Mở bài
How E-learning Is Transforming Education không chỉ là một xu hướng công nghệ, mà còn là đề tài thường xuyên xuất hiện trong IELTS Reading vì nó kết hợp giữa giáo dục, xã hội và đổi mới – ba mảng nội dung “ưa thích” trong các bài đọc học thuật. Trong bài viết này, bạn sẽ được luyện một đề IELTS Reading hoàn chỉnh gồm 3 passages tăng dần độ khó (Easy → Medium → Hard), bám sát format Cambridge và xoay quanh chủ đề How e-learning is transforming education. Bạn sẽ học được:
- Chiến lược làm bài theo từng dạng câu hỏi
- Bài tập IELTS Reading sát thi thật với 40 câu hỏi
- Đáp án chi tiết, phân tích paraphrase và vị trí dẫn chứng
- Từ vựng học thuật chủ điểm “giáo dục số” và kỹ thuật làm bài
Bài phù hợp cho thí sinh từ band 5.0 trở lên muốn tăng tốc độ đọc, nhận diện paraphrase, và xử lý dạng câu hỏi khó.
1. Hướng dẫn làm bài IELTS Reading
Tổng Quan Về IELTS Reading Test
- Thời gian: 60 phút cho 3 passages
- Tổng số câu hỏi: 40 câu
- Phân bổ thời gian khuyến nghị:
- Passage 1: 15-17 phút
- Passage 2: 18-20 phút
- Passage 3: 23-25 phút
Chiến Lược Làm Bài Hiệu Quả
- Đọc câu hỏi trước, sau đó đọc passage (skimming để lấy ý chính, scanning để tìm chi tiết)
- Chú ý từ khóa và paraphrase (ví dụ: online learning ~ digital instruction ~ virtual classes)
- Quản lý thời gian chặt chẽ, bỏ qua bẫy trùng từ
- Không bỏ trống câu nào; đoán có cơ sở khi cần
Chiến lược IELTS Reading về How e-learning is transforming education
Các Dạng Câu Hỏi Trong Đề Này
- Multiple Choice
- True/False/Not Given
- Sentence Completion
- Yes/No/Not Given (quan điểm tác giả)
- Matching Headings
- Summary Completion
- Matching Sentence Endings
- Short-answer Questions
2. IELTS Reading Practice Test
PASSAGE 1 – From Chalkboards to Clicks
Độ khó: Easy (Band 5.0-6.5)
Thời gian đề xuất: 15-17 phút
The story of education has long been told through the tools it uses. From dusty chalkboards to overhead projectors, each device reflected how teachers and learners interacted. Today, the shift to e-learning signals more than another classroom gadget; it represents a fundamental change in how knowledge is accessed, delivered, and assessed. E-learning is not simply video lessons placed on a screen. It is an ecosystem of platforms, analytics, and interactive content that can adapt to different learners at scale.
In its basic form, e-learning offers flexibility: students can learn at their own pace and on their own schedule. For working adults, this means the difference between postponing education and continuing it. For teenagers living far from urban centers, online platforms can bring high-quality lessons within reach. At the same time, the cost of delivering an extra copy of a digital course is low, which allows popular courses to reach thousands of learners with minimal extra expense.
However, flexibility doesn’t automatically lead to success. Many first-time online learners struggle without the structure of a traditional classroom. When there is no timetable, no peers to sit next to, and no teacher watching, some learners find it hard to stay motivated. To address this, e-learning platforms add reminders, microlearning units, and short quizzes to keep learners engaged. Some courses incorporate discussion forums so students can ask questions, share insights, and build a sense of community.
The role of the teacher also changes. In a digital course, the teacher becomes a designer of learning experiences, choosing what to present as videos, what to give as readings, and what to turn into hands-on tasks. Teachers can use data dashboards to see which students are struggling, which concepts cause confusion, and which activities are most effective. This feedback loop helps teachers improve their materials week by week rather than waiting for the end of a term.
E-learning also supports blended or flipped classrooms. In a flipped model, students watch core explanations at home and use class time for problem-solving and discussion. The result is that classroom time becomes more active. Instead of listening passively, students apply, analyze, and create, while the teacher coaches them. This approach has been especially effective in language learning and introductory science courses.
Still, challenges remain. Not every learner has a reliable device or fast internet. This digital divide can make e-learning feel unfair, especially in rural or low-income areas. Moreover, not all subjects transfer easily to a screen. Hands-on skills, like certain types of laboratory work, require equipment that a typical household does not have. While virtual labs and simulations are improving, they cannot fully replace real-world practice.
Another worry is the high dropout rate seen in some large online courses. When thousands enroll, many do not finish. Yet, completion rates can be improved with clear goals, shorter modules, and regular feedback. Some platforms also pair learners with mentors or study groups, which increases accountability and enjoyment.
Despite these issues, the direction is clear: e-learning is becoming a permanent part of education. From short courses for professional development to full degrees offered online, the range of options is expanding. As tools become more user-friendly and as teachers learn to design better digital experiences, learners will benefit from customized paths and more immediate support.
In the end, e-learning is not about replacing teachers or classrooms. It is about expanding what is possible—reaching more people, offering more choices, and using data to make learning smarter. The future classroom may not have walls, but it will still have goals, guidance, and a human desire to grow.
Note: In this passage, key terms such as “blended”, “microlearning”, and “digital divide” highlight how e-learning is transforming education through both opportunities and challenges. For many, the most important skill is not simply using a platform but learning how to learn online.
Instructions: In the passage, we will use some simple and bold structures to show how ideas are built, such as cause and effect (This … means …), contrast (However, …), and final evaluation (In the end, …).
Make sure all bolded terms are reviewed in the vocabulary section to support your IELTS Reading test strategy.
Questions 1-13
Questions 1-4
Choose the correct letter, A, B, C or D.
-
According to the passage, e-learning is best described as
A a cheaper way to watch lectures.
B a complete replacement for classrooms.
C an ecosystem of tools enabling adaptive learning.
D a series of videos with short quizzes. -
What is presented as a key advantage of e-learning for working adults?
A More social interaction
B Greater scheduling flexibility
C A guarantee of completion
D Access to laboratory equipment -
The flipped classroom model mainly aims to
A reduce the role of teachers.
B make classroom time more active.
C decrease homework load.
D limit discussion among students. -
Which factor is suggested to improve completion rates?
A Longer modules
B Removing deadlines
C Clear goals and regular feedback
D Eliminating discussion forums
Questions 5-9
Do the following statements agree with the information in the passage?
Write TRUE, FALSE or NOT GIVEN.
- E-learning always reduces the cost of creating a course.
- Some learners struggle online because they lack external structure.
- Teachers in digital courses can track student progress through data.
- Virtual labs have fully replaced real equipment.
- Mentors or study groups can increase accountability.
Questions 10-13
Complete the sentences below.
Choose NO MORE THAN THREE WORDS AND/OR A NUMBER for each answer.
- E-learning platforms use __ to maintain learner engagement.
- In a flipped model, students watch __ at home.
- A major barrier to e-learning in rural areas is the __.
- The future of education will still require __ and human support.
PASSAGE 2 – Measuring What Matters in E-learning
Độ khó: Medium (Band 6.0-7.5)
Thời gian đề xuất: 18-20 phút
(A) When people ask whether e-learning “works,” they usually mean test scores. Yet a singular focus on grades hides many variables: prior knowledge, time-on-task, and the quality of instructional design. Recent meta-analyses suggest that online learning can be as effective as face-to-face instruction, provided courses are intentionally designed. What matters is not the screen itself but the pedagogical alignment—how goals, content, and assessment fit together.
(B) Engagement is often treated as the universal fuel for learning, but it is rarely measured consistently. Some platforms equate engagement with clicks or minutes logged, which can be misleading. A learner may spend an hour playing a video while being mentally absent. Researchers argue for a richer model: behavioral engagement (actions taken), cognitive engagement (mental effort), and emotional engagement (interest or anxiety). Well-designed e-learning deliberately cultivates all three.
(C) Equity is another measure that e-learning cannot ignore. Broadband inequalities and device scarcity can turn a promising platform into a gatekeeper. Designers increasingly adopt offline-first strategies, compressing videos, offering transcripts, and enabling low-bandwidth modes. Universal Design for Learning (UDL) principles encourage multiple means of representation and expression, making content more accessible for diverse learners, including those with disabilities.
(D) The question of assessment shows the strengths and weaknesses of digital formats. On one hand, frequent low-stakes quizzes provide immediate feedback, guiding learners without the fear of high penalties. On the other, cheating is a reasonable concern, especially in unsupervised environments. Proctoring technologies attempt to address this, but they raise privacy issues and can introduce false positives. A more constructive approach mixes authentic tasks—projects, case studies, and portfolios—with automated checks.
(E) Teacher workload is the silent cost of digital transformation. Good online courses require up-front investment: scripting videos, building activities, and iterating based on analytics. During delivery, instructors may face a constant stream of forum posts and messages. Institutions that succeed with e-learning tend to support instructional designers, teaching assistants, and clear communication norms, ensuring that teachers do not drown in invisible labor.
The combined picture is nuanced: e-learning is not a miracle cure and not a hollow buzzword. When thoughtfully designed and fairly supported, it can widen access, personalize feedback, and make assessment more meaningful.
Đo lường hiệu quả e-learning theo IELTS Reading và chiến lược
Instructions: In the following questions, remember that Yes/No/Not Given evaluate the writer’s views. Headings test the main idea per paragraph. Summary completion checks precise detail and paraphrase recognition.
Questions 14-26
Questions 14-18
Do the statements below agree with the views of the writer?
Write YES, NO or NOT GIVEN.
- Comparing online and face-to-face learning is meaningless.
- Engagement should be measured in more than one way.
- UDL principles exclude learners with disabilities.
- Proctoring always solves cheating without side effects.
- Institutions need to offer support roles to make e-learning sustainable.
Questions 19-23
Matching Headings
Choose the correct heading for paragraphs A–E from the list below.
Write the correct number, i–viii, next to each paragraph.
Headings
i Rethinking how we define engagement
ii A balanced view of e-learning’s promise
iii The hidden labor behind online courses
iv Test scores versus the logic of design
v Cheating is easy online and should be ignored
vi Designing for access across diverse needs
vii Proctoring is the only reliable solution
viii Feedback-rich assessment without fear
- Paragraph A
- Paragraph B
- Paragraph C
- Paragraph D
- Paragraph E
Questions 24-26
Summary Completion
Choose NO MORE THAN TWO WORDS from the passage for each answer.
Well-designed e-learning emphasizes (24) __ alignment, ensuring that goals and tests fit. To avoid narrow measures of participation, researchers describe (25) __ types of engagement. Meanwhile, accessibility improves when designers follow (26) __ principles that provide multiple forms of content and expression.
PASSAGE 3 – Algorithms, Fairness, and the Future Classroom
Độ khó: Hard (Band 7.0-9.0)
Thời gian đề xuất: 23-25 phút
E-learning at scale generates vast traces of learner activity—clicks, pauses, quiz attempts—that can be modeled to guide instruction. Beneath the glossy interface, algorithms perform knowledge tracing, estimating what a learner likely knows and recommending the next task. While early systems used simple Bayesian updates, modern platforms deploy deep-sequence models that detect patterns across thousands of interactions. The promise is personalization: not everyone should receive the same exercise at the same time.
Yet personalization is not a synonym for pedagogy. An algorithm can optimize short-term quiz scores while undermining deeper learning if it narrows content too aggressively. To counter this, some designers combine Item Response Theory (IRT) with mastery learning, ensuring that items vary in difficulty and that learners progress only after demonstrating robust understanding. Still, any metric can be gamed. If an algorithm learns that “hints” correlate with success, it might over-recommend hints, producing fragile knowledge.
Evaluation remains contentious. A/B tests help compare variants, but they often capture local improvements—slightly higher click-through rates, marginally faster completion—rather than transfer or long-term retention. Causal inference methods, such as propensity score matching or instrumental variables, attempt to approximate randomized trials in messy real-world data. Even then, interpreting results requires theoretical humility: the same feature may aid novices and distract experts.
Fairness and privacy are no longer peripheral concerns; they are integral to trust. Predictive models can inherit bias from historical data, systematically underestimating certain groups. A feedback loop emerges: low expectations produce fewer opportunities, which then validate the original prediction. Techniques like counterfactual evaluation and fairness constraints attempt to mitigate disparities, but they raise a strategic question: What outcomes are we optimizing—for speed, for equity, for curiosity?
Data governance adds another layer of complexity. Learning records are deeply personal, revealing not only what we know but how we struggle. Privacy-preserving approaches, including differential privacy and federated learning, seek to analyze patterns without centralizing raw data. These methods reduce risk but complicate analytics pipelines and often require specialized expertise that schools may lack.
The role of educators shifts from content delivery to learning engineering—crafting experiences informed by evidence, not just intuition. This includes designing retrieval practice with spaced repetition, sequencing activities that interleave concepts, and constructing assessments that reward understanding over recall. In such a model, teachers, data scientists, and instructional designers collaborate, each bringing complementary expertise to refine the pedagogical contract—the mutual expectations between learners and institutions.
Credentials are evolving as well. Micro-credentials and stackable certificates promise granular recognition of skills, enabling learners to assemble pathways aligned with labor-market signals. However, if employers cannot trust the validity of these signals, the system risks credential inflation: more badges with less meaning. Transparent assessment standards and verifiable artifacts—code repositories, design portfolios, clinical logs—anchor credentials in observable performance.
The future classroom is unlikely to be purely virtual or purely physical. Rather, it will be hybrid, allocating activities to contexts where they work best. Laboratories and studios cultivate tacit knowledge that cannot be captured by multiple-choice items. Online environments excel at scale, flexibility, and immediate feedback. The challenge is architectural: orchestrating systems so that data, people, and policies cohere without reducing education to dashboards and dials.
In sum, e-learning is transforming education by expanding the design space: new representations of knowledge, new feedback loops, and new forms of recognition. But transformation without purpose can drift. The hardest questions are not technical: What do we value, and how will we know when we are achieving it?
Thuật toán, công bằng và lớp học tương lai trong e-learning
Questions 27-40
Questions 27-31
Choose the correct letter, A, B, C or D.
-
Knowledge tracing helps by
A recording grades for accreditation.
B estimating a learner’s current understanding.
C preventing hint usage.
D eliminating the need for teachers. -
A potential risk of aggressive personalization is
A excessive content diversity.
B improved transfer of learning.
C narrowing content that weakens deep learning.
D higher long-term retention. -
Which method attempts to handle non-random data in evaluation?
A Spaced repetition
B Instrumental variables
C Mastery learning
D Item Response Theory -
Fairness constraints are used to
A increase credential numbers.
B reduce systematic disparities.
C centralize raw learner data.
D boost click-through rates. -
Federated learning primarily aims to
A move all data to one server.
B prevent any model training.
C analyze without centralizing data.
D replace instructional designers.
Questions 32-36
Matching Sentence Endings
Complete each sentence with the correct ending, A–G.
Write the correct letter, A–G, next to questions 32–36.
Sentence beginnings
32. A/B tests can demonstrate
33. Propensity score matching helps
34. Spaced repetition is designed to
35. Micro-credentials risk inflation when
36. A hybrid classroom seeks to
Sentence endings
A sequence review for long-term retention.
B small local improvements rather than long-term transfer.
C optimize activities for both online and physical contexts.
D verify identities during proctoring.
E approximate randomized comparisons in observational data.
F provide unlimited laboratory access.
G employers doubt the validity of signals.
Questions 37-40
Answer the questions below.
Choose NO MORE THAN THREE WORDS AND/OR A NUMBER for each answer.
- Which combination ensures progression only after strong understanding?
- What can create a feedback loop of low expectations?
- Which privacy method analyzes patterns without sending raw data to a central server?
- What anchors credentials in observable performance?
3. Answer Keys – Đáp Án
PASSAGE 1: Questions 1-13
- C
- B
- B
- C
- FALSE
- TRUE
- TRUE
- FALSE
- TRUE
- reminders/short quizzes
- core explanations
- digital divide
- goals (and guidance)
PASSAGE 2: Questions 14-26
- NO
- YES
- NO
- NO
- YES
- iv
- i
- vi
- viii
- iii
- pedagogical
- three
- UDL
PASSAGE 3: Questions 27-40
- B
- C
- B
- B
- C
- B
- E
- A
- G
- C
- IRT and mastery learning
- bias (from historical data)
- federated learning
- verifiable artifacts
4. Giải Thích Đáp Án Chi Tiết
Passage 1 – Giải Thích
Câu 1: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: “ecosystem of platforms, analytics, and interactive content”
- Vị trí: Đoạn 1, câu 3
- Giải thích: Bài miêu tả e-learning như một hệ sinh thái, không chỉ là video (D) hay thay thế lớp học (B).
Câu 3: B
- Dạng: Multiple Choice
- Từ khóa: “flipped model… class time for problem-solving and discussion… more active”
- Vị trí: Đoạn 5
- Giải thích: Mục tiêu là làm lớp học chủ động hơn; không phải giảm vai trò giáo viên.
Câu 5: FALSE
- Từ khóa: “cost of delivering an extra copy… low” nhưng không nói luôn rẻ để tạo course.
- Vị trí: Đoạn 2
- Giải thích: Bài nói rẻ khi mở rộng, không khẳng định “luôn” giảm chi phí tạo mới.
Câu 8: FALSE
- Từ khóa: “cannot fully replace real-world practice”
- Vị trí: Đoạn 6
- Giải thích: Phủ định tuyên bố “đã thay thế hoàn toàn”.
Câu 10: reminders/short quizzes
- Vị trí: Đoạn 3
- Paraphrase: “add reminders, microlearning units, and short quizzes”.
Passage 2 – Giải Thích
Câu 14: NO
- Từ khóa: “online can be as effective… provided courses are intentionally designed”
- Vị trí: A
- Giải thích: So sánh có ý nghĩa khi tính đến thiết kế; không phải “vô nghĩa”.
Câu 15: YES
- Từ khóa: “richer model… behavioral, cognitive, emotional”
- Vị trí: B
- Giải thích: Nên đo nhiều hơn một cách.
Câu 18: YES
- Từ khóa: “institutions… support instructional designers… norms”
- Vị trí: E
- Giải thích: Cần hỗ trợ để bền vững.
Câu 22: viii
- Vị trí: D
- Dấu hiệu: “frequent low-stakes quizzes… immediate feedback”.
Câu 24: pedagogical
- Vị trí: A “pedagogical alignment”.
Passage 3 – Giải Thích
Câu 27: B
- Từ khóa: “estimating what a learner likely knows”
- Vị trí: Đoạn 1
- Giải thích: Knowledge tracing ước lượng hiểu biết hiện tại.
Câu 29: B
- Từ khóa: “instrumental variables… approximate randomized trials”
- Vị trí: Đoạn 3
Câu 30: B
- Từ khóa: “mitigate disparities”
- Vị trí: Đoạn 4
Câu 34: A
- Từ khóa: “retrieval practice with spaced repetition”
- Vị trí: Đoạn 6
Câu 39: federated learning
- Từ khóa: “analyze patterns without centralizing raw data”
- Vị trí: Đoạn 5
5. Từ Vựng Quan Trọng Theo Passage
Passage 1 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| ecosystem | n | /ˈiːkəʊˌsɪstəm/ | hệ sinh thái | an ecosystem of platforms | digital ecosystem |
| analytics | n | /ˌænəˈlɪtɪks/ | phân tích dữ liệu | platforms, analytics, and interactive content | learning analytics |
| interactive | adj | /ˌɪntərˈæktɪv/ | tương tác | interactive content | interactive module |
| flexibility | n | /ˌfleksəˈbɪləti/ | tính linh hoạt | offers flexibility | scheduling flexibility |
| structure | n | /ˈstrʌktʃə(r)/ | cấu trúc | struggle without the structure | course structure |
| microlearning | n | /ˈmaɪkrəʊˌlɜːnɪŋ/ | vi học | add microlearning units | microlearning modules |
| dashboard | n | /ˈdæʃbɔːd/ | bảng điều khiển | use data dashboards | analytics dashboard |
| blended | adj | /ˈblendɪd/ | kết hợp | blended or flipped classrooms | blended learning |
| digital divide | n | /ˈdɪdʒɪtl dɪˈvaɪd/ | khoảng cách số | a major barrier is the digital divide | bridge the digital divide |
| completion rate | n | /kəmˈpliːʃn reɪt/ | tỉ lệ hoàn thành | high dropout, improve completion rates | boost completion rates |
| mentorship | n | /ˈmentɔːʃɪp/ | cố vấn | pair learners with mentors | mentorship program |
| guidance | n | /ˈɡaɪdns/ | sự hướng dẫn | goals, guidance, human desire | provide guidance |
Passage 2 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa | Ví dụ | Collocation |
|---|---|---|---|---|---|
| meta-analysis | n | /ˌmetə əˈnæləsɪs/ | tổng quan phân tích | Recent meta-analyses suggest… | meta-analytic review |
| pedagogical alignment | n | /ˌpedəˈɡɒdʒɪkl əˈlaɪnmənt/ | đồng bộ sư phạm | what matters is pedagogical alignment | alignment of goals |
| misleading | adj | /ˌmɪsˈliːdɪŋ/ | gây hiểu lầm | clicks can be misleading | misleading metric |
| behavioral | adj | /bɪˈheɪvjərəl/ | hành vi | behavioral engagement | behavioral cues |
| cognitive | adj | /ˈkɒɡnɪtɪv/ | nhận thức | cognitive engagement | cognitive load |
| emotional | adj | /ɪˈməʊʃənl/ | cảm xúc | emotional engagement | emotional response |
| offline-first | adj | /ˌɒflaɪn ˈfɜːst/ | ưu tiên ngoại tuyến | adopt offline-first strategies | offline-first design |
| transcript | n | /ˈtrænskrɪpt/ | bản chép lời | offering transcripts | video transcripts |
| Universal Design for Learning (UDL) | n | /ˈjuːnɪvɜːsl dɪˈzaɪn/ | thiết kế phổ quát cho học tập | UDL principles | UDL guidelines |
| low-stakes | adj | /ˌləʊ ˈsteɪks/ | ít áp lực | frequent low-stakes quizzes | low-stakes assessment |
| false positive | n | /ˌfɔːls ˈpɒzətɪv/ | dương tính giả | proctoring… false positives | avoid false positives |
| authentic task | n | /ɔːˈθentɪk/ | nhiệm vụ thực | mix authentic tasks | authentic assessment |
| instructional designer | n | /ɪnˈstrʌkʃənl dɪˈzaɪnə/ | chuyên gia thiết kế học liệu | support instructional designers | hire instructional designers |
| sustainable | adj | /səˈsteɪnəbl/ | bền vững | make e-learning sustainable | sustainable support |
| accessibility | n | /əkˌsesəˈbɪləti/ | khả năng tiếp cận | making content more accessible | accessibility features |
Passage 3 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa | Ví dụ | Collocation |
|---|---|---|---|---|---|
| knowledge tracing | n | /ˈnɒlɪdʒ ˈtreɪsɪŋ/ | truy vết tri thức | algorithms perform knowledge tracing | Bayesian knowledge tracing |
| deep-sequence model | n | /diːp ˈsiːkwəns/ | mô hình chuỗi sâu | deploy deep-sequence models | sequence modeling |
| Item Response Theory (IRT) | n | /ˈaɪtəm rɪˈspɒns/ | lý thuyết phản ứng đề mục | combine IRT with mastery learning | IRT calibration |
| mastery learning | n | /ˈmɑːstəri/ | học đến mức thành thạo | ensures robust understanding | mastery threshold |
| transfer | n | /ˈtrænsfɜː(r)/ | chuyển giao kiến thức | rather than transfer | transfer of learning |
| causal inference | n | /ˈkɔːzl ˈɪnfərəns/ | suy luận nhân quả | causal inference methods | causal estimation |
| propensity score matching | n | /prəˈpensəti skɔː/ | ghép điểm xu hướng | attempt to approximate trials | PSM approach |
| instrumental variables | n | /ˌɪnstrəˈmentl ˈvɑːriəblz/ | biến công cụ | instrumental variables | IV estimation |
| bias | n | /ˈbaɪəs/ | thiên lệch | inherit bias from data | algorithmic bias |
| counterfactual | adj | /ˌkaʊntəˈfæktʃuəl/ | phản thực tế | counterfactual evaluation | counterfactual fairness |
| fairness constraint | n | /ˈfeənəs kənˈstreɪnt/ | ràng buộc công bằng | apply fairness constraints | fairness-aware learning |
| differential privacy | n | /ˌdɪfəˈrenʃl ˈpraɪvəsi/ | bảo mật vi sai | enable differential privacy | DP mechanism |
| federated learning | n | /ˈfedəreɪtɪd/ | học liên kết | analyze without centralizing data | federated training |
| learning engineering | n | /ˈlɜːnɪŋ ˌendʒɪˈnɪərɪŋ/ | kỹ nghệ học tập | shift to learning engineering | learning engineer |
| spaced repetition | n | /speɪst ˌrepəˈtɪʃn/ | lặp lại ngắt quãng | design retrieval with spaced repetition | spaced schedule |
| pedagogical contract | n | /ˌpedəˈɡɒdʒɪkl/ | hợp đồng sư phạm | refine the pedagogical contract | contract of expectations |
| micro-credential | n | /ˌmaɪkrəʊ krəˈdenʃl/ | tín chỉ vi mô | micro-credentials and stackable certificates | stackable credentials |
| credential inflation | n | /krəˈdenʃl ɪnˈfleɪʃn/ | lạm phát chứng chỉ | risks credential inflation | inflation of badges |
| cohere | v | /kəʊˈhɪə(r)/ | gắn kết | systems cohere without reduction | coherent architecture |
6. Kỹ Thuật Làm Bài Theo Từng Dạng Câu Hỏi
Multiple Choice
- Cách làm:
- Đọc kỹ câu hỏi, gạch chân từ khóa và ý phủ định/so sánh.
- Loại trừ đáp án mơ hồ hoặc trái thông tin trong bài.
- Tìm paraphrase, không “bắt chữ” y hệt.
- Lỗi thường gặp:
- Chọn đáp án chứa từ giống hệt passage.
- Không đọc hết options.
- Ví dụ: P1 Q3. “more active” paraphrase cho mục tiêu flipped classroom; đáp án B đúng vì trùng “problem-solving and discussion”.
True/False/Not Given
- Phân biệt:
- True: Thông tin khớp (có thể paraphrase).
- False: Trái ngược.
- Not Given: Không đủ thông tin kết luận.
- Lỗi thường gặp:
- Dùng hiểu biết ngoài bài.
- Nhầm “một số” với “tất cả”.
- Ví dụ: P1 Q8 “Virtual labs have fully replaced…” Bài nói “cannot fully replace” → FALSE.
Yes/No/Not Given
- Dạng quan điểm tác giả; tìm nhận định trực tiếp/gián tiếp của người viết.
- Lưu ý động từ thái độ: argue, suggest, claim.
- Ví dụ: P2 Q15 YES vì tác giả ủng hộ mô hình đo đa chiều engagement.
Matching Headings
- Cách làm:
- Skim từng đoạn, xác định main idea, không sa đà ví dụ.
- So sánh keywords/ý khái quát với headings.
- Tips:
- Chú ý câu mở đoạn và câu tổng kết.
- Ví dụ: P2 Paragraph D nói về “low-stakes quizzes, immediate feedback, proctoring privacy” → heading viii phù hợp nhất.
Summary/Sentence Completion
- Cách làm:
- Xác định loại từ cần điền (n, v, adj).
- Quét theo thứ tự xuất hiện trong bài.
- Tuân thủ giới hạn từ.
- Ví dụ: P2 Q24 “pedagogical alignment” khớp cụm danh từ trong A.
Matching Sentence Endings
- Cách làm:
- Đọc nửa đầu câu, dự đoán ý nghĩa hợp lý.
- So khớp collocations/logic với đoạn tương ứng.
- Ví dụ: P3 Q32-36: “A/B tests” → “local improvements” (B) dựa đoạn 3.
Short-answer Questions
- Cách làm:
- Quét keyword chính danh từ riêng/thuật ngữ.
- Trả lời ngắn gọn đúng giới hạn từ.
- Ví dụ: P3 Q39: “federated learning” xuất hiện trực tiếp kèm định nghĩa.
[internal_link: Cách làm dạng True/False/Not Given]
[internal_link: Từ vựng chủ đề Giáo dục trong IELTS Reading]
[internal_link: Chiến lược skimming & scanning cho band 7+]
Kết bài
How e-learning is transforming education là một chủ đề thời sự, giàu khái niệm học thuật và rất “đúng tủ” IELTS Reading. Ba passages trên cung cấp đầy đủ độ khó, từ mô tả tổng quan đến phân tích thuật toán và công bằng dữ liệu, giúp bạn luyện tư duy đọc học thuật. Bộ 40 câu hỏi sát format thi thật kèm đáp án và giải thích chi tiết hỗ trợ bạn tự đánh giá tiến bộ. Kết hợp từ vựng trọng tâm và kỹ thuật làm bài, bạn sẽ nâng khả năng skimming, nhận diện paraphrase và quản lý thời gian hiệu quả. Hãy lưu lại đề này để luyện đều tay trước ngày thi.