Mở Bài
Challenges Of Sustainable Agriculture – Thách thức của nông nghiệp bền vững là một chủ đề xuất hiện với tần suất ngày càng cao trong các đề thi IELTS Reading những năm gần đây. Chủ đề này không chỉ phản ánh mối quan tâm toàn cầu về an ninh lương thực, biến đổi khí hậu mà còn liên quan đến nhiều khía cạnh kinh tế, xã hội và công nghệ. Thông qua bài viết này, bạn sẽ được luyện tập với một đề thi IELTS Reading hoàn chỉnh gồm 3 passages từ dễ đến khó, bám sát cấu trúc thi thật.
Bạn sẽ học được gì từ bài viết này? Đầu tiên, một bộ đề thi đầy đủ 40 câu hỏi với độ khó tăng dần (Easy → Medium → Hard), giúp bạn làm quen với mọi cấp độ. Thứ hai, các dạng câu hỏi đa dạng như True/False/Not Given, Multiple Choice, Matching Headings, Summary Completion – tất cả đều giống thi thật 100%. Thứ ba, đáp án chi tiết kèm giải thích từng câu, chỉ ra vị trí thông tin và cách paraphrase. Cuối cùng, bộ từ vựng chuyên ngành được tổng hợp kỹ lưỡng và các kỹ thuật làm bài thực chiến.
Đề thi này phù hợp cho học viên từ band 5.0 trở lên, đặc biệt hữu ích cho những ai đang hướng tới band 6.5-7.5. Hãy chuẩn bị 60 phút không bị gián đoạn để trải nghiệm đề thi như thực tế nhé!
1. Hướng Dẫn Làm Bài IELTS Reading
Tổng Quan Về IELTS Reading Test
IELTS Reading Test bao gồm 3 passages với tổng cộng 40 câu hỏi cần hoàn thành trong 60 phút. Mỗi passage dài khoảng 700-900 từ và độ khó tăng dần từ Passage 1 đến Passage 3. Điều quan trọng là bạn phải tự quản lý thời gian vì không có thời gian nghỉ giữa các phần.
Phân bổ thời gian khuyến nghị để đạt hiệu quả tốt nhất:
- Passage 1: 15-17 phút (độ khó thấp, nên làm nhanh)
- Passage 2: 18-20 phút (độ khó trung bình)
- Passage 3: 23-25 phút (độ khó cao, cần thời gian suy luận)
Lưu ý dành 2-3 phút cuối để chuyển đáp án lên answer sheet và kiểm tra lại các câu chưa chắc chắn.
Các Dạng Câu Hỏi Trong Đề Này
Đề thi mẫu này bao gồm 7 dạng câu hỏi phổ biến nhất trong IELTS Reading:
- True/False/Not Given – Xác định thông tin đúng, sai hay không được đề cập
- Multiple Choice – Chọn đáp án đúng từ các phương án cho sẵn
- Matching Headings – Ghép tiêu đề phù hợp với các đoạn văn
- Summary Completion – Hoàn thành tóm tắt bằng từ trong bài
- Matching Features – Ghép thông tin với các đối tượng/người
- Sentence Completion – Hoàn thành câu theo thông tin bài đọc
- Short-answer Questions – Trả lời ngắn gọn các câu hỏi
Mỗi dạng câu hỏi yêu cầu một kỹ thuật làm bài riêng, và việc luyện tập đa dạng các dạng sẽ giúp bạn tự tin hơn trong phòng thi.
2. IELTS Reading Practice Test
PASSAGE 1 – The Foundations of Sustainable Farming
Độ khó: Easy (Band 5.0-6.5)
Thời gian đề xuất: 15-17 phút
Agriculture has been the backbone of human civilization for thousands of years, providing food, fibers, and fuel to sustaining populations worldwide. However, as the global population continues to grow—projected to reach 9.7 billion by 2050—the pressure on agricultural systems has intensified dramatically. Traditional farming methods, while productive in the short term, have led to soil degradation, water pollution, and loss of biodiversity. This reality has pushed governments, farmers, and researchers to seek more sustainable approaches to food production.
Sustainable agriculture is a farming system that aims to meet society’s food and textile needs in the present without compromising the ability of future generations to meet their own needs. It encompasses three main pillars: environmental health, economic profitability, and social equity. Unlike conventional farming, which often relies heavily on chemical fertilizers and pesticides, sustainable agriculture emphasizes working with natural processes rather than against them. Farmers who practice sustainable methods focus on maintaining healthy soil, conserving water, and minimizing pollution.
One of the fundamental principles of sustainable farming is soil health management. Healthy soil is teeming with microorganisms that help break down organic matter and make nutrients available to plants. Crop rotation—the practice of growing different types of crops in the same area across sequential seasons—is a time-tested method for maintaining soil fertility. For example, leguminous plants like beans and peas can fix nitrogen from the atmosphere into the soil, reducing the need for synthetic fertilizers. Similarly, cover cropping involves planting specific crops primarily to benefit the soil rather than for harvest. These cover crops prevent soil erosion, improve soil structure, and add organic matter when they are tilled back into the ground.
Water management represents another crucial aspect of sustainable agriculture. Conventional irrigation methods often waste significant amounts of water through evaporation and runoff. In contrast, sustainable practices such as drip irrigation deliver water directly to plant roots, cutting water usage by up to 60% compared to traditional sprinkler systems. Additionally, farmers are increasingly adopting rainwater harvesting techniques, collecting and storing rainfall for use during dry periods. Some innovative farms have implemented constructed wetlands that naturally filter agricultural runoff before it enters rivers and streams, thereby protecting aquatic ecosystems.
Integrated Pest Management (IPM) is a cornerstone strategy in sustainable agriculture that minimizes the use of harmful pesticides. Rather than automatically spraying chemicals at the first sign of pests, IPM encourages farmers to monitor pest populations carefully and use a combination of biological, cultural, and mechanical controls. For instance, introducing natural predators like ladybugs can control aphid populations without chemicals. Crop diversity also plays a vital role in pest management—monoculture farming, where a single crop is grown over large areas, creates ideal conditions for pest outbreaks, whereas diverse cropping systems naturally limit pest populations.
The economic dimension of sustainable agriculture often surprises people. While transitioning to sustainable practices may require initial investment in new equipment or knowledge, many farmers report long-term cost savings. Reduced expenditure on synthetic fertilizers, pesticides, and water can significantly improve profit margins. Moreover, there is growing consumer demand for sustainably produced food, often allowing farmers to command premium prices for their products. Certification programs like organic or fair trade can open access to specialized markets willing to pay more for products that align with their values.
Social sustainability is the third pillar, ensuring that farming systems support farming communities and workers. This includes fair wages, safe working conditions, and respect for local cultures and traditions. Community-supported agriculture (CSA) programs have emerged as one model that strengthens the connection between farmers and consumers. In CSA arrangements, consumers purchase shares of a farm’s harvest in advance, providing farmers with upfront capital and sharing both the risks and rewards of farming. This model creates stable income for farmers while giving consumers access to fresh, seasonal produce.
Despite its many benefits, sustainable agriculture is not without challenges. The transition period can be difficult as farmers learn new techniques and as soil ecosystems adjust to different management practices. Additionally, knowledge gaps exist, particularly in developing countries where extension services may be limited. There is also the challenge of scale—methods that work well on small farms may require adaptation for large commercial operations. Nevertheless, as climate change increasingly affects weather patterns and growing conditions, the resilience offered by sustainable farming systems becomes ever more valuable.
Questions 1-6
Do the following statements agree with the information given in Reading Passage 1?
Write:
- TRUE if the statement agrees with the information
- FALSE if the statement contradicts the information
- NOT GIVEN if there is no information on this
- The world’s population is expected to exceed 9 billion people by the middle of this century.
- Sustainable agriculture focuses on short-term productivity rather than long-term environmental health.
- Leguminous plants can naturally add nitrogen to the soil without chemical fertilizers.
- Drip irrigation systems use the same amount of water as traditional sprinkler systems.
- Monoculture farming helps to prevent pest outbreaks better than diverse cropping systems.
- Community-supported agriculture programs provide farmers with payment before the harvest.
Questions 7-10
Complete the sentences below.
Choose NO MORE THAN TWO WORDS from the passage for each answer.
- One of the key methods for maintaining soil fertility is __, which involves growing different crops in sequence.
- Farmers can reduce their dependence on synthetic chemicals by introducing __ such as ladybugs to control pests.
- Sustainable agriculture can result in __ for farmers by reducing spending on chemicals and water.
- The __ in developing nations can make it harder for farmers to learn sustainable farming techniques.
Questions 11-13
Choose the correct letter, A, B, C or D.
- According to the passage, what is the main purpose of cover cropping?
- A. To provide an additional harvest for profit
- B. To improve soil quality and prevent erosion
- C. To attract beneficial insects to the farm
- D. To reduce the need for irrigation systems
- The passage suggests that Integrated Pest Management (IPM):
- A. eliminates the need for any pest control measures
- B. requires farmers to use more pesticides than conventional methods
- C. involves careful monitoring before taking action against pests
- D. is only effective on small-scale organic farms
- What does the passage indicate about the economic aspect of sustainable farming?
- A. It always costs more than conventional farming
- B. It offers no financial benefits to farmers
- C. It can lead to better profit margins over time
- D. It prevents farmers from accessing mainstream markets
PASSAGE 2 – Technological Innovation and Sustainable Agriculture
Độ khó: Medium (Band 6.0-7.5)
Thời gian đề xuất: 18-20 phút
The intersection of technology and agriculture is revolutionizing how we approach sustainable farming in the 21st century. Precision agriculture, which utilizes advanced technologies to optimize crop yields while minimizing environmental impact, has emerged as one of the most promising pathways toward achieving food security without exhausting natural resources. This technological transformation, however, brings both unprecedented opportunities and significant challenges that must be carefully navigated.
At the heart of precision agriculture lies data collection and analysis. Modern farms are increasingly equipped with an array of sensors that monitor everything from soil moisture levels and nutrient content to weather patterns and crop health. Unmanned aerial vehicles (UAVs), commonly known as drones, fly over fields capturing high-resolution imagery that can detect plant stress, disease outbreaks, or irrigation problems long before they become visible to the naked eye. This real-time monitoring allows farmers to respond quickly and precisely to emerging issues, applying interventions only where needed rather than treating entire fields uniformly.
The advent of GPS-guided tractors and automated machinery has transformed field operations. These vehicles can plant seeds, apply fertilizers, and harvest crops with centimeter-level accuracy, ensuring optimal spacing and minimizing overlap that wastes resources. Variable rate technology (VRT) takes this further by adjusting the application of inputs—such as seeds, fertilizers, and pesticides—based on the specific needs of different zones within a single field. A field that appears uniform to the human eye may actually contain areas with varying soil types, drainage patterns, or nutrient levels. VRT enables farmers to tailor their approach to these micro-environments, potentially reducing input costs by 15-20% while maintaining or even improving yields.
Artificial intelligence (AI) and machine learning algorithms are increasingly being deployed to make sense of the vast amounts of data generated by these technologies. AI systems can analyze historical weather data, soil conditions, and crop performance to provide predictive insights about optimal planting times, potential pest pressures, or likely harvest dates. Some cutting-edge applications use computer vision to identify individual weeds among crops, enabling robotic weeders to remove unwanted plants mechanically rather than relying on herbicides. This targeted approach drastically reduces chemical usage while maintaining weed control.
Biotechnology represents another frontier in sustainable agriculture, though it remains controversial in many parts of the world. Genetic modification and more recently, gene editing techniques like CRISPR, offer the potential to develop crop varieties with enhanced characteristics such as drought tolerance, disease resistance, or improved nutritional content. Proponents argue that these technologies can help crops adapt to changing climate conditions and reduce the need for pesticides and irrigation. For instance, scientists have developed rice varieties that can survive flooding for up to two weeks, potentially saving harvests in flood-prone regions. Critics, however, raise concerns about unintended ecological consequences, the corporate control of seed supplies, and insufficient long-term safety testing.
The digital divide presents a significant obstacle to the widespread adoption of these technologies. While large-scale commercial farms in developed nations can afford the substantial investments required for precision agriculture equipment, smallholder farmers—who produce approximately 70% of the world’s food—often lack the financial resources, technical expertise, and reliable internet connectivity needed to implement these solutions. This technological disparity risks widening the gap between industrial agriculture and small-scale farming, potentially marginalizing millions of farmers in developing countries who are already vulnerable to climate change and market volatility.
Vertical farming and controlled environment agriculture represent radical departures from traditional farming methods. These systems grow crops in stacked layers within buildings, using LED lighting, hydroponics (growing plants in nutrient solutions without soil), or aeroponics (growing plants in air with nutrient mist). Such facilities can produce food year-round regardless of weather, use 95% less water than conventional farming, and eliminate the need for pesticides. Urban vertical farms can be established close to consumers, dramatically reducing transportation emissions. However, these systems require substantial energy inputs for lighting and climate control, and their economic viability remains questionable outside of high-value crops like leafy greens and herbs. The technology is far from being able to produce staple crops like wheat or rice at competitive costs.
Blockchain technology is emerging as a tool for enhancing transparency and traceability in agricultural supply chains. By recording every transaction and movement of agricultural products on an immutable digital ledger, blockchain can verify sustainability claims, ensure fair payments to farmers, and quickly trace contaminated products back to their source during food safety incidents. Several pilot projects have demonstrated how blockchain can empower smallholder farmers by providing proof of sustainable practices, potentially granting them access to premium markets and fair trade certifications that were previously difficult to obtain.
Despite these technological advances, experts caution against viewing technology as a panacea for all agricultural challenges. Technology must be integrated with traditional ecological knowledge and adapted to local contexts rather than applied as one-size-fits-all solutions. There are also valid concerns about data ownership and privacy—who controls the vast amounts of data generated by smart farms, and how might that data be used? Additionally, the energy footprint of some agricultural technologies, particularly those requiring significant computational power or artificial lighting, must be carefully evaluated against their benefits.
The path forward likely involves a pluralistic approach that combines traditional sustainable practices with appropriate technologies, scaled and adapted to different contexts. What works for a 5,000-hectare farm in North America may be entirely inappropriate for a 2-hectare family farm in Southeast Asia, and vice versa. The challenge is ensuring that technological innovation serves the goal of sustainable agriculture for all, rather than creating new forms of inequality and environmental problems.
Questions 14-18
Reading Passage 2 has ten paragraphs, A-J.
Which paragraph contains the following information?
Write the correct letter, A-J, in boxes 14-18 on your answer sheet.
- A description of technology that records agricultural transactions permanently
- An explanation of how machines can operate with extreme accuracy
- Concerns about who has access to farming data
- Examples of how sensors collect information from agricultural land
- A discussion of farming systems that don’t require soil
Questions 19-23
Complete the summary below.
Choose NO MORE THAN TWO WORDS from the passage for each answer.
Precision agriculture uses technology to improve farming efficiency. Drones provide farmers with detailed images that enable 19. __ of crop conditions, helping identify problems early. GPS-guided equipment can perform tasks with great precision, while 20. __ adjusts the amount of fertilizer or seeds used in different parts of a field. 21. __ systems analyze data to predict the best times for planting or harvesting. Despite these advances, 22. __ farmers often cannot afford expensive technology, creating inequality. New approaches like 23. __ grow crops in layers inside buildings but require significant energy.
Questions 24-26
Choose THREE letters, A-G.
Which THREE of the following are mentioned in the passage as benefits of technological innovation in agriculture?
- A. Elimination of all environmental problems in farming
- B. Reduction in the amount of chemicals needed
- C. Ability to respond quickly to crop problems
- D. Complete replacement of human farmers
- E. Growing food closer to urban consumers
- F. Guaranteed profits for all farmers
- G. Enhanced ability to verify sustainable farming claims
PASSAGE 3 – The Socioeconomic and Political Dimensions of Agricultural Sustainability
Độ khó: Hard (Band 7.0-9.0)
Thời gian đề xuất: 23-25 phút
The transition toward sustainable agriculture extends far beyond technical and environmental considerations; it is fundamentally shaped by complex socioeconomic structures and political frameworks that determine who has access to resources, knowledge, and markets. Understanding these multifaceted dynamics is essential for developing policies and initiatives that can genuinely transform agricultural systems rather than merely perpetuating existing inequalities under the guise of sustainability.
Land tenure systems—the rules and institutions governing who can use land and for how long—profoundly influence farmers’ willingness and ability to adopt sustainable practices. Farmers with secure long-term ownership or leasehold rights are far more likely to invest in soil conservation, agroforestry, or other improvements that take years to yield benefits. Conversely, those with precarious tenure or short-term rental agreements have little incentive to implement practices whose benefits they may never reap. In many developing countries, customary land rights—traditional systems of land allocation and use—exist alongside formal legal frameworks, creating ambiguity that can leave smallholders vulnerable to land dispossession, particularly when agricultural land becomes valuable for other purposes. The feminization of agriculture, whereby women increasingly perform the majority of farm labor as men migrate to cities, further complicates tenure issues, as women frequently lack formal property rights even when they are the primary cultivators.
The political economy of agricultural subsidies represents another critical factor shaping sustainability outcomes. Governments worldwide spend approximately $700 billion annually on agricultural support, yet the vast majority of these subsidies favor large-scale industrial agriculture producing commodity crops like corn, soybeans, and wheat. These subsidies inadvertently incentivize practices that deplete soil, pollute water, and emit greenhouse gases by making resource-intensive farming artificially profitable. Perversely, many of these subsidized crops are used not for direct human consumption but for animal feed, biofuels, or processed foods high in sugars and fats, exacerbating both environmental degradation and public health problems. Reforming subsidy structures to reward sustainable practices rather than mere production volume faces formidable political obstacles, as incumbent agricultural interests wield substantial influence over policy-making in most countries.
Market structures and value chain configurations significantly affect farmers’ capacity to adopt sustainable methods and capture fair value for their products. In many agricultural sectors, a small number of corporations control key stages of production—from seed and chemical inputs to processing and retail distribution. This concentration of market power enables these entities to extract disproportionate value from agricultural supply chains while transferring risks and costs onto farmers. Contract farming arrangements, wherein farmers produce crops for specific buyers under predetermined terms, can provide market access and technical support but often leave farmers with minimal bargaining power and vulnerable to exploitative conditions. The rise of sustainability certification schemes—organic, fair trade, Rainforest Alliance, and others—was intended to create market-based incentives for sustainable production, yet research reveals mixed results. While some farmers benefit from premium prices and improved practices, certification costs and administrative burdens can be prohibitive for smallholders, and the premiums consumers pay often fail to reach producers.
Climate change introduces profound uncertainties that complicate agricultural planning and investment. Shifting precipitation patterns, increased frequency of extreme weather events, and changing pest and disease dynamics threaten agricultural productivity worldwide, with smallholder farmers in tropical regions facing disproportionate impacts. Adaptation strategies—such as developing drought-resistant crop varieties, implementing water conservation measures, or shifting planting calendars—require resources and knowledge that many vulnerable farmers lack. Moreover, agriculture itself contributes approximately 25% of global greenhouse gas emissions through deforestation, livestock production, rice cultivation, and fertilizer use, creating a self-reinforcing cycle wherein agricultural practices contribute to climate change, which then undermines agricultural productivity. Mitigation efforts to reduce agriculture’s climate footprint often conflict with short-term productivity goals, presenting farmers with difficult trade-offs unless supported by appropriate policies and incentives.
Knowledge systems and extension services play a crucial yet often undervalued role in promoting sustainable agriculture. The erosion of traditional ecological knowledge, as younger generations leave rural areas and indigenous practices are displaced by industrial methods, represents an incalculable loss of time-tested wisdom about local ecosystems, crop varieties, and sustainable resource management. Simultaneously, formal agricultural research and extension services—which disseminate technical knowledge to farmers—have been chronically underfunded in many developing countries and have historically prioritized yield maximization over sustainability. Participatory research approaches that engage farmers as co-creators of knowledge rather than passive recipients have shown promise in developing contextually appropriate sustainable practices, yet they remain the exception rather than the norm. The digital revolution offers new possibilities for knowledge sharing through mobile platforms and social media, but the persistent digital divide means many farmers remain excluded from these networks.
Globalization and international trade agreements introduce additional complexity into efforts to promote agricultural sustainability. While trade can improve allocative efficiency by allowing countries to specialize in crops suited to their environments, current trade rules often favor large-scale export-oriented agriculture over diversified local food systems. Phytosanitary standards and quality requirements, ostensibly designed to ensure food safety, can function as non-tariff barriers that exclude smallholder farmers from export markets. Trade agreements typically constrain governments’ ability to support domestic agriculture or implement environmental regulations that might be deemed trade-distorting. The COVID-19 pandemic starkly revealed vulnerabilities in elongated global supply chains, prompting renewed interest in food sovereignty—the principle that communities should control their own food systems—and localized production, though the long-term trajectory remains uncertain.
Social movements and civil society organizations have been instrumental in challenging industrial agriculture’s dominance and articulating alternative visions of sustainable food systems. Peasant movements like La Vía Campesina, representing some 200 million farmers globally, advocate for agroecology—an integrated approach combining ecological science with social justice principles and farmers’ knowledge. These movements have successfully influenced policy debates, secured recognition for farmers’ rights to save and exchange seeds, and created alternative market channels like farmers’ markets and food cooperatives. However, they face considerable opposition from agribusiness interests and often struggle to scale their initiatives beyond niche markets.
The concept of planetary boundaries—biophysical thresholds beyond which Earth systems may undergo abrupt or irreversible changes—provides a scientific framework for understanding agriculture’s sustainability imperative. Agriculture has already transgressed boundaries related to biodiversity loss, nitrogen and phosphorus cycles, and land-system change, while contributing significantly to climate change. Feeding a growing population within these boundaries will require not merely incremental improvements but transformative changes to food systems, including dietary shifts toward plant-based foods, dramatic reductions in food waste, and wholesale redesign of agricultural practices. Such systemic transformation necessitates coordinated action across multiple scales, from international cooperation on research and technology transfer to national policy reforms and local community initiatives.
Ultimately, the challenge of sustainable agriculture cannot be reduced to technical problems requiring technical solutions. It is fundamentally about power, equity, and competing visions of how societies should organize food production and distribution. Progress toward sustainability requires not only better farming practices and technologies but also democratic governance structures that give voice to marginalized producers and consumers, economic systems that internalize environmental costs, and cultural shifts that reconnect people with the sources of their food. The trajectory of global agriculture will be determined not by any single factor but by the interplay among technological possibilities, economic incentives, political will, social movements, and environmental constraints—all shaped by the choices made by individuals, communities, and societies in the coming decades.
Questions 27-31
Choose the correct letter, A, B, C or D.
- According to the passage, why are farmers with secure land rights more likely to use sustainable practices?
- A. They have access to more government subsidies
- B. They can benefit from long-term improvements to their land
- C. They are required by law to protect the environment
- D. They typically have larger farms than tenant farmers
- The passage suggests that current agricultural subsidies:
- A. primarily support small-scale sustainable farmers
- B. encourage practices that harm the environment
- C. have been successfully reformed in most countries
- D. are too small to influence farming decisions
- What does the passage indicate about sustainability certification schemes?
- A. They have universally improved conditions for all farmers
- B. They guarantee high prices for certified products
- C. They may be difficult for small farmers to afford
- D. They have eliminated the need for government regulations
- According to the passage, agriculture’s contribution to climate change:
- A. is negligible compared to other sectors
- B. creates a cycle that harms agricultural productivity
- C. has been completely solved by new technologies
- D. affects only farmers in developed countries
- The concept of “planetary boundaries” mentioned in the passage:
- A. suggests that minor adjustments to farming are sufficient
- B. applies only to agriculture, not other human activities
- C. indicates that fundamental changes to food systems are needed
- D. has been rejected by most scientists
Questions 32-36
Complete each sentence with the correct ending, A-I, below.
Write the correct letter, A-I, in boxes 32-36 on your answer sheet.
- Women who work in agriculture
- Contract farming arrangements
- Traditional ecological knowledge
- International trade agreements
- Social movements like La Vía Campesina
A. often prevent governments from implementing certain environmental policies.
B. have helped create alternative markets for sustainable farmers.
C. contains valuable information about sustainable local farming methods.
D. are guaranteed to receive higher prices for their crops.
E. frequently lack legal ownership of the land they cultivate.
F. can connect farmers to markets but may offer limited negotiating power.
G. have completely replaced traditional farming methods worldwide.
H. ensure that all farmers adopt organic practices.
I. provide farmers with complete control over production decisions.
Questions 37-40
Answer the questions below.
Choose NO MORE THAN THREE WORDS from the passage for each answer.
- What term describes the traditional systems that govern land use in some developing countries?
- What percentage of global greenhouse gas emissions comes from agriculture?
- What type of research approaches involve farmers helping to create knowledge?
- According to peasant movements, what should communities control themselves?
3. Answer Keys – Đáp Án
PASSAGE 1: Questions 1-13
- TRUE
- FALSE
- TRUE
- FALSE
- FALSE
- TRUE
- crop rotation
- natural predators
- cost savings / long-term cost savings
- knowledge gaps
- B
- C
- C
PASSAGE 2: Questions 14-26
- H
- C
- I
- B
- G
- real-time monitoring
- variable rate technology / VRT
- Artificial intelligence / AI
- smallholder
- vertical farming
- B, C, E (in any order)
- (see above)
- (see above)
PASSAGE 3: Questions 27-40
- B
- B
- C
- B
- C
- E
- F
- C
- A
- B
- customary land rights
- 25% / approximately 25%
- participatory research (approaches)
- (their own) food systems
4. Giải Thích Đáp Án Chi Tiết
Passage 1 – Giải Thích
Câu 1: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: world’s population, exceed 9 billion, middle of this century
- Vị trí trong bài: Đoạn A, dòng 2-3
- Giải thích: Bài đọc nói rõ “projected to reach 9.7 billion by 2050” – dự kiến đạt 9.7 tỷ người vào năm 2050. Câu hỏi dùng cụm “exceed 9 billion” và “middle of this century” là cách paraphrase của thông tin trong bài. 9.7 tỷ thực sự vượt quá 9 tỷ, và năm 2050 là giữa thế kỷ 21, vậy câu phát biểu đúng.
Câu 2: FALSE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: sustainable agriculture, short-term productivity, long-term environmental health
- Vị trí trong bài: Đoạn B, dòng 1-3
- Giải thích: Bài đọc nói sustainable agriculture “aims to meet society’s food and textile needs in the present without compromising the ability of future generations” – tức là quan tâm đến cả hiện tại và tương lai. Câu hỏi nói nó tập trung vào “short-term productivity rather than long-term environmental health” hoàn toàn trái ngược với thông tin trong bài, nên đáp án là FALSE.
Câu 3: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: leguminous plants, naturally add nitrogen, without chemical fertilizers
- Vị trí trong bài: Đoạn C, dòng 5-7
- Giải thích: Bài viết: “leguminous plants like beans and peas can fix nitrogen from the atmosphere into the soil, reducing the need for synthetic fertilizers”. Câu hỏi paraphrase “can fix nitrogen” thành “naturally add nitrogen” và “reducing the need for synthetic fertilizers” thành “without chemical fertilizers”. Ý nghĩa trùng khớp nên đáp án là TRUE.
Câu 6: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: community-supported agriculture, payment before harvest
- Vị trí trong bài: Đoạn G, dòng 3-4
- Giải thích: Bài viết: “consumers purchase shares of a farm’s harvest in advance, providing farmers with upfront capital”. Cụm “purchase…in advance” và “upfront capital” chính xác có nghĩa là thanh toán trước khi thu hoạch, khớp với “payment before the harvest” trong câu hỏi.
Câu 7: crop rotation
- Dạng câu hỏi: Sentence Completion
- Từ khóa: key methods, maintaining soil fertility, growing different crops in sequence
- Vị trí trong bài: Đoạn C, dòng 4-5
- Giải thích: Câu trong bài: “Crop rotation—the practice of growing different types of crops in the same area across sequential seasons—is a time-tested method for maintaining soil fertility”. Định nghĩa trong bài khớp chính xác với mô tả trong câu hỏi.
Câu 11: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: main purpose, cover cropping
- Vị trí trong bài: Đoạn C, dòng 8-10
- Giải thích: Bài viết nói rõ cover crops “prevent soil erosion, improve soil structure, and add organic matter” – mục đích chính là cải thiện đất và chống xói mòn, đúng với đáp án B. Các đáp án khác không được đề cập hoặc không phải mục đích chính.
Passage 2 – Giải Thích
Câu 14: H
- Dạng câu hỏi: Matching Information
- Từ khóa: technology, records agricultural transactions permanently
- Vị trí trong bài: Đoạn H
- Giải thích: Đoạn H nói về blockchain technology và cách nó “recording every transaction and movement of agricultural products on an immutable digital ledger” – ghi lại giao dịch trên sổ cái số không thể thay đổi. “Immutable” (không thể thay đổi) = “permanently” (vĩnh viễn).
Câu 17: B
- Dạng câu hỏi: Matching Information
- Từ khóa: sensors, collect information, agricultural land
- Vị trí trong bài: Đoạn B
- Giải thích: Đoạn B mô tả chi tiết “Modern farms are increasingly equipped with an array of sensors that monitor everything from soil moisture levels and nutrient content to weather patterns and crop health” – các cảm biến thu thập thông tin đa dạng từ đất nông nghiệp.
Câu 19: real-time monitoring
- Dạng câu hỏi: Summary Completion
- Từ khóa: Drones, detailed images, crop conditions, identify problems early
- Vị trí trong bài: Đoạn B, dòng 4-6
- Giải thích: Bài viết: “This real-time monitoring allows farmers to respond quickly and precisely to emerging issues” – việc theo dõi thời gian thực cho phép nông dân phản ứng nhanh với vấn đề. Đây chính là lợi ích của việc drone cung cấp hình ảnh chi tiết.
Câu 24-26: B, C, E
- Dạng câu hỏi: Multiple Choice (chọn 3 đáp án)
- Giải thích:
- B (Reduction in chemicals): Đoạn D nói về robotic weeders giảm việc sử dụng thuốc diệt cỏ
- C (Respond quickly to problems): Đoạn B nói real-time monitoring cho phép phản ứng nhanh
- E (Growing food closer to urban consumers): Đoạn G nói vertical farms “can be established close to consumers”
- Các đáp án khác không được đề cập hoặc bị phản bác trong bài
Passage 3 – Giải Thích
Câu 27: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: secure land rights, more likely, sustainable practices
- Vị trí trong bài: Đoạn B, dòng 2-4
- Giải thích: Bài viết giải thích rằng farmers với secure land rights “are far more likely to invest in soil conservation, agroforestry, or other improvements that take years to yield benefits” – họ sẵn sàng đầu tư vào những cải tiến lâu dài vì họ sẽ được hưởng lợi ích, đúng với đáp án B.
Câu 28: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: current agricultural subsidies
- Vị trí trong bài: Đoạn C, dòng 3-5
- Giải thích: Bài viết chỉ ra rằng subsidies “inadvertently incentivize practices that deplete soil, pollute water, and emit greenhouse gases” – vô tình khuyến khích các hành vi gây hại môi trường, khớp với đáp án B.
Câu 30: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: agriculture’s contribution to climate change
- Vị trí trong bài: Đoạn E, dòng 3-5
- Giải thích: Bài viết mô tả “a self-reinforcing cycle wherein agricultural practices contribute to climate change, which then undermines agricultural productivity” – một vòng luẩn quẩn tự củng cố, đúng với đáp án B về việc tạo ra một chu kỳ gây hại.
Câu 32: E
- Dạng câu hỏi: Matching Sentence Endings
- Từ khóa: Women who work in agriculture
- Vị trí trong bài: Đoạn B, dòng 7-9
- Giải thích: Bài viết nói về “feminization of agriculture” và đề cập “women frequently lack formal property rights even when they are the primary cultivators” – phụ nữ thường thiếu quyền sở hữu chính thức ngay cả khi họ là người canh tác chính, khớp với ending E.
Câu 37: customary land rights
- Dạng câu hỏi: Short Answer
- Từ khóa: traditional systems, govern land use, developing countries
- Vị trí trong bài: Đoạn B, dòng 5-6
- Giải thích: Bài viết nói rõ: “customary land rights—traditional systems of land allocation and use—exist alongside formal legal frameworks” – customary land rights là thuật ngữ chính xác cho hệ thống truyền thống quản lý đất đai.
Câu 38: 25% / approximately 25%
- Dạng câu hỏi: Short Answer
- Từ khóa: percentage, global greenhouse gas emissions, agriculture
- Vị trí trong bài: Đoạn E, dòng 3
- Giải thích: Bài viết nêu rõ số liệu: “agriculture itself contributes approximately 25% of global greenhouse gas emissions” – nông nghiệp đóng góp khoảng 25% lượng khí thải nhà kính toàn cầu.
5. Từ Vựng Quan Trọng Theo Passage
Passage 1 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| backbone | n | /ˈbækboʊn/ | Xương sống, nền tảng | Agriculture has been the backbone of human civilization | the backbone of society/economy |
| sustainable | adj | /səˈsteɪnəbl/ | Bền vững, có thể duy trì | Sustainable agriculture is a farming system | sustainable development/practices |
| degrade | v | /dɪˈɡreɪd/ | Làm suy thoái, làm xấu đi | Traditional methods have led to soil degradation | degrade the environment/quality |
| crop rotation | n | /krɑːp roʊˈteɪʃn/ | Luân canh cây trồng | Crop rotation is a time-tested method | practice crop rotation |
| leguminous | adj | /lɪˈɡjuːmɪnəs/ | Thuộc họ đậu | Leguminous plants like beans | leguminous crops/species |
| drip irrigation | n | /drɪp ˌɪrɪˈɡeɪʃn/ | Tưới nhỏ giọt | Drip irrigation delivers water directly to plant roots | install drip irrigation |
| monoculture | n | /ˈmɑːnoʊkʌltʃər/ | Canh tác đơn canh | Monoculture farming creates ideal conditions for pests | practice monoculture |
| natural predator | n | /ˈnætʃrəl ˈpredətər/ | Động vật ăn thịt tự nhiên | Introducing natural predators like ladybugs | natural predators control pests |
| profit margin | n | /ˈprɑːfɪt ˈmɑːrdʒɪn/ | Tỷ suất lợi nhuận | Reduced expenditure can improve profit margins | increase/improve profit margins |
| premium price | n | /ˈpriːmiəm praɪs/ | Giá cao hơn thị trường | Farmers can command premium prices | pay/charge a premium price |
| knowledge gap | n | /ˈnɑːlɪdʒ ɡæp/ | Khoảng trống kiến thức | Knowledge gaps exist in developing countries | bridge/close the knowledge gap |
| extension service | n | /ɪkˈstenʃn ˈsɜːrvɪs/ | Dịch vụ khuyến nông | Extension services may be limited | agricultural extension services |
Passage 2 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| precision agriculture | n | /prɪˈsɪʒn ˈæɡrɪkʌltʃər/ | Nông nghiệp chính xác | Precision agriculture utilizes advanced technologies | implement precision agriculture |
| revolutionize | v | /ˌrevəˈluːʃənaɪz/ | Cách mạng hóa | Technology is revolutionizing farming | revolutionize the industry |
| unmanned aerial vehicle | n | /ʌnˈmænd ˈeriəl ˈviːəkl/ | Thiết bị bay không người lái | UAVs fly over fields capturing imagery | operate UAVs/drones |
| real-time monitoring | n | /ˈriːəl taɪm ˈmɑːnɪtərɪŋ/ | Giám sát thời gian thực | Real-time monitoring allows quick response | real-time monitoring system |
| variable rate technology | n | /ˈveriəbl reɪt tekˈnɑːlədʒi/ | Công nghệ tốc độ thay đổi | VRT adjusts application of inputs | use variable rate technology |
| tailor | v | /ˈteɪlər/ | Điều chỉnh cho phù hợp | Farmers can tailor their approach | tailor to specific needs |
| artificial intelligence | n | /ˌɑːrtɪˈfɪʃl ɪnˈtelɪdʒəns/ | Trí tuệ nhân tạo | AI systems analyze historical data | AI-powered systems |
| cutting-edge | adj | /ˈkʌtɪŋ edʒ/ | Tiên tiến nhất, hiện đại nhất | Cutting-edge applications use computer vision | cutting-edge technology/research |
| gene editing | n | /dʒiːn ˈedɪtɪŋ/ | Chỉnh sửa gen | Gene editing techniques like CRISPR | gene editing technology |
| controversial | adj | /ˌkɑːntrəˈvɜːrʃl/ | Gây tranh cãi | Biotechnology remains controversial | highly controversial issue |
| digital divide | n | /ˈdɪdʒɪtl dɪˈvaɪd/ | Khoảng cách số | The digital divide presents an obstacle | bridge the digital divide |
| vertical farming | n | /ˈvɜːrtɪkl ˈfɑːrmɪŋ/ | Nông nghiệp thẳng đứng | Vertical farming grows crops in stacked layers | vertical farming systems |
| hydroponics | n | /ˌhaɪdrəˈpɑːnɪks/ | Trồng trọt thủy canh | Using hydroponics to grow plants | hydroponic systems/farming |
| blockchain | n | /ˈblɑːktʃeɪn/ | Chuỗi khối | Blockchain enhances transparency | blockchain technology/platform |
| panacea | n | /ˌpænəˈsiːə/ | Thuốc chữa bách bệnh | Technology is not a panacea | not a panacea for all problems |
Passage 3 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| socioeconomic | adj | /ˌsoʊsioʊˌiːkəˈnɑːmɪk/ | Thuộc kinh tế xã hội | Complex socioeconomic structures | socioeconomic factors/status |
| multifaceted | adj | /ˌmʌltiˈfæsɪtɪd/ | Đa diện, nhiều khía cạnh | Understanding these multifaceted dynamics | multifaceted problem/approach |
| perpetuate | v | /pərˈpetʃueɪt/ | Duy trì, kéo dài | Perpetuating existing inequalities | perpetuate stereotypes/inequality |
| land tenure | n | /lænd ˈtenjər/ | Quyền sở hữu đất | Land tenure systems influence farmers | secure land tenure |
| leasehold | n | /ˈliːshoʊld/ | Quyền thuê đất | Farmers with leasehold rights | leasehold property/agreement |
| precarious | adj | /prɪˈkeriəs/ | Bấp bênh, không chắc chắn | Those with precarious tenure | precarious situation/position |
| dispossession | n | /ˌdɪspəˈzeʃn/ | Tước đoạt tài sản | Vulnerable to land dispossession | land dispossession/displacement |
| inadvertently | adv | /ˌɪnədˈvɜːrtəntli/ | Vô tình, không cố ý | Subsidies inadvertently incentivize harmful practices | inadvertently cause/create |
| exacerbate | v | /ɪɡˈzæsərbeɪt/ | Làm trầm trọng thêm | Exacerbating environmental degradation | exacerbate the problem/situation |
| incumbent | adj | /ɪnˈkʌmbənt/ | Đang nắm quyền, hiện hữu | Incumbent agricultural interests | incumbent government/president |
| exploitative | adj | /ɪkˈsplɔɪtətɪv/ | Bóc lột, lợi dụng | Vulnerable to exploitative conditions | exploitative practices/relationships |
| self-reinforcing | adj | /self ˌriːɪnˈfɔːrsɪŋ/ | Tự củng cố, tự tăng cường | A self-reinforcing cycle | self-reinforcing pattern/mechanism |
| mitigation | n | /ˌmɪtɪˈɡeɪʃn/ | Giảm nhẹ, làm dịu | Mitigation efforts to reduce emissions | climate mitigation/risk mitigation |
| erosion | n | /ɪˈroʊʒn/ | Sự xói mòn, suy giảm | The erosion of traditional knowledge | soil erosion/erosion of trust |
| chronically | adv | /ˈkrɑːnɪkli/ | Kinh niên, thường xuyên | Services have been chronically underfunded | chronically ill/underfunded |
| phytosanitary | adj | /ˌfaɪtoʊˈsænɪteri/ | Thuộc kiểm dịch thực vật | Phytosanitary standards and requirements | phytosanitary measures/certificates |
| food sovereignty | n | /fuːd ˈsɑːvrənti/ | Chủ quyền lương thực | Renewed interest in food sovereignty | food sovereignty movement |
| planetary boundaries | n | /ˈplænəteri ˈbaʊndriz/ | Giới hạn hành tinh | The concept of planetary boundaries | respect planetary boundaries |
| transformative | adj | /trænsˈfɔːrmətɪv/ | Mang tính biến đổi | Transformative changes to food systems | transformative impact/change |
| wholesale redesign | n | /ˈhoʊlseɪl ˌriːdɪˈzaɪn/ | Thiết kế lại toàn diện | Wholesale redesign of practices | wholesale changes/reform |
Kết Bài
Chủ đề challenges of sustainable agriculture không chỉ là một trong những topic phổ biến trong IELTS Reading mà còn phản ánh những vấn đề cấp thiết của thế giới đương đại. Qua bộ đề thi mẫu này, bạn đã được trải nghiệm đầy đủ ba mức độ khó từ cơ bản đến nâng cao, với 40 câu hỏi đa dạng bao phủ tất cả các dạng bài thường gặp trong IELTS Reading.
Ba passages trong đề thi đã cung cấp góc nhìn toàn diện về nông nghiệp bền vững: từ những nguyên tắc cơ bản và thực hành truyền thống (Passage 1), đến vai trò của công nghệ hiện đại như precision agriculture và AI (Passage 2), cho đến những khía cạnh phức tạp về chính trị, kinh tế và xã hội (Passage 3). Mỗi passage không chỉ giúp bạn rèn luyện kỹ năng đọc hiểu mà còn mở rộng kiến thức về một chủ đề quan trọng.
Phần đáp án chi tiết đã chỉ ra cách xác định thông tin trong bài, cách paraphrase giữa câu hỏi và passage, cùng với những “bẫy” thường gặp mà bạn cần tránh. Đây là những kỹ năng thiết yếu để đạt band điểm cao. Bộ từ vựng được tổng hợp theo từng passage cung cấp hơn 40 từ và cụm từ quan trọng kèm theo nghĩa, phát âm, ví dụ và collocation – tất cả đều là những công cụ hữu ích cho việc học từ vựng hiệu quả.
Hãy nhớ rằng, việc luyện tập thường xuyên với các đề thi chất lượng cao như thế này là chìa khóa để cải thiện kỹ năng Reading. Đừng chỉ làm một lần – hãy quay lại đề thi này sau vài tuần, phân tích lại những câu bạn làm sai, và học thuộc những từ vựng mới. Sự kiên trì và phương pháp đúng đắn sẽ giúp bạn đạt được band điểm mong muốn trong kỳ thi IELTS. Chúc bạn học tốt và thành công!