Giới Thiệu
Công nghệ blockchain đang trở thành một chủ đề nóng hổi trong các kỳ thi IELTS Reading gần đây, đặc biệt là khi được áp dụng vào lĩnh vực bầu cử và quản trị công. Chủ đề “Blockchain For Improving The Voting Process In Elections” không chỉ xuất hiện trong các đề thi IELTS Academic mà còn phản ánh xu hướng công nghệ đang được quan tâm trên toàn cầu.
Trong bài viết này, bạn sẽ được trải nghiệm một bộ đề thi IELTS Reading hoàn chỉnh với 3 passages tăng dần độ khó, từ Easy (Band 5.0-6.5) đến Hard (Band 7.0-9.0). Mỗi passage được thiết kế cẩn thận với tổng cộng 40 câu hỏi đa dạng, giống như trong kỳ thi thực tế. Bạn cũng sẽ nhận được đáp án chi tiết kèm giải thích, từ vựng quan trọng và các kỹ thuật làm bài hiệu quả.
Đề thi này phù hợp cho học viên từ band 5.0 trở lên, giúp bạn làm quen với chủ đề công nghệ – chính trị, rèn luyện kỹ năng đọc hiểu, paraphrase và quản lý thời gian. Hãy chuẩn bị đồng hồ bấm giờ và bắt đầu luyện tập như kỳ thi thật!
1. Hướng Dẫn Làm Bài IELTS Reading
Tổng Quan Về IELTS Reading Test
IELTS Reading Test kéo dài 60 phút và bao gồm 3 passages với tổng cộng 40 câu hỏi. Điểm số của bạn được tính dựa trên số câu trả lời đúng, không bị trừ điểm khi sai.
Phân bổ thời gian khuyến nghị:
- Passage 1 (Easy): 15-17 phút – Đây là passage dễ nhất, giúp bạn khởi động tốt
- Passage 2 (Medium): 18-20 phút – Độ khó tăng lên, yêu cầu tập trung cao hơn
- Passage 3 (Hard): 23-25 phút – Passage khó nhất, cần kỹ năng phân tích sâu
Lưu ý: Hãy dành 2-3 phút cuối để chuyển đáp án vào Answer Sheet một cách cẩn thận.
Các Dạng Câu Hỏi Trong Đề Này
Đề thi mẫu này bao gồm các dạng câu hỏi phổ biến nhất trong IELTS Reading:
- Multiple Choice – Câu hỏi trắc nghiệm
- True/False/Not Given – Xác định thông tin đúng/sai/không được đề cập
- Matching Information – Nối thông tin với đoạn văn
- Sentence Completion – Hoàn thành câu
- Yes/No/Not Given – Xác định quan điểm tác giả
- Matching Headings – Nối tiêu đề với đoạn văn
- Summary Completion – Hoàn thành đoạn tóm tắt
- Short-answer Questions – Câu hỏi trả lời ngắn
2. IELTS Reading Practice Test
PASSAGE 1 – Digital Democracy: An Introduction to Blockchain Voting
Độ khó: Easy (Band 5.0-6.5)
Thời gian đề xuất: 15-17 phút
For centuries, traditional voting systems have relied on paper ballots and physical polling stations. Citizens would queue at designated locations, mark their choices on paper, and place them in sealed boxes. While this method has served democracies well, it comes with significant challenges including high costs, logistical complexities, and potential for human error or fraud. In recent years, technological advances have prompted governments and electoral organizations to explore innovative solutions, with blockchain technology emerging as a particularly promising option.
Blockchain is essentially a digital ledger that records transactions across multiple computers in a way that makes it nearly impossible to alter information retrospectively. Originally developed to support cryptocurrencies like Bitcoin, blockchain’s core features – transparency, security, and immutability – make it ideal for applications far beyond finance. Each transaction or piece of data is stored in a “block,” and these blocks are linked together in a chronological “chain.” Once data is recorded, it cannot be changed without altering all subsequent blocks, which requires consensus from the majority of the network.
The application of blockchain to voting addresses several fundamental problems with conventional systems. First, it offers enhanced security. In traditional elections, paper ballots can be lost, damaged, or tampered with during transportation and counting. Ballot boxes can be stuffed with fraudulent votes, and electronic voting machines can be hacked. Blockchain technology creates an audit trail that is virtually impossible to manipulate because every vote is encrypted and distributed across numerous computers rather than stored in a single location.
Second, blockchain voting promotes transparency while maintaining voter privacy. This might sound contradictory, but the technology achieves both through sophisticated cryptographic techniques. Each vote is recorded as an anonymous transaction that anyone can verify, but the voter’s identity remains protected. Citizens can check that their vote was counted correctly without revealing how they voted, and election officials can demonstrate the integrity of results without compromising individual privacy.
Third, blockchain could make voting more accessible and convenient. Currently, many eligible voters cannot participate in elections because they live far from polling stations, have disabilities that make physical voting difficult, or work schedules that conflict with voting hours. A blockchain-based system could allow people to vote securely from their smartphones or computers, potentially increasing voter turnout. This is particularly important for military personnel stationed overseas, citizens living abroad, and individuals in remote rural areas.
The process of blockchain voting is relatively straightforward for users. After identity verification through secure methods such as biometric authentication or government-issued digital IDs, voters receive a unique encrypted token. They use this token to cast their vote through a user-friendly interface, selecting their preferred candidates or positions on issues. The vote is then encrypted and added to the blockchain, where it is verified by the network. Within seconds, the vote becomes part of the permanent record, and the voter can receive a confirmation receipt that allows them to verify their vote was recorded without revealing their choice to others.
Several countries and organizations have already conducted pilot programs to test blockchain voting. Estonia, a leader in digital governance, has explored blockchain for various governmental functions and is evaluating its use in elections. The city of Zug in Switzerland ran a successful blockchain voting trial in 2018, allowing citizens to vote on local issues using the technology. In the United States, West Virginia conducted a blockchain voting pilot for military personnel stationed overseas during the 2018 midterm elections, and several other states have shown interest in similar programs.
However, experts emphasize that blockchain voting is still in its early stages and faces important challenges before widespread adoption. Technical barriers remain, including the need for robust cybersecurity measures and the requirement that voters have reliable internet access and sufficient digital literacy. There are also questions about how to maintain the secret ballot principle while allowing vote verification, and concerns about potential system failures during crucial election periods. Despite these challenges, many researchers and policymakers view blockchain as a valuable tool that could revolutionize democratic participation in the coming decades.
Questions 1-13
Questions 1-5: Multiple Choice
Choose the correct letter, A, B, C, or D.
1. According to the passage, traditional voting systems have problems with
A. lack of public interest
B. high costs and potential errors
C. too many polling stations
D. excessive transparency
2. The main purpose of blockchain technology was originally to
A. support democratic elections
B. improve government transparency
C. enable cryptocurrency transactions
D. store medical records securely
3. What makes blockchain data difficult to change?
A. It is stored in a single secure location
B. Changing one block requires altering all subsequent blocks
C. Only government officials can access it
D. The data is printed on paper
4. Blockchain voting could increase voter participation by
A. making voting mandatory
B. providing financial incentives
C. allowing people to vote from anywhere
D. eliminating all candidate choices
5. Estonia is mentioned in the passage as an example of
A. a country that has completely replaced traditional voting
B. a nation opposed to blockchain technology
C. a leader in digital governance exploring blockchain
D. the inventor of blockchain voting systems
Questions 6-9: True/False/Not Given
Do the following statements agree with the information in the passage? Write:
- TRUE if the statement agrees with the information
- FALSE if the statement contradicts the information
- NOT GIVEN if there is no information on this
6. Blockchain voting allows citizens to verify their vote was counted while keeping their choice private.
7. West Virginia used blockchain voting for all citizens in the 2018 elections.
8. Blockchain technology was invented in Estonia.
9. All countries are planning to implement blockchain voting within the next five years.
Questions 10-13: Sentence Completion
Complete the sentences below. Choose NO MORE THAN TWO WORDS from the passage for each answer.
10. In traditional elections, __ can be manipulated by adding fraudulent votes.
11. Blockchain voting uses __ to protect voter identity while maintaining transparency.
12. Voters receive an __ after identity verification to cast their vote on the blockchain.
13. Despite its potential, blockchain voting faces challenges including __ and the need for internet access.
Sơ đồ hệ thống bỏ phiếu điện tử sử dụng công nghệ blockchain an toàn và minh bạch
PASSAGE 2 – The Technical Architecture and Security Features of Blockchain-Based Electoral Systems
Độ khó: Medium (Band 6.0-7.5)
Thời gian đề xuất: 18-20 phút
The implementation of blockchain technology in electoral systems represents a paradigm shift in how democratic societies can conduct and verify elections. Unlike superficial technological updates to existing processes, blockchain-based voting requires a fundamental restructuring of electoral architecture, encompassing identity management, vote casting, tallying, and auditing procedures. Understanding the intricate mechanisms that underpin these systems is essential for evaluating their potential to enhance democratic participation while maintaining the sacrosanct principles of free and fair elections.
At the core of any blockchain voting system lies the distributed ledger technology (DLT) itself. Rather than storing electoral data in centralized databases controlled by a single authority, DLT distributes identical copies of the voting record across numerous network nodes maintained by different entities. This decentralization serves multiple purposes: it eliminates single points of failure that hackers could exploit, ensures no single party can unilaterally alter results, and creates redundancy that protects against data loss. The consensus mechanisms employed by these networks – such as Proof of Work, Proof of Stake, or Byzantine Fault Tolerance – ensure that any addition to the ledger must be validated by a majority of nodes, making fraudulent manipulation extraordinarily difficult.
The authentication layer constitutes another critical component. Before casting votes, citizens must prove their identity and eligibility to participate in the election. Public-key cryptography provides an elegant solution: each voter receives a pair of cryptographic keys – a public key that identifies them to the system and a private key that only they possess. When voting, citizens use their private key to create a digital signature that verifies their identity without revealing personal information. Some advanced systems integrate biometric verification – such as fingerprints, facial recognition, or iris scans – adding another layer of security to prevent impersonation or credential theft.
The actual voting process leverages smart contracts – self-executing programs stored on the blockchain that automatically enforce predefined rules. When a voter casts a ballot, the smart contract verifies their eligibility, ensures they haven’t voted previously in that election, records their encrypted choice, and updates the tally. These contracts operate deterministically, meaning they always produce the same output given the same input, eliminating the ambiguity and human error that can plague traditional counting processes. Furthermore, because smart contracts are immutable once deployed, neither election officials nor external actors can modify their logic to favour particular outcomes.
Privacy preservation represents perhaps the most technically challenging aspect of blockchain voting. Democratic elections require a secret ballot – voters must be able to cast their choices without fear of retaliation or coercion. However, blockchain’s transparency seems to conflict with this requirement, as all transactions are visible to network participants. Cryptographic solutions address this paradox through techniques like zero-knowledge proofs, homomorphic encryption, and ring signatures. Zero-knowledge proofs allow voters to prove they’ve cast a valid vote without revealing their choice. Homomorphic encryption enables votes to be tallied while still encrypted, with only the final aggregate result being decrypted. Ring signatures make it impossible to determine which specific member of a group signed a transaction, protecting individual voter privacy while maintaining the ability to verify that votes came from eligible participants.
Audit capabilities are significantly enhanced in blockchain systems compared to traditional methods. The immutable record creates a permanent audit trail that investigators can examine if irregularities are suspected. Unlike paper ballots that can be destroyed or electronic voting machines whose logs can be deleted, blockchain voting records persist indefinitely and cannot be altered retroactively. Independent observers, political parties, and even individual voters can verify the integrity of the electoral process by checking that votes were properly recorded and counted. Some systems provide voters with a cryptographic receipt – a code that allows them to confirm their vote was included in the final tally without revealing how they voted.
However, security experts identify several vulnerabilities that must be addressed before blockchain voting can achieve widespread adoption. Client-side security remains a concern: if a voter’s device is compromised by malware, attackers might intercept their private keys or alter their vote before it reaches the blockchain. Denial-of-service attacks could overwhelm the network during peak voting periods, preventing legitimate voters from participating. There are also concerns about the cryptographic algorithms themselves; advances in quantum computing might eventually enable adversaries to break the encryption that protects voter privacy and ballot integrity. Social engineering attacks, where malicious actors manipulate voters into revealing their credentials or voting choices, pose another threat that technology alone cannot solve.
Regulatory frameworks and legal questions surrounding blockchain voting require careful consideration. Who owns and controls the blockchain infrastructure? How can cross-border blockchain networks comply with national sovereignty and electoral laws? What legal status do digitally cast votes possess? How should the system handle technical failures or disputed results? Answering these questions requires collaboration between technologists, legal experts, policymakers, and civil society organizations. Some jurisdictions are developing specialized legislation to provide legal certainty for blockchain-based elections, while others are proceeding more cautiously with pilot programs and feasibility studies.
The scalability of blockchain voting systems presents both technical and practical challenges. Public blockchains like Bitcoin and Ethereum process transactions relatively slowly – Bitcoin handles approximately seven transactions per second, while Ethereum manages about fifteen. A national election with millions of voters would require vastly higher transaction throughput. Permissioned blockchains or layer-two solutions might offer better performance for electoral applications, but potentially at the cost of some decentralization. Network latency, bandwidth limitations, and the computational resources required to verify transactions at scale all require careful engineering to ensure smooth operation during elections.
Despite these challenges, proponents argue that blockchain voting offers transformative potential for democratic engagement. By reducing the costs and logistical burdens of elections, it could enable more frequent referendums and participatory decision-making. The technology might also facilitate new forms of liquid democracy, where citizens can choose to vote directly on issues or delegate their voting power to trusted representatives on specific topics. As the technology matures and security concerns are addressed, blockchain-based electoral systems may become an increasingly viable option for governments seeking to strengthen democratic participation in the digital age.
Questions 14-26
Questions 14-18: Yes/No/Not Given
Do the following statements agree with the views of the writer in the passage? Write:
- YES if the statement agrees with the views of the writer
- NO if the statement contradicts the views of the writer
- NOT GIVEN if it is impossible to say what the writer thinks about this
14. Blockchain voting requires a complete redesign of electoral systems rather than minor improvements.
15. Centralized databases are more secure than distributed ledger technology.
16. All countries should immediately replace traditional voting with blockchain systems.
17. Quantum computing may pose future threats to the encryption used in blockchain voting.
18. Bitcoin blockchain is currently fast enough to handle national elections.
Questions 19-23: Matching Headings
Choose the correct heading for paragraphs B-F from the list of headings below.
List of Headings:
i. The challenge of maintaining voter anonymity
ii. Future possibilities for democratic participation
iii. Legal and governmental considerations
iv. The foundation of distributed data storage
v. Automated election management through programming
vi. Confirming voter identity securely
vii. Performance limitations and technical constraints
viii. Enhanced verification and transparency
19. Paragraph B
20. Paragraph C
21. Paragraph D
22. Paragraph E
23. Paragraph H
Questions 24-26: Summary Completion
Complete the summary below. Choose NO MORE THAN TWO WORDS from the passage for each answer.
Blockchain voting systems face various security challenges. One major concern is 24 __, where voters’ devices might be infected with malware that could steal their private keys. Additionally, 25 __ could flood the network and prevent legitimate voters from casting ballots. Another threat comes from 26 __ attacks, where manipulators trick voters into revealing sensitive information, a problem that technology cannot completely solve.
PASSAGE 3 – Socio-Political Implications and Epistemological Challenges of Implementing Blockchain Electoral Systems
Độ khó: Hard (Band 7.0-9.0)
Thời gian đề xuất: 23-25 phút
The discourse surrounding blockchain-based voting systems extends far beyond technical considerations of cryptographic protocols and distributed consensus mechanisms, encompassing profound questions about the nature of democratic legitimacy, the relationship between technological infrastructure and political power, and the epistemological foundations of electoral trust. As governments and international organizations contemplate the adoption of these systems, they must grapple with complex sociological, philosophical, and political dimensions that resist purely technical solutions. The normative assumptions embedded in blockchain voting architectures carry significant implications for how societies conceptualize citizenship, participation, and the very meaning of democratic representation in an increasingly digitized world.
Critical scholars argue that the enthusiasm for blockchain voting reflects a broader techno-solutionist ideology that seeks to address fundamentally social and political problems through technological intervention. This perspective, often termed “technological determinism”, assumes that social challenges stem primarily from inefficient processes that can be optimized through better tools, rather than from deep-seated conflicts of interest, power asymmetries, or competing values. By framing electoral integrity as primarily a technical problem of secure vote recording and counting, blockchain advocates may inadvertently obscure the political nature of elections, which involve contested interpretations of democratic principles, negotiations over who should be included in the polity, and struggles over the distribution of political power. Electoral systems are not merely neutral mechanisms for aggregating preferences; they are constitutive elements of political communities that shape which voices are heard, which issues gain prominence, and which interests are represented in governance.
The transparency that blockchain systems provide, while often touted as an unalloyed good, introduces paradoxes that challenge conventional understandings of democratic accountability. Traditional electoral systems maintain opacity at certain points – for instance, the secret ballot booth protects individual choices from observation – while ensuring transparency at others, such as public vote counting. This careful calibration reflects normative judgments about where scrutiny serves democratic values and where it might undermine them. Blockchain’s comprehensive audit trail, however, makes every aspect of the electoral process potentially visible to all network participants. While this radical transparency might prevent certain forms of fraud, it could also enable new modes of surveillance and social control. If voting records are immutably stored on a blockchain, even encrypted ones, future technological advances might allow their decryption, threatening the temporal protection of voter privacy. The permanence of blockchain records also raises questions about the “right to be forgotten” and whether electoral participation should leave an indelible digital footprint.
Furthermore, the distributed trust model inherent in blockchain systems represents a departure from the institutional trust that has traditionally underpinned democratic governance. Conventional elections require citizens to trust various institutions – electoral commissions, political parties, courts, and media organizations – to conduct and verify elections fairly. This trust is built through mechanisms of accountability, professional norms, legal frameworks, and, ultimately, the potential for sanction when institutions fail in their duties. Blockchain seeks to replace institutional trust with mathematical certainty, using cryptographic guarantees and consensus mechanisms to ensure electoral integrity without relying on trusted intermediaries. However, this substitution may be neither complete nor unequivocally beneficial. Citizens still must trust that the blockchain system was properly designed and implemented, that the software contains no vulnerabilities or backdoors, and that the cryptographic assumptions will hold against future attacks. This trust is arguably more difficult for ordinary citizens to evaluate than trust in familiar institutions, potentially creating new forms of opacity despite blockchain’s transparency.
The political economy of blockchain voting infrastructure raises critical questions about control, governance, and the relationship between public and private power. Most blockchain systems are developed by private technology companies, which possess the expertise and resources to build complex cryptographic systems. As governments contemplate adopting these systems, they must consider who controls the underlying infrastructure, how the system is governed, and what dependencies might be created. Proprietary blockchain solutions could leave electoral authorities reliant on private vendors for critical democratic infrastructure, potentially creating conflicts of interest or vulnerabilities to corporate influence. Open-source alternatives address some of these concerns but require significant technical capacity within government to implement and maintain. The question of whether electoral infrastructure should be treated as a public good, like roads or utilities, or whether private involvement is acceptable, reflects deeper debates about the proper boundaries between market and state in democratic societies.
The digital divide presents perhaps the most tangible obstacle to blockchain voting’s egalitarian promise. Despite the technology’s potential to make voting more accessible, it presumes that citizens possess several resources that remain unequally distributed: reliable internet connectivity, digital devices, technical literacy, and trust in online systems. In many countries, these resources correlate strongly with socioeconomic status, education, age, and geographic location. Implementing blockchain voting without addressing these disparities could inadvertently disenfranchise marginalized populations who lack digital access or skills, thereby exacerbating existing inequalities in political participation. The elderly, rural populations, low-income communities, and those with disabilities might find blockchain voting more burdensome than traditional methods, particularly if physical polling places are eliminated in favour of exclusively digital systems. Moreover, the cognitive demands of understanding blockchain voting – even at a basic level necessary for trust – may create epistemic barriers that privilege the technologically literate.
Cross-cultural considerations further complicate the universal applicability of blockchain voting. Democratic practices and electoral norms vary significantly across societies, reflecting different historical experiences, cultural values, and political traditions. What constitutes a “fair” or “secure” election is not culturally neutral but shaped by local contexts and understandings. The technocratic assumptions embedded in blockchain systems – emphasizing individual autonomy, anonymous participation, and algorithmic neutrality – may not align with communal decision-making practices, deliberative traditions, or values emphasizing social cohesion over individual privacy in some societies. Imposing a technologically deterministic model of voting could marginalize alternative democratic practices and homogenize global electoral systems around Western technological paradigms.
The irreversibility of blockchain transactions, while providing security against tampering, creates inflexibility that may be problematic in complex electoral contexts. Electoral processes sometimes require discretionary judgments – deciding whether a ballot was spoiled accidentally or intentionally, determining voter intent on ambiguous markings, or resolving disputes about eligibility. Traditional systems provide mechanisms for human adjudication of these edge cases, but blockchain’s algorithmic determination is rigid. Once a transaction is recorded, it cannot be easily modified even if errors are discovered or circumstances change. This inflexibility might conflict with legal principles allowing for corrections, recounts, or appeals in electoral processes. The finality that blockchain provides may be appropriate for some contexts but incompatible with the nuanced judgment that complex democratic processes sometimes require.
Legal scholars have identified significant jurisprudential challenges regarding the evidentiary status of blockchain-recorded votes and the jurisdiction over transnational blockchain networks. If electoral records are distributed across nodes in multiple countries, which legal system governs disputes? How should courts evaluate evidence from blockchain systems when judges and jurors lack technical expertise to assess cryptographic proofs? What legal protections exist for voters if the system malfunctions or is compromised? The intersection of immutable digital records, international data flows, and national electoral sovereignty creates novel legal questions that existing frameworks may be ill-equipped to address. Developing appropriate jurisprudence will require sustained engagement between legal practitioners, technologists, and democratic theorists.
Finally, the philosophical question of whether blockchain voting represents democratic progress or a qualitative transformation of democracy itself merits serious consideration. If citizens can vote instantly and continuously on numerous issues via blockchain-enabled direct democracy, does this enhance democratic participation or overwhelm voters with excessive demands on their attention and judgment? Does the ability to verify one’s vote cryptographically strengthen trust in elections, or does it reflect a degradation of the social trust that binds political communities together? These questions suggest that blockchain voting is not merely a technical upgrade but potentially a reconfiguration of the democratic social contract, with ramifications that will unfold over decades as the technology matures and societies adapt to its presence. The challenge for policymakers is to navigate these profound uncertainties while preserving the core values that make democratic self-governance both legitimate and meaningful.
Questions 27-40
Questions 27-31: Multiple Choice
Choose the correct letter, A, B, C, or D.
27. According to the passage, technological determinism is the belief that
A. all social problems have technical solutions
B. technology develops independently of society
C. social problems are primarily caused by inefficient processes
D. democratic elections require advanced technology
28. The passage suggests that blockchain’s comprehensive transparency
A. is universally beneficial for democracy
B. may enable new forms of surveillance
C. eliminates all forms of electoral fraud
D. makes traditional secret ballots unnecessary
29. The “right to be forgotten” mentioned in the passage refers to concerns about
A. voters forgetting their passwords
B. blockchain records being permanently stored
C. election results being deleted
D. politicians changing their positions
30. According to the passage, blockchain replaces institutional trust with
A. legal frameworks
B. political accountability
C. mathematical certainty
D. professional norms
31. The passage indicates that open-source blockchain solutions
A. eliminate all concerns about private control
B. are too expensive for governments
C. require significant government technical capacity
D. are inferior to proprietary systems
Questions 32-36: Matching Features
Match each challenge (Questions 32-36) with the correct category (A-F) from the list below.
A. Technical vulnerability
B. Social inequality
C. Cultural incompatibility
D. Legal uncertainty
E. Economic concern
F. Philosophical question
32. The unequal distribution of internet access and digital literacy
33. The jurisdiction over blockchain networks that span multiple countries
34. Whether blockchain voting represents progress or a transformation of democracy
35. The dependence on private technology companies for electoral infrastructure
36. The conflict between algorithmic decision-making and communal practices in some societies
Questions 37-40: Short-answer Questions
Answer the questions below. Choose NO MORE THAN THREE WORDS from the passage for each answer.
37. What term does the passage use for the belief that technology alone can solve social problems?
38. What type of protection does blockchain’s permanence threaten according to the passage?
39. What mechanism do traditional electoral systems use for handling ambiguous or disputed ballots?
40. What does the passage suggest blockchain voting might represent rather than just a technical improvement?
Hệ thống blockchain bầu cử toàn cầu với tính bảo mật cao và minh bạch tuyệt đối
3. Answer Keys – Đáp Án
PASSAGE 1: Questions 1-13
- B
- C
- B
- C
- C
- TRUE
- FALSE
- NOT GIVEN
- NOT GIVEN
- ballot boxes
- cryptographic techniques
- encrypted token
- technical barriers
PASSAGE 2: Questions 14-26
- YES
- NO
- NOT GIVEN
- YES
- NO
- iv
- vi
- v
- i
- iii
- client-side security
- denial-of-service attacks
- social engineering
PASSAGE 3: Questions 27-40
- C
- B
- B
- C
- C
- B
- D
- F
- E
- C
- techno-solutionist ideology (hoặc technological determinism)
- temporal protection
- human adjudication
- reconfiguration (hoặc qualitative transformation)
4. Giải Thích Đáp Án Chi Tiết
Passage 1 – Giải Thích
Câu 1: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: traditional voting systems, problems
- Vị trí trong bài: Đoạn A, dòng 3-5
- Giải thích: Bài đọc nói rõ “it comes with significant challenges including high costs, logistical complexities, and potential for human error or fraud” – điều này được paraphrase trong đáp án B là “high costs and potential errors”.
Câu 2: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: main purpose, blockchain, originally
- Vị trí trong bài: Đoạn B, dòng 1-2
- Giải thích: Passage khẳng định “Originally developed to support cryptocurrencies like Bitcoin” – đáp án C “enable cryptocurrency transactions” là paraphrase chính xác.
Câu 3: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: blockchain data, difficult to change
- Vị trí trong bài: Đoạn B, dòng 5-7
- Giải thích: Bài viết giải thích “Once data is recorded, it cannot be changed without altering all subsequent blocks” – khớp chính xác với đáp án B.
Câu 4: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: blockchain voting, increase voter participation
- Vị trí trong bài: Đoạn E, dòng 1-4
- Giải thích: Đoạn E nêu rõ “A blockchain-based system could allow people to vote securely from their smartphones or computers” – điều này được paraphrase thành “allowing people to vote from anywhere” ở đáp án C.
Câu 5: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: Estonia
- Vị trí trong bài: Đoạn G, dòng 2-3
- Giải thích: Bài đọc mô tả “Estonia, a leader in digital governance, has explored blockchain” – đáp án C nêu chính xác vai trò của Estonia.
Câu 6: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: verify vote, keeping choice private
- Vị trí trong bài: Đoạn D, dòng 4-6
- Giải thích: Passage khẳng định “Citizens can check that their vote was counted correctly without revealing how they voted” – hoàn toàn đúng với phát biểu.
Câu 7: FALSE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: West Virginia, all citizens, 2018
- Vị trí trong bài: Đoạn G, dòng 5-7
- Giải thích: Bài viết chỉ nói “West Virginia conducted a blockchain voting pilot for military personnel stationed overseas” – chỉ dành cho quân nhân, không phải tất cả công dân, nên đáp án là FALSE.
Câu 8: NOT GIVEN
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: blockchain technology, invented, Estonia
- Vị trí trong bài: Không có thông tin
- Giải thích: Bài đọc không đề cập đến việc Estonia phát minh ra blockchain (thực tế blockchain được phát minh cho Bitcoin), nên đáp án là NOT GIVEN.
Câu 9: NOT GIVEN
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: all countries, planning, five years
- Vị trí trong bài: Không có thông tin
- Giải thích: Bài viết không đề cập đến kế hoạch của tất cả các quốc gia hay khung thời gian cụ thể, nên đáp án là NOT GIVEN.
Câu 10: ballot boxes
- Dạng câu hỏi: Sentence Completion
- Từ khóa: traditional elections, manipulated, fraudulent votes
- Vị trí trong bài: Đoạn C, dòng 3-4
- Giải thích: “Ballot boxes can be stuffed with fraudulent votes” – cần điền “ballot boxes”.
Câu 11: cryptographic techniques
- Dạng câu hỏi: Sentence Completion
- Từ khóa: protect voter identity, transparency
- Vị trí trong bài: Đoạn D, dòng 2-3
- Giải thích: “the technology achieves both through sophisticated cryptographic techniques” – đáp án chính xác.
Câu 12: encrypted token
- Dạng câu hỏi: Sentence Completion
- Từ khóa: identity verification, cast vote
- Vị trí trong bài: Đoạn F, dòng 2-3
- Giải thích: “voters receive a unique encrypted token” sau khi xác minh danh tính.
Câu 13: technical barriers
- Dạng câu hỏi: Sentence Completion
- Từ khóa: challenges, internet access
- Vị trí trong bài: Đoạn H, dòng 2-3
- Giải thích: “Technical barriers remain, including the need for… and the requirement that voters have reliable internet access” – điền “technical barriers”.
Passage 2 – Giải Thích
Câu 14: YES
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: complete redesign, minor improvements
- Vị trí trong bài: Đoạn A, dòng 2-4
- Giải thích: Tác giả khẳng định “Unlike superficial technological updates… requires a fundamental restructuring” – đồng ý với quan điểm cần thiết kế lại hoàn toàn.
Câu 15: NO
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: centralized databases, more secure, distributed ledger
- Vị trí trong bài: Đoạn B, dòng 4-6
- Giải thích: Tác giả nói “eliminates single points of failure that hackers could exploit” – cho thấy DLT an toàn hơn centralized databases, mâu thuẫn với phát biểu.
Câu 16: NOT GIVEN
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: all countries, immediately replace
- Vị trí trong bài: Không có thông tin
- Giải thích: Tác giả không đưa ra quan điểm về việc tất cả quốc gia nên thay thế ngay lập tức, nên đáp án là NOT GIVEN.
Câu 17: YES
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: quantum computing, future threats, encryption
- Vị trí trong bài: Đoạn G, dòng 4-6
- Giải thích: Tác giả nêu rõ “advances in quantum computing might eventually enable adversaries to break the encryption” – đồng ý với quan điểm.
Câu 18: NO
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: Bitcoin blockchain, fast enough, national elections
- Vị trí trong bài: Đoạn I, dòng 2-5
- Giải thích: Tác giả nói “Bitcoin handles approximately seven transactions per second… A national election with millions of voters would require vastly higher transaction throughput” – mâu thuẫn với phát biểu.
Câu 19: iv (The foundation of distributed data storage)
- Dạng câu hỏi: Matching Headings
- Vị trí: Paragraph B
- Giải thích: Đoạn B giải thích chi tiết về distributed ledger technology (DLT) và cách nó lưu trữ dữ liệu bầu cử – đây là nền tảng của hệ thống.
Câu 20: vi (Confirming voter identity securely)
- Dạng câu hỏi: Matching Headings
- Vị trí: Paragraph C
- Giải thích: Đoạn C tập trung vào “authentication layer” và cách xác minh danh tính cử tri thông qua public-key cryptography và biometric verification.
Câu 21: v (Automated election management through programming)
- Dạng câu hỏi: Matching Headings
- Vị trí: Paragraph D
- Giải thích: Đoạn D giải thích về smart contracts – các chương trình tự động quản lý quá trình bỏ phiếu.
Câu 22: i (The challenge of maintaining voter anonymity)
- Dạng câu hỏi: Matching Headings
- Vị trí: Paragraph E
- Giải thích: Đoạn E thảo luận chi tiết về “privacy preservation” và các kỹ thuật mật mã để duy trì tính ẩn danh.
Câu 23: iii (Legal and governmental considerations)
- Dạng câu hỏi: Matching Headings
- Vị trí: Paragraph H
- Giải thích: Đoạn H thảo luận về “regulatory frameworks and legal questions” xung quanh blockchain voting.
Câu 24: client-side security
- Dạng câu hỏi: Summary Completion
- Từ khóa: devices infected, malware, steal private keys
- Vị trí trong bài: Đoạn G, dòng 1-2
- Giải thích: “Client-side security remains a concern: if a voter’s device is compromised by malware…”
Câu 25: denial-of-service attacks
- Dạng câu hỏi: Summary Completion
- Từ khóa: overwhelm network, prevent voters
- Vị trí trong bài: Đoạn G, dòng 3-4
- Giải thích: “Denial-of-service attacks could overwhelm the network during peak voting periods”
Câu 26: social engineering
- Dạng câu hỏi: Summary Completion
- Từ khóa: manipulate voters, revealing credentials, technology cannot solve
- Vị trí trong bài: Đoạn G, dòng 7-8
- Giải thích: “Social engineering attacks… pose another threat that technology alone cannot solve”
Passage 3 – Giải Thích
Câu 27: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: technological determinism
- Vị trí trong bài: Đoạn B, dòng 2-5
- Giải thích: Passage định nghĩa “This perspective… assumes that social challenges stem primarily from inefficient processes that can be optimized through better tools” – đáp án C paraphrase chính xác.
Câu 28: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: blockchain’s comprehensive transparency
- Vị trí trong bài: Đoạn C, dòng 7-10
- Giải thích: Bài viết nêu “While this radical transparency might prevent certain forms of fraud, it could also enable new modes of surveillance and social control” – đáp án B.
Câu 29: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: right to be forgotten
- Vị trí trong bài: Đoạn C, dòng 10-12
- Giải thích: “The permanence of blockchain records also raises questions about the ‘right to be forgotten'” – liên quan đến việc records được lưu trữ vĩnh viễn.
Câu 30: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: blockchain replaces institutional trust
- Vị trí trong bài: Đoạn D, dòng 6-8
- Giải thích: “Blockchain seeks to replace institutional trust with mathematical certainty, using cryptographic guarantees” – đáp án C chính xác.
Câu 31: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: open-source blockchain solutions
- Vị trí trong bài: Đoạn E, dòng 7-9
- Giải thích: “Open-source alternatives address some of these concerns but require significant technical capacity within government” – đáp án C.
Câu 32: B (Social inequality)
- Dạng câu hỏi: Matching Features
- Từ khóa: unequal distribution, internet access, digital literacy
- Vị trí trong bài: Đoạn F
- Giải thích: Digital divide và unequal distribution of resources là vấn đề bất bình đẳng xã hội.
Câu 33: D (Legal uncertainty)
- Dạng câu hỏi: Matching Features
- Từ khóa: jurisdiction, blockchain networks, multiple countries
- Vị trí trong bài: Đoạn H, dòng 1-3
- Giải thích: “If electoral records are distributed across nodes in multiple countries, which legal system governs disputes?” – câu hỏi pháp lý.
Câu 34: F (Philosophical question)
- Dạng câu hỏi: Matching Features
- Từ khóa: progress or transformation of democracy
- Vị trí trong bài: Đoạn I, dòng 1-2
- Giải thích: “the philosophical question of whether blockchain voting represents democratic progress or a qualitative transformation”
Câu 35: E (Economic concern)
- Dạng câu hỏi: Matching Features
- Từ khóa: dependence on private technology companies, electoral infrastructure
- Vị trí trong bài: Đoạn E
- Giải thích: Political economy và control over infrastructure là vấn đề kinh tế.
Câu 36: C (Cultural incompatibility)
- Dạng câu hỏi: Matching Features
- Từ khóa: algorithmic decision-making, communal practices
- Vị trí trong bài: Đoạn G, dòng 4-7
- Giải thích: Conflict between technocratic assumptions và communal decision-making practices là vấn đề văn hóa.
Câu 37: techno-solutionist ideology (hoặc technological determinism)
- Dạng câu hỏi: Short-answer Questions
- Từ khóa: technology alone, solve social problems
- Vị trí trong bài: Đoạn B, dòng 1-2
- Giải thích: “the enthusiasm for blockchain voting reflects a broader techno-solutionist ideology”
Câu 38: temporal protection
- Dạng câu hỏi: Short-answer Questions
- Từ khóa: blockchain’s permanence, threatens
- Vị trí trong bài: Đoạn C, dòng 10-11
- Giải thích: “future technological advances might allow their decryption, threatening the temporal protection of voter privacy”
Câu 39: human adjudication
- Dạng câu hỏi: Short-answer Questions
- Từ khóa: traditional systems, handling ambiguous, disputed ballots
- Vị trí trong bài: Đoạn H, dòng 3-5
- Giải thích: “Traditional systems provide mechanisms for human adjudication of these edge cases”
Câu 40: reconfiguration (hoặc qualitative transformation)
- Dạng câu hỏi: Short-answer Questions
- Từ khóa: blockchain voting, more than technical improvement
- Vị trí trong bài: Đoạn I, dòng 5-7
- Giải thích: “blockchain voting is not merely a technical upgrade but potentially a reconfiguration of the democratic social contract”
5. Từ Vựng Quan Trọng Theo Passage
Passage 1 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| logistical | adj | /ləˈdʒɪstɪkəl/ | liên quan đến hậu cần | …high costs, logistical complexities… | logistical challenges, logistical support |
| immutability | n | /ɪˌmjuːtəˈbɪləti/ | tính bất biến | …transparency, security, and immutability… | data immutability, blockchain immutability |
| audit trail | n | /ˈɔːdɪt treɪl/ | dấu vết kiểm toán | …creates an audit trail that is virtually impossible to manipulate… | complete audit trail, digital audit trail |
| cryptographic | adj | /ˌkrɪptəˈɡræfɪk/ | thuộc về mật mã học | …through sophisticated cryptographic techniques… | cryptographic security, cryptographic keys |
| biometric | adj | /ˌbaɪəʊˈmetrɪk/ | sinh trắc học | …such as biometric authentication… | biometric verification, biometric data |
| encrypted | adj | /ɪnˈkrɪptɪd/ | được mã hóa | …voters receive a unique encrypted token… | encrypted data, encrypted message |
| token | n | /ˈtəʊkən/ | mã thông báo, token | They use this token to cast their vote… | digital token, security token |
| permanent record | n | /ˈpɜːmənənt ˈrekɔːd/ | hồ sơ vĩnh viễn | …the vote becomes part of the permanent record… | maintain permanent records, create permanent records |
| pilot program | n | /ˈpaɪlət ˈprəʊɡræm/ | chương trình thí điểm | Several countries have conducted pilot programs… | successful pilot program, launch pilot program |
| digital governance | n | /ˈdɪdʒɪtəl ˈɡʌvənəns/ | quản trị số | Estonia, a leader in digital governance… | digital governance framework, digital governance initiative |
| digital literacy | n | /ˈdɪdʒɪtəl ˈlɪtərəsi/ | hiểu biết về công nghệ số | …voters have… sufficient digital literacy… | improve digital literacy, digital literacy skills |
| revolutionize | v | /ˌrevəˈluːʃənaɪz/ | cách mạng hóa | …could revolutionize democratic participation… | revolutionize the industry, revolutionize voting |
Passage 2 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| paradigm shift | n | /ˈpærədaɪm ʃɪft/ | sự thay đổi mô hình | …represents a paradigm shift in how democratic societies… | major paradigm shift, paradigm shift in thinking |
| encompassing | v | /ɪnˈkʌmpəsɪŋ/ | bao gồm, bao trùm | …fundamental restructuring… encompassing identity management… | encompassing all aspects, encompassing various fields |
| sacrosanct | adj | /ˈsækrəʊsæŋkt/ | thiêng liêng, bất khả xâm phạm | …maintaining the sacrosanct principles of free and fair elections… | sacrosanct principle, sacrosanct right |
| distributed ledger | n | /dɪˈstrɪbjuːtɪd ˈledʒə/ | sổ cái phân tán | …lies the distributed ledger technology… | distributed ledger technology, distributed ledger system |
| decentralization | n | /diːˌsentrəlaɪˈzeɪʃən/ | phân quyền, phi tập trung | This decentralization serves multiple purposes… | blockchain decentralization, decentralization of power |
| consensus mechanism | n | /kənˈsensəs ˈmekənɪzəm/ | cơ chế đồng thuận | The consensus mechanisms employed by these networks… | consensus mechanism protocol, distributed consensus mechanism |
| Byzantine Fault Tolerance | n | /ˈbɪzəntiːn fɔːlt ˈtɒlərəns/ | khả năng chịu lỗi Byzantine | …such as… Byzantine Fault Tolerance… | Byzantine Fault Tolerance algorithm |
| public-key cryptography | n | /ˈpʌblɪk kiː krɪpˈtɒɡrəfi/ | mật mã khóa công khai | Public-key cryptography provides an elegant solution… | public-key cryptography system |
| digital signature | n | /ˈdɪdʒɪtəl ˈsɪɡnətʃə/ | chữ ký số | …use their private key to create a digital signature… | verify digital signature, digital signature certificate |
| smart contract | n | /smɑːt ˈkɒntrækt/ | hợp đồng thông minh | The actual voting process leverages smart contracts… | deploy smart contract, smart contract platform |
| deterministically | adv | /dɪˌtɜːmɪˈnɪstɪkli/ | một cách tất định | These contracts operate deterministically… | function deterministically, behave deterministically |
| zero-knowledge proof | n | /ˈzɪərəʊ ˈnɒlɪdʒ pruːf/ | bằng chứng không tiết lộ thông tin | …through techniques like zero-knowledge proofs… | zero-knowledge proof protocol |
| homomorphic encryption | n | /ˌhɒməˈmɔːfɪk ɪnˈkrɪpʃən/ | mã hóa đồng hình | Homomorphic encryption enables votes to be tallied while still encrypted… | homomorphic encryption scheme |
| ring signature | n | /rɪŋ ˈsɪɡnətʃə/ | chữ ký vòng | …ring signatures make it impossible to determine which specific member… | ring signature cryptography |
| scalability | n | /ˌskeɪləˈbɪləti/ | khả năng mở rộng | The scalability of blockchain voting systems… | system scalability, blockchain scalability |
Passage 3 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| discourse | n | /ˈdɪskɔːs/ | diễn ngôn, thảo luận | The discourse surrounding blockchain-based voting… | academic discourse, public discourse |
| epistemological | adj | /ɪˌpɪstəməˈlɒdʒɪkəl/ | thuộc nhận thức luận | …the epistemological foundations of electoral trust… | epistemological question, epistemological framework |
| normative | adj | /ˈnɔːmətɪv/ | quy chuẩn, có tính chất chuẩn mực | The normative assumptions embedded in blockchain… | normative framework, normative principles |
| techno-solutionist | adj | /ˈteknəʊ səˈluːʃənɪst/ | theo chủ nghĩa giải pháp công nghệ | …reflects a broader techno-solutionist ideology… | techno-solutionist approach |
| technological determinism | n | /ˌteknəˈlɒdʒɪkəl dɪˈtɜːmɪnɪzəm/ | chủ nghĩa quyết định công nghệ | This perspective, often termed technological determinism… | critique technological determinism |
| asymmetry | n | /eɪˈsɪmətri/ | sự bất cân xứng | …from… power asymmetries… | power asymmetry, information asymmetry |
| inadvertently | adv | /ˌɪnədˈvɜːtəntli/ | vô tình, không chủ ý | …may inadvertently obscure the political nature… | inadvertently reveal, inadvertently cause |
| constitutive | adj | /ˈkɒnstɪtjuːtɪv/ | cấu thành, tạo thành | …they are constitutive elements of political communities… | constitutive element, constitutive feature |
| touted | v | /taʊtɪd/ | được quảng cáo, được ca ngợi | …while often touted as an unalloyed good… | widely touted, touted as solution |
| unalloyed | adj | /ˌʌnəˈlɔɪd/ | thuần túy, không pha tạp | …touted as an unalloyed good… | unalloyed pleasure, unalloyed success |
| paradox | n | /ˈpærədɒks/ | nghịch lý | …introduces paradoxes that challenge… | central paradox, apparent paradox |
| opacity | n | /əʊˈpæsəti/ | sự mờ đục, tính không minh bạch | Traditional electoral systems maintain opacity at certain points… | organizational opacity, opacity of system |
| calibration | n | /ˌkælɪˈbreɪʃən/ | sự hiệu chuẩn, điều chỉnh | This careful calibration reflects normative judgments… | precise calibration, careful calibration |
| scrutiny | n | /ˈskruːtəni/ | sự xem xét kỹ lưỡng | …where scrutiny serves democratic values… | public scrutiny, close scrutiny, under scrutiny |
| surveillance | n | /sɜːˈveɪləns/ | sự giám sát | …it could also enable new modes of surveillance… | government surveillance, surveillance system |
| indelible | adj | /ɪnˈdeləbl/ | không thể xóa, bền vững | …leave an indelible digital footprint… | indelible mark, indelible impression |
| underpinned | v | /ˌʌndəˈpɪnd/ | làm nền tảng, hỗ trợ | …that has traditionally underpinned democratic governance… | underpinned by principles, underpinned by theory |
| egalitarian | adj | /ɪˌɡælɪˈteəriən/ | bình đẳng | …blockchain voting’s egalitarian promise… | egalitarian society, egalitarian principles |
| disenfranchise | v | /ˌdɪsɪnˈfræntʃaɪz/ | tước quyền bầu cử | …could inadvertently disenfranchise marginalized populations… | disenfranchise voters, disenfranchise minority |
| exacerbate | v | /ɪɡˈzæsəbeɪt/ | làm trầm trọng thêm | …thereby exacerbating existing inequalities… | exacerbate the problem, exacerbate tensions |
| jurisprudential | adj | /ˌdʒʊərɪsprʊˈdenʃəl/ | thuộc luật học | …identified significant jurisprudential challenges… | jurisprudential framework, jurisprudential analysis |
| ramifications | n | /ˌræmɪfɪˈkeɪʃənz/ | hệ quả, hậu quả | …with ramifications that will unfold over decades… | serious ramifications, long-term ramifications |
Kết Bài
Chủ đề “Blockchain for improving the voting process in elections” không chỉ phản ánh xu hướng công nghệ hiện đại mà còn thường xuyên xuất hiện trong các đề thi IELTS Reading gần đây. Qua bài thi mẫu này, bạn đã được trải nghiệm một bộ đề hoàn chỉnh với 3 passages tăng dần độ khó, từ giới thiệu cơ bản về blockchain voting ở Passage 1, đến phân tích kỹ thuật chi tiết ở Passage 2, và kết thúc bằng những thảo luận sâu sắc về mặt triết học và xã hội ở Passage 3.
Bộ đề này bao gồm đầy đủ 40 câu hỏi với 8 dạng bài khác nhau – từ Multiple Choice, True/False/Not Given, Matching Headings đến Summary Completion và Short-answer Questions. Mỗi dạng câu hỏi đều được thiết kế cẩn thận để phản ánh đúng format và độ khó của kỳ thi IELTS thực tế. Đáp án chi tiết kèm giải thích đã giúp bạn hiểu rõ cách paraphrase, xác định từ khóa và tìm thông tin trong passage.
Phần từ vựng quan trọng với hơn 40 từ học thuật được trình bày chi tiết sẽ giúp bạn nâng cao vốn từ vựng, đặc biệt là trong lĩnh vực công nghệ và chính trị. Hãy ghi chú lại những từ mới, tạo flashcards và thực hành sử dụng chúng trong ngữ cảnh thực tế.
Để đạt band điểm cao trong IELTS Reading, hãy nhớ: quản lý thời gian hiệu quả (15-17-23 phút cho 3 passages), đọc kỹ instructions, paraphrase từ khóa, và luôn kiểm tra lại đáp án trước khi nộp bài. Chúc bạn luyện tập hiệu quả và đạt được band điểm mục tiêu!