2020s” – vẫn CHƯA thương mại hóa, chứ không phải đã thay thế.
Câu 33: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: sodium, more evenly distributed, than lithium
- Vị trí trong bài: Đoạn 4, dòng 6-7
- Giải thích: “Distributed more evenly geographically” – natri phân bố đều hơn về mặt địa lý.
Câu 34: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: multivalent ion batteries, researched, more than twenty years
- Vị trí trong bài: Đoạn 5, dòng 10-11
- Giải thích: “A formidable materials science challenge that has occupied researchers for over two decades” – hơn 20 năm nghiên cứu.
Câu 36: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: flow batteries, increase, energy storage capacity, adding tanks
- Vị trí trong bài: Đoạn 6, dòng 7-9
- Giải thích: “Energy capacity can be increased simply by adding larger or more numerous tanks” – đúng với câu hỏi.
Câu 37: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: lithium-ion batteries
- Vị trí trong bài: Đoạn 1, dòng 2-5
- Giải thích: “Possess inherent limitations that constrain their applicability… cannot be overcome through incremental improvements alone” – có giới hạn cơ bản không thể khắc phục bằng cải tiến nhỏ, đúng với đáp án B.
Câu 38: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: redox flow batteries, key advantage
- Vị trí trong bài: Đoạn 6, dòng 6-9
- Giải thích: “The key advantage of this design is the decoupling of power and energy capacity” – công suất và dung lượng năng lượng có thể mở rộng độc lập, đúng với đáp án B.
Câu 39: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: future, energy storage technology
- Vị trí trong bài: Đoạn 9, dòng 1-4
- Giải thích: “The future will not be characterized by a single dominant solution, but rather a heterogeneous ecosystem of technologies optimized for different applications” – nhiều công nghệ khác nhau cho các ứng dụng khác nhau, đúng với đáp án B.
Câu 40: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: necessary, new battery technologies, succeed commercially
- Vị trí trong bài: Đoạn 10, dòng 1-3
- Giải thích: “Success depends not only on technical performance but also on the complex interplay of manufacturing scalability, supply chain logistics, regulatory frameworks, and market structures” – cần cả hiệu suất kỹ thuật và các yếu tố sản xuất, thị trường, đúng với đáp án C.
Từ Vựng Quan Trọng Theo Passage
Passage 1 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| renewable energy | n | /rɪˈnjuːəbl ˈenədʒi/ | năng lượng tái tạo | renewable energy sources such as solar and wind power | renewable energy sector/industry |
| intermittent | adj | /ˌɪntəˈmɪtənt/ | gián đoạn, không liên tục | renewable energy sources are intermittent | intermittent power supply |
| variability | n | /ˌveəriəˈbɪləti/ | tính biến đổi, dao động | This variability presents a significant challenge | climate variability |
| grid-scale storage | n | /ɡrɪd skeɪl ˈstɔːrɪdʒ/ | lưu trữ quy mô lưới điện | making them economically viable for grid-scale storage | grid-scale battery system |
| lithium-ion battery | n | /ˈlɪθiəm ˈaɪən ˈbætəri/ | pin lithium-ion | The most common type used today is the lithium-ion battery | lithium-ion battery technology |
| capacity | n | /kəˈpæsəti/ | dung lượng, công suất | improve battery capacity and lifespan | storage capacity, power capacity |
| lifespan | n | /ˈlaɪfspæn/ | tuổi thọ, thời gian sử dụng | batteries had limited storage capacity and degraded quickly | extended lifespan |
| flexibility | n | /ˌfleksəˈbɪləti/ | tính linh hoạt | One of the key advantages of battery storage is its flexibility | operational flexibility |
| milliseconds | n | /ˈmɪlɪˌsekəndz/ | mili giây | batteries can respond within milliseconds | react in milliseconds |
| blackouts | n | /ˈblækaʊts/ | mất điện, cúp điện | preventing blackouts and ensuring reliable power | power blackouts |
| energy density | n | /ˈenədʒi ˈdensəti/ | mật độ năng lượng | limitations in terms of energy density | high energy density |
| environmental impact | n | /ɪnˌvaɪrənˈmentl ˈɪmpækt/ | tác động môi trường | the environmental impact of battery production | reduce environmental impact |
Passage 2 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| intermittent nature | n | /ˌɪntəˈmɪtənt ˈneɪtʃə/ | bản chất gián đoạn | the intermittent nature of renewable sources | intermittent nature of wind |
| dispatchable generation | n | /dɪˈspætʃəbl ˌdʒenəˈreɪʃn/ | phát điện có thể điều khiển | designed around dispatchable generation | dispatchable power generation |
| temporal mismatch | n | /ˈtempərəl ˈmɪsmætʃ/ | sự không khớp về thời gian | creating a temporal mismatch between production and consumption | temporal mismatch problem |
| frequency regulation | n | /ˈfriːkwənsi ˌreɡjuˈleɪʃn/ | điều chỉnh tần số | They provide frequency regulation | frequency regulation services |
| voltage support | n | /ˈvəʊltɪdʒ səˈpɔːt/ | hỗ trợ điện áp | They offer voltage support | voltage support system |
| load shifting | n | /ləʊd ˈʃɪftɪŋ/ | dịch chuyển tải | they enable load shifting | load shifting capability |
| business case | n | /ˈbɪznəs keɪs/ | lý do kinh doanh, tính khả thi | fundamentally altered the business case for storage | strong business case |
| power density | n | /ˈpaʊə ˈdensəti/ | mật độ công suất | Their high power density | high power density |
| degradation | n | /ˌdeɡrəˈdeɪʃn/ | sự suy giảm, thoái hóa | without significant degradation | battery degradation |
| round-trip efficiency | n | /raʊnd trɪp ɪˈfɪʃnsi/ | hiệu suất khứ hồi | The round-trip efficiency typically ranges from 70% to 85% | high round-trip efficiency |
| regulatory frameworks | n | /ˈreɡjələtəri ˈfreɪmwɜːks/ | khung pháp lý | reshaping electricity markets and regulatory frameworks | supportive regulatory frameworks |
| ancillary services | n | /ænˈsɪləri ˈsɜːvɪsɪz/ | dịch vụ phụ trợ | providing ancillary services | ancillary services market |
| transmission losses | n | /trænzˈmɪʃn ˈlɒsɪz/ | tổn thất truyền tải | minimize transmission losses | reduce transmission losses |
| portfolio approach | n | /pɔːtˈfəʊliəʊ əˈprəʊtʃ/ | phương pháp danh mục đầu tư | advocates for a portfolio approach | diversified portfolio approach |
So sánh các công nghệ pin lưu trữ năng lượng hiện đại và tương lai
Passage 3 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| electrochemical properties | n | /ɪˌlektrəʊˈkemɪkl ˈprɒpətiz/ | tính chất điện hóa | The electrochemical properties of lithium | electrochemical properties of materials |
| alternative battery chemistries | n | /ɔːlˈtɜːnətɪv ˈbætəri ˈkemɪstriz/ | hóa học pin thay thế | research into alternative battery chemistries | explore alternative chemistries |
| solid-state batteries | n | /ˈsɒlɪd steɪt ˈbætəriz/ | pin thể rắn | Among the most promising alternatives are solid-state batteries | solid-state battery technology |
| electrolyte | n | /ɪˈlektrəlaɪt/ | chất điện phân | replace the liquid or gel electrolyte | liquid electrolyte, solid electrolyte |
| thermal runaway | n | /ˈθɜːml ˈrʌnəweɪ/ | phản ứng nhiệt ngoài tầm kiểm soát | the potential for thermal runaway | thermal runaway reaction |
| lithium metal anodes | n | /ˈlɪθiəm ˈmetl ˈænəʊdz/ | cực âm kim loại lithium | accommodate lithium metal anodes | lithium metal anode material |
| theoretical capacity | n | /ˌθɪəˈretɪkl kəˈpæsəti/ | dung lượng lý thuyết | ten times the theoretical capacity of graphite | high theoretical capacity |
| lithium dendrites | n | /ˈlɪθiəm ˈdendrʌɪts/ | mầm lithium | lithium dendrites can form during charging | dendrite formation |
| sodium-ion batteries | n | /ˈsəʊdiəm ˈaɪən ˈbætəriz/ | pin sodium-ion | Another promising avenue involves sodium-ion batteries | sodium-ion battery development |
| atomic mass | n | /əˈtɒmɪk mæs/ | khối lượng nguyên tử | Sodium’s greater atomic mass results in lower energy density | relative atomic mass |
| multivalent ion batteries | n | /ˌmʌltiˈveɪlənt ˈaɪən ˈbætəriz/ | pin ion đa hóa trị | Multivalent ion batteries represent a radical departure | multivalent ion chemistry |
| ionic mobility | n | /aɪˈɒnɪk məʊˈbɪləti/ | tính di động của ion | This reduced ionic mobility has limited power density | high ionic mobility |
| redox flow batteries | n | /ˈriːdɒks fləʊ ˈbætəriz/ | pin dòng chảy redox | redox flow batteries offer a fundamentally different architecture | redox flow battery system |
| redox-active species | n | /ˈriːdɒks ˈæktɪv ˈspiːʃiːz/ | chất hoạt động redox | liquid electrolytes containing dissolved redox-active species | redox-active compounds |
| electrochemical cell | n | /ɪˌlektrəʊˈkemɪkl sel/ | tế bào điện hóa | pumped through an electrochemical cell | electrochemical cell design |
| decoupling | n | /diːˈkʌplɪŋ/ | sự tách rời | the decoupling of power and energy capacity | energy decoupling |
| scaling characteristic | n | /ˈskeɪlɪŋ ˌkærəktəˈrɪstɪk/ | đặc tính mở rộng quy mô | an economically attractive scaling characteristic | favorable scaling characteristics |
| heterogeneous ecosystem | n | /ˌhetərəˈdʒiːniəs ˈiːkəʊˌsɪstəm/ | hệ sinh thái không đồng nhất | a heterogeneous ecosystem of technologies | diverse heterogeneous ecosystem |
| incumbent technology | n | /ɪnˈkʌmbənt tekˈnɒlədʒi/ | công nghệ hiện hành | Displacing this incumbent technology requires | incumbent technology advantage |
Kết Luận
Chủ đề Advances in renewable energy storage không chỉ là một xu hướng quan trọng trong kỳ thi IELTS Reading mà còn phản ánh một trong những thách thức công nghệ lớn nhất của thế kỷ 21. Qua bộ đề thi mẫu hoàn chỉnh này với 3 passages từ easy đến hard, bạn đã được tiếp cận với cấu trúc đề thi thực tế, làm quen với 40 câu hỏi đa dạng thuộc 7 dạng khác nhau, và học được hơn 40 từ vựng quan trọng liên quan đến năng lượng tái tạo.
Ba passages trong đề thi này được thiết kế cẩn thận để tái hiện chính xác độ khó tăng dần như trong đề thi IELTS thật. Passage 1 cung cấp kiến thức cơ bản về pin lithium-ion và lưu trữ năng lượng, phù hợp với học viên band 5.0-6.5. Passage 2 đi sâu vào các hệ thống lưu trữ quy mô lưới điện với từ vựng học thuật và cấu trúc phức tạp hơn, thách thức học viên ở mức band 6.0-7.5. Passage 3 khám phá các công nghệ pin tiên tiến với ngôn ngữ chuyên ngành và yêu cầu khả năng phân tích cao, phù hợp cho học viên mục tiêu band 7.0-9.0.
Đáp án chi tiết kèm theo giải thích rõ ràng về vị trí thông tin, cách paraphrase, và chiến lược làm bài sẽ giúp bạn không chỉ biết đáp án đúng mà còn hiểu được cách tiếp cận từng dạng câu hỏi một cách bài bản. Hãy tận dụng bộ từ vựng được tổng hợp theo từng passage để xây dựng vốn từ vựng học thuật của mình, đặc biệt chú ý đến các collocations và cách sử dụng từ trong ngữ cảnh.
Để đạt hiệu quả tối đa khi luyện tập với đề thi này, hãy làm bài trong điều kiện giống thi thật với giới hạn thời gian 60 phút, sau đó đối chiếu đáp án và đọc kỹ phần giải thích. Việc tương tự như How renewable energy innovations are combating climate change đã cho thấy, việc thực hành đều đặn với các đề thi chất lượng là chìa khóa để nâng cao band điểm Reading. Ngoài ra, bạn có thể tham khảo thêm về The rise of green energy technologies để mở rộng kiến thức về các chủ đề liên quan.
Chúc bạn học tập hiệu quả và đạt được band điểm mong muốn trong kỳ thi IELTS sắp tới!