Mở Bài
Chủ đề về phương tiện giao thông xanh và giảm ô nhiễm môi trường đang trở thành xu hướng phổ biến trong các đề thi IELTS Reading gần đây. “Electric Scooters For Reducing City Traffic Emissions” không chỉ là một hiện tượng giao thông đô thị đang lan rộng toàn cầu mà còn là chủ đề thường xuyên xuất hiện trong các bài thi IELTS, đặc biệt từ năm 2020 đến nay. Chủ đề này kết hợp giữa công nghệ, môi trường và phát triển đô thị – những lĩnh vực được IELTS ưa chuộng.
Trong bài viết này, bạn sẽ được thực hành với một đề thi IELTS Reading hoàn chỉnh gồm 3 passages với độ khó tăng dần từ Easy đến Hard. Đề thi bao gồm đầy đủ 40 câu hỏi với các dạng câu hỏi đa dạng giống thi thật, đáp án chi tiết kèm giải thích từng câu, và danh sách từ vựng quan trọng theo từng passage. Bạn cũng sẽ học được các kỹ thuật làm bài hiệu quả để đạt band điểm cao.
Đề thi này phù hợp cho học viên từ band 5.0 trở lên, giúp bạn làm quen với format thi thật và xây dựng chiến lược làm bài bài bản. Hãy dành đúng 60 phút để hoàn thành như trong kỳ thi thực tế!
Hướng Dẫn Làm Bài IELTS Reading
Tổng Quan Về IELTS Reading Test
IELTS Reading Test kéo dài 60 phút và bao gồm 3 passages với tổng cộng 40 câu hỏi. Mỗi câu trả lời đúng được tính là 1 điểm, sau đó quy đổi sang thang điểm band từ 1-9.
Phân bổ thời gian khuyến nghị:
- Passage 1: 15-17 phút (độ khó dễ nhất)
- Passage 2: 18-20 phút (độ khó trung bình)
- Passage 3: 23-25 phút (độ khó cao nhất)
Lưu ý rằng không có thời gian bổ sung để chuyển đáp án sang answer sheet, vì vậy bạn cần quản lý thời gian hiệu quả ngay từ đầu.
Các Dạng Câu Hỏi Trong Đề Này
Đề thi mẫu này bao gồm các dạng câu hỏi phổ biến nhất trong IELTS Reading:
- Multiple Choice – Câu hỏi trắc nghiệm
- True/False/Not Given – Xác định thông tin đúng/sai/không được đề cập
- Yes/No/Not Given – Xác định quan điểm tác giả
- Matching Headings – Nối tiêu đề với đoạn văn
- Sentence Completion – Hoàn thành câu
- Summary Completion – Hoàn thành đoạn tóm tắt
- Matching Features – Nối thông tin với đặc điểm
- Short-answer Questions – Câu hỏi trả lời ngắn
Mỗi dạng câu hỏi yêu cầu kỹ năng đọc hiểu khác nhau, từ scanning (đọc lướt tìm thông tin cụ thể) đến skimming (đọc nhanh nắm ý chính) và detailed reading (đọc kỹ để hiểu sâu).
IELTS Reading Practice Test
PASSAGE 1 – The Rise of Electric Scooters in Urban Areas
Độ khó: Easy (Band 5.0-6.5)
Thời gian đề xuất: 15-17 phút
Electric scooters, also known as e-scooters, have become an increasingly common sight on city streets around the world over the past five years. These compact, battery-powered vehicles offer a convenient and environmentally friendly alternative to traditional modes of urban transportation such as cars, buses, and motorcycles. With growing concerns about climate change and air pollution, many cities are now actively encouraging the use of electric scooters as part of their sustainable transport strategies.
The concept of electric scooters is not entirely new. Small electric-powered vehicles have existed since the early 20th century, but the modern e-scooter revolution began around 2017 when dockless sharing systems were introduced in several major cities. Unlike traditional bike-sharing schemes that require users to pick up and return vehicles at designated stations, dockless e-scooters can be located, unlocked, and left anywhere within a permitted zone using a smartphone application. This flexibility has made them extremely popular among commuters, particularly for what transport planners call “the last mile problem” – the challenge of getting from a transit station to one’s final destination.
The environmental benefits of electric scooters are substantial. A typical e-scooter produces zero direct emissions during use, unlike petrol-powered motorcycles or cars. Studies conducted in European cities have shown that if just 10% of short car journeys were replaced by e-scooter trips, urban carbon dioxide emissions could be reduced by approximately 2-3%. Furthermore, e-scooters require significantly less energy to manufacture and maintain than cars, and their compact size means they take up far less space on roads and in parking areas, potentially reducing traffic congestion.
However, the environmental credentials of e-scooters are not without controversy. Critics point out that the lifecycle emissions of these vehicles must be considered, not just their use phase. The lithium-ion batteries that power e-scooters require rare earth minerals which are often extracted through environmentally damaging mining processes. Additionally, the average lifespan of a shared e-scooter is surprisingly short – often just three to six months in busy cities – due to vandalism, accidents, and wear and tear. This means that the manufacturing and disposal of these vehicles create a significant environmental footprint that may offset some of the benefits gained from reduced car use.
Despite these concerns, many urban planners believe that electric scooters represent an important step toward greener cities. The key, they argue, is to improve the durability of the vehicles, develop better recycling systems for batteries and components, and ensure that e-scooters genuinely replace car journeys rather than walking or cycling trips, which would actually increase overall transport emissions. Some cities have begun implementing regulations to address these issues, including requirements for companies to use renewable energy in their operations and to achieve minimum vehicle lifespan targets.
The economic impact of the e-scooter industry has been remarkable. The global e-scooter market was valued at approximately $18 billion in 2019 and is projected to reach over $40 billion by 2027. Major companies operating sharing schemes include American firms like Bird and Lime, as well as European companies such as Voi and Tier. These businesses have created thousands of jobs, from software developers and fleet managers to the “chargers” and “juicers” who collect, charge, and redistribute scooters each night. However, the industry has faced challenges including regulatory pushback, concerns about sidewalk safety, and questions about long-term profitability.
Looking ahead, the role of electric scooters in urban transport systems seems likely to expand. Many cities are developing dedicated infrastructure such as scooter lanes and parking zones to better integrate these vehicles into existing transport networks. Technological improvements are also ongoing, with newer models featuring swappable batteries, improved suspension systems, and better safety features including lights and indicators. The rise of electric bikes in urban commuting shows similar patterns of adoption and regulatory challenges, suggesting that micro-mobility solutions will continue to evolve as cities adapt to changing transportation needs. If managed correctly, electric scooters could play a significant role in creating cleaner, quieter, and more liveable cities for future generations.
Xe scooter điện hiện đại giúp giảm khí thải và ô nhiễm không khí trong các thành phố lớn
Questions 1-6
Do the following statements agree with the information given in the passage?
Write:
- TRUE if the statement agrees with the information
- FALSE if the statement contradicts the information
- NOT GIVEN if there is no information on this
- Electric scooters first appeared on city streets in the early 20th century.
- Dockless e-scooter systems allow users to pick up and leave scooters at any location within permitted areas.
- Replacing 10% of short car journeys with e-scooter trips could reduce urban CO2 emissions by 2-3%.
- All cities worldwide have introduced regulations requiring renewable energy use by e-scooter companies.
- The average lifespan of a shared e-scooter in busy cities is three to six months.
- Bird and Lime are European e-scooter companies.
Questions 7-10
Complete the sentences below.
Choose NO MORE THAN TWO WORDS from the passage for each answer.
- Transport planners refer to the difficulty of travelling from a transit station to a final destination as “__ __“.
- The batteries used in electric scooters contain __ __ that require mining.
- People who collect and charge e-scooters at night are called “chargers” and “__ “.
- Newer e-scooter models include __ __ that can be easily replaced.
Questions 11-13
Choose the correct letter, A, B, C or D.
-
According to the passage, what is the main advantage of dockless e-scooter systems?
- A. They are cheaper than traditional bike-sharing
- B. They can be used without a smartphone
- C. They offer more flexibility than station-based systems
- D. They are faster than other forms of transport
-
What concern do critics raise about e-scooters?
- A. They are too expensive for most users
- B. Their lifecycle emissions may offset environmental benefits
- C. They cause more accidents than cars
- D. They are difficult to manufacture
-
The global e-scooter market is expected to:
- A. decline by 2027
- B. remain stable at $18 billion
- C. exceed $40 billion by 2027
- D. double every year
PASSAGE 2 – The Environmental Economics of Micro-Mobility Solutions
Độ khó: Medium (Band 6.0-7.5)
Thời gian đề xuất: 18-20 phút
The rapid proliferation of electric scooters and other micro-mobility devices in urban environments has sparked considerable debate among environmentalists, economists, and urban planners regarding their true ecological impact and economic viability. While these vehicles are often marketed as sustainable alternatives to fossil fuel-powered transport, a comprehensive assessment requires examining their entire lifecycle environmental footprint, from raw material extraction to end-of-life disposal, as well as their effects on existing transport systems and urban infrastructure.
A. Manufacturing and Supply Chain Considerations
The production of electric scooters involves a complex global supply chain with significant environmental implications. The vehicles consist primarily of aluminum or steel frames, lithium-ion battery packs, electric motors, and electronic control systems. Aluminum production is particularly energy-intensive, requiring approximately 45 megajoules of energy per kilogram, while the extraction and processing of lithium for batteries involves substantial water consumption and can lead to soil contamination in mining regions, predominantly located in South America and Australia. A lifecycle assessment conducted by researchers at North Carolina State University found that the manufacturing phase accounts for approximately 50% of an e-scooter’s total environmental impact, challenging the perception of these devices as inherently “green” products.
B. Operational Environmental Performance
During their operational phase, electric scooters demonstrate considerable environmental advantages compared to conventional vehicles. The average e-scooter consumes approximately 0.125 kilowatt-hours per mile traveled, resulting in significantly lower energy intensity than electric cars (0.3 kWh/mile) and substantially less than petrol-powered vehicles (1.2 kWh equivalent per mile). However, the environmental benefit is heavily dependent on what mode of transport the e-scooter is replacing. If users substitute e-scooter trips for car journeys, there is a net environmental gain. Conversely, if e-scooters replace walking, cycling, or public transport use, they may actually increase overall transport-related emissions. Survey data from various cities suggests that only 30-40% of e-scooter trips directly replace car journeys, with the remainder substituting for more sustainable options or representing entirely new trips that would not have otherwise occurred – a phenomenon known as “induced demand“.
C. Collection, Charging, and Redistribution Systems
One of the most environmentally problematic aspects of shared e-scooter systems is the nightly collection and redistribution operation. In most cities, contracted workers drive vehicles – typically vans or pickup trucks – to collect scooters whose batteries have depleted, transport them to charging locations, and then redistribute them to high-demand areas the following morning. This “rebalancing” process can generate substantial greenhouse gas emissions, particularly when fossil fuel-powered collection vehicles are used. A study in Raleigh, North Carolina, found that collection and redistribution activities accounted for approximately 43% of the total greenhouse gas emissions associated with e-scooter systems. Some companies have responded by implementing more efficient routing algorithms, using electric vehicles for collection, and deploying swappable battery systems that eliminate the need to transport entire scooters for recharging.
D. Durability and Lifespan Challenges
The remarkably short lifespan of shared e-scooters has emerged as a critical environmental concern. Early shared mobility models experienced average vehicle lifespans of just 28 days in some cities, though this has improved to 3-6 months as companies have developed more robust designs. By comparison, a private car typically remains in use for 10-15 years. This brief operational period means that the environmental costs of manufacturing are amortized over relatively few trips, significantly increasing the per-journey environmental impact. Vandalism, theft, and accidental damage contribute to premature vehicle retirement, as does the intensive use pattern characteristic of shared mobility services. Companies are now investing in third-generation scooters with reinforced frames, industrial-grade components, and modular designs that facilitate component replacement rather than whole-vehicle disposal, potentially extending operational lifespans to 12-18 months or longer.
E. Comparative Environmental Assessment
When all lifecycle stages are considered, the environmental performance of e-scooters varies considerably depending on local conditions and system design. Research published in the journal Environmental Research Letters calculated that shared e-scooters generate approximately 126 grams of CO2 equivalent per passenger-mile, compared to 414 grams for a standard diesel bus with typical occupancy, 181 grams for an electric moped, and 407 grams for a petrol car. However, these figures are highly sensitive to assumptions about vehicle lifespan, collection vehicle emissions, electricity grid carbon intensity, and what transport modes are being displaced. In cities with clean electricity grids, efficient collection systems, and where e-scooters predominantly replace car trips, the environmental case is strong. Conversely, in contexts where coal-powered electricity is prevalent and e-scooters mainly substitute for walking or cycling, the environmental justification becomes more tenuous.
F. Economic Sustainability and Market Dynamics
Beyond environmental considerations, the economic sustainability of e-scooter systems remains uncertain. The shared mobility sector has been characterized by intense competition, aggressive expansion, and significant venture capital investment, but profitability has proven elusive for most operators. High operational costs, including vehicle replacement, charging, redistribution, and regulatory compliance, combined with relatively low per-trip revenues (typically $3-5), create challenging unit economics. Several major operators have withdrawn from numerous markets or ceased operations entirely. The industry’s financial struggles raise questions about the long-term viability of shared e-scooter systems and whether consolidation, price increases, or alternative business models will be necessary for sustainable operations. Some analysts suggest that integrated mobility platforms combining multiple transport modes, or public-private partnerships with municipal governments, may offer more sustainable paths forward.
The micro-mobility revolution represents both significant opportunity and considerable complexity in the transition toward sustainable urban transport. Realizing the environmental potential of electric scooters requires systemic improvements across their lifecycle, from manufacturing processes and operational systems to end-of-life recycling infrastructure. Equally important is ensuring that these devices complement rather than compete with walking, cycling, and public transport – the most environmentally beneficial transport options. With thoughtful regulation, technological innovation, and integration into comprehensive urban mobility strategies, electric scooters could contribute meaningfully to reducing transport emissions and creating more liveable cities.
Đánh giá tác động môi trường và vòng đời của xe scooter điện từ sản xuất đến thải bỏ
Questions 14-20
The passage has six sections, A-F.
Which section contains the following information?
Write the correct letter, A-F.
- Information about what proportion of e-scooter journeys replace car trips
- Details about the materials used to construct electric scooters
- Discussion of the financial challenges facing e-scooter companies
- Comparison of energy consumption between e-scooters and other vehicles
- Information about improvements being made to increase vehicle durability
- Description of how scooters are collected and recharged
- Explanation of how location affects the environmental benefits of e-scooters
Questions 21-24
Complete the summary below.
Choose NO MORE THAN TWO WORDS from the passage for each answer.
The environmental impact of electric scooters is complex and depends on many factors. During manufacturing, the production of aluminum frames is particularly (21) __ __, while battery production requires significant amounts of water and can cause (22) __ __ in mining areas. One major environmental problem is the process of (23) __, which involves collecting and redistributing scooters and can generate substantial emissions. Companies are addressing this by using more efficient routes and developing (24) __ __ systems that don’t require transporting whole scooters.
Questions 25-26
Choose TWO letters, A-E.
Which TWO statements about e-scooter lifespan are mentioned in the passage?
A. Early shared e-scooters lasted an average of 28 days in some cities
B. Private cars typically last 5-8 years
C. Companies are developing modular designs for easier repairs
D. All e-scooters now last at least 12 months
E. Theft is no longer a problem affecting e-scooter lifespan
PASSAGE 3 – Technological Innovation and Policy Frameworks for Sustainable Urban Micro-Mobility
Độ khó: Hard (Band 7.0-9.0)
Thời gian đề xuất: 23-25 phút
The integration of electric scooters and analogous micro-mobility technologies into urban transport ecosystems represents a paradigmatic shift in how cities conceptualize and facilitate movement within their boundaries. However, the ostensibly straightforward proposition that these battery-electric vehicles constitute an unequivocal environmental panacea for urban transport challenges warrants critical scrutiny. A nuanced understanding of their net environmental impact necessitates rigorous interdisciplinary analysis encompassing lifecycle assessment methodologies, behavioral economics, urban systems modeling, and regulatory governance frameworks. Moreover, the extent to which micro-mobility solutions contribute to decarbonization objectives is inextricably linked to the policy architectures that govern their deployment and the technological trajectories that define their evolution.
The emergent literature on micro-mobility environmental performance reveals considerable methodological heterogeneity and occasionally contradictory findings, reflecting the multifaceted nature of the assessment challenge. Comprehensive lifecycle assessments must account for upstream impacts (raw material extraction, component manufacturing, assembly), use-phase considerations (energy source carbon intensity, modal substitution patterns, utilization rates), and downstream factors (vehicle lifespan, end-of-life recycling efficacy, hazardous waste management). The seminal work by Hollingsworth et al. (2019) employed process-based lifecycle assessment to quantify the global warming potential of shared e-scooters across 12 U.S. cities, determining a median value of 202 grams CO2e per passenger-kilometer. Significantly, this figure exceeded the emissions intensity of several alternative modes, including electric bicycles (133 g CO2e/pkm) and buses with moderate occupancy rates. The study identified materials production and vehicle collection/redistribution as the predominant contributors to lifecycle emissions, collectively accounting for approximately 73% of total impact.
However, subsequent research has demonstrated substantial variance in environmental outcomes contingent upon system-specific parameters and methodological assumptions. A comparative meta-analysis conducted by de Bortoli (2021) synthesized findings from 23 peer-reviewed studies and identified vehicle lifespan as the most critical determinant of environmental performance, with per-kilometer emissions ranging from 65 g CO2e (assuming 24-month lifespan and optimized collection) to 268 g CO2e (assuming 3-month lifespan and fossil-fuel collection vehicles). This sevenfold variation underscores the parameterization sensitivity inherent in lifecycle assessment and highlights the imperative for empirical validation of assumed operational parameters. Recent telemetry data from third-generation e-scooters deployed in European cities suggests that median operational lifespans have increased to 14-18 months, representing a substantial improvement over earlier models but still falling considerably short of theoretical durability potential.
The question of modal substitution – what transport modes e-scooters replace – represents perhaps the most consequential yet methodologically challenging aspect of environmental assessment. If e-scooters predominantly displace private automobile trips, particularly single-occupancy vehicle journeys, they yield substantial emissions reductions. Conversely, if they primarily substitute for non-motorized transport (walking, cycling) or high-occupancy public transit, they may generate net increases in transport-related emissions despite their electric propulsion system. Stated preference surveys and revealed preference analyses yield divergent results, with stated substitution of car trips ranging from 29% to 48% across various studies. However, behavioral economists caution that self-reported data may suffer from social desirability bias and recall inaccuracies. More sophisticated quasi-experimental designs employing difference-in-differences methodologies and synthetic control approaches have attempted to identify causal effects of e-scooter introduction on other transport mode usage, though identification challenges related to confounding variables and selection effects remain non-trivial.
From a technological innovation perspective, several developmental trajectories hold promise for enhancing the environmental credentials of micro-mobility systems. Battery chemistry advances, particularly the transition from conventional lithium-ion configurations to lithium-iron-phosphate (LFP) and emerging solid-state architectures, offer potential improvements in cycle life, thermal stability, and end-of-life recyclability. The implementation of modular design principles facilitates component-level maintenance and targeted replacement of wear-prone elements, potentially extending vehicle lifespans by 40-60% according to engineering analyses. Furthermore, Internet of Things (IoT) connectivity enables predictive maintenance algorithms that can identify incipient failures before they result in vehicle retirement, while machine learning models optimize rebalancing operations to minimize collection vehicle distance traveled and associated emissions. Several forward-thinking operators have begun deploying electric cargo bicycles for rebalancing operations, reducing collection-related emissions by approximately 65% compared to conventional van-based systems.
The regulatory landscape governing micro-mobility deployment exhibits considerable jurisdictional variation, ranging from laissez-faire approaches that impose minimal constraints to restrictive frameworks that severely limit operational scope. Optimal policy architectures must balance multiple objectives: maximizing environmental benefits through modal substitution from cars to e-scooters, ensuring public safety and sidewalk accessibility, maintaining equitable access across socioeconomic groups and neighborhoods, and fostering economically viable operational models that enable long-term sustainability. Many cities have adopted performance-based permitting systems that tie operator licenses to achieving specified key performance indicators, including minimum vehicle lifespan thresholds, deployment equity requirements, safety incident rates, and environmental standards such as renewable energy usage for charging operations.
Several pioneering municipalities have implemented particularly innovative governance frameworks worthy of examination. Paris, which operates one of Europe’s largest e-scooter programs following a competitive tender process, mandates that operators achieve minimum 15-month average vehicle lifespans, utilize 100% renewable electricity for charging, employ zero-emission collection vehicles, and maintain equitable geographic distribution across all arrondissements. The city also imposes a maximum fleet cap to prevent over-supply and requires comprehensive data sharing to enable evidence-based policy refinement. Similarly, Oslo has implemented geofencing technology that electronically limits scooter speeds in pedestrian zones and prevents operation on sidewalks, addressing safety concerns while maintaining utility. These regulatory innovations demonstrate that thoughtful policy design can align operator incentives with public interest objectives, creating conditions under which micro-mobility contributes meaningfully to urban sustainability goals.
Looking forward, the trajectory of micro-mobility’s environmental impact will be determined by the confluence of technological advancement, behavioral adaptation, and regulatory evolution. The nascent nature of the industry means that current environmental assessments represent a snapshot of rapidly evolving systems rather than definitive judgments. With sustained attention to lifecycle optimization, integration with complementary transport modes, and evidence-informed policy development, electric scooters and related technologies could constitute valuable elements of decarbonized urban transport systems. However, realizing this potential requires moving beyond simplistic narratives of technological solutionism toward holistic approaches that recognize micro-mobility as one component within comprehensive sustainable transport strategies encompassing public transit investment, active travel infrastructure, land use planning, and demand management. Only through such integrated frameworks can cities harness the benefits of micro-mobility innovation while mitigating its limitations and ensuring that it advances rather than undermines broader urban sustainability objectives.
Khung chính sách và quy định quản lý xe scooter điện trong môi trường đô thị thông minh
Questions 27-31
Choose the correct letter, A, B, C or D.
-
According to the passage, what does the research by Hollingsworth et al. (2019) reveal about shared e-scooters?
- A. They are always more environmentally friendly than buses
- B. Their emissions sometimes exceed those of electric bicycles and moderately occupied buses
- C. Materials production has minimal environmental impact
- D. They produce 202 grams of CO2 per passenger-mile
-
The meta-analysis by de Bortoli (2021) found that:
- A. All e-scooters produce the same emissions regardless of lifespan
- B. Vehicle lifespan is the most critical factor affecting environmental performance
- C. Collection vehicles have no impact on emissions
- D. E-scooters always produce 268 g CO2e per kilometer
-
What challenge does the passage identify regarding modal substitution research?
- A. It is too expensive to conduct
- B. Self-reported data may suffer from bias and inaccuracies
- C. No studies have been conducted on this topic
- D. All studies show identical results
-
According to the passage, modular design principles can:
- A. Reduce manufacturing costs by 60%
- B. Eliminate all maintenance requirements
- C. Potentially extend vehicle lifespans by 40-60%
- D. Replace the need for batteries
-
The Paris e-scooter program requires operators to:
- A. Replace vehicles every 12 months
- B. Achieve 15-month average vehicle lifespans and use renewable energy
- C. Operate only in certain arrondissements
- D. Use fossil fuel-powered collection vehicles
Questions 32-36
Complete the summary below.
Choose NO MORE THAN THREE WORDS from the passage for each answer.
Research on micro-mobility shows varying results due to differences in methodology. Lifecycle assessments must consider (32) __ __ such as material extraction, the energy source’s carbon intensity during use, and how effectively vehicles can be recycled at end-of-life. Studies show that (33) __ __ can vary from 65 to 268 grams of CO2e depending on factors like lifespan. The most important but difficult question concerns (34) __ __ – which transport modes e-scooters replace. New battery technologies like (35) __ __ offer improvements in cycle life and recyclability. Cities are implementing (36) __ __ __ that link operator licenses to achieving specific performance indicators.
Questions 37-40
Do the following statements agree with the claims of the writer in the passage?
Write:
- YES if the statement agrees with the claims of the writer
- NO if the statement contradicts the claims of the writer
- NOT GIVEN if it is impossible to say what the writer thinks about this
- Current environmental assessments of e-scooters provide definitive conclusions about their long-term impact.
- Third-generation e-scooters show improved operational lifespans compared to earlier models.
- Electric cargo bicycles used for rebalancing reduce collection emissions by approximately 65%.
- Micro-mobility solutions alone are sufficient to achieve complete urban transport decarbonization.
Answer Keys – Đáp Án
PASSAGE 1: Questions 1-13
- FALSE
- TRUE
- TRUE
- NOT GIVEN
- TRUE
- FALSE
- the last mile (problem)
- rare earth minerals
- juicers
- swappable batteries
- C
- B
- C
PASSAGE 2: Questions 14-26
- B
- A
- F
- B
- D
- C
- E
- energy-intensive
- soil contamination
- rebalancing
- swappable battery
- A, C (in any order)
- A, C (in any order)
PASSAGE 3: Questions 27-40
- B
- B
- B
- C
- B
- upstream impacts
- per-kilometer emissions
- modal substitution
- lithium-iron-phosphate / solid-state architectures
- performance-based permitting systems
- NO
- YES
- YES
- NO
Giải Thích Đáp Án Chi Tiết
Passage 1 – Giải Thích
Câu 1: FALSE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: electric scooters, first appeared, early 20th century
- Vị trí trong bài: Đoạn 2, dòng 1-2
- Giải thích: Câu hỏi nói xe scooter điện xuất hiện lần đầu trên đường phố thành phố vào đầu thế kỷ 20. Tuy nhiên, bài đọc nói “Small electric-powered vehicles have existed since the early 20th century, but the modern e-scooter revolution began around 2017”. Điều này có nghĩa là xe điện nhỏ đã tồn tại từ đầu thế kỷ 20, nhưng cuộc cách mạng e-scooter hiện đại bắt đầu từ 2017, không phải xuất hiện lần đầu trên đường phố vào thời điểm đó. Do đó đáp án là FALSE.
Câu 2: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: dockless e-scooter systems, pick up and leave, any location, permitted areas
- Vị trí trong bài: Đoạn 2, dòng 5-7
- Giải thích: Bài đọc nêu rõ “dockless e-scooters can be located, unlocked, and left anywhere within a permitted zone”. Điều này khớp chính xác với thông tin trong câu hỏi về việc có thể lấy và để xe ở bất kỳ địa điểm nào trong khu vực được phép.
Câu 3: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: 10%, short car journeys, reduce, CO2 emissions, 2-3%
- Vị trí trong bài: Đoạn 3, dòng 2-4
- Giải thích: Bài viết đề cập “if just 10% of short car journeys were replaced by e-scooter trips, urban carbon dioxide emissions could be reduced by approximately 2-3%”, trùng khớp hoàn toàn với thông tin trong câu hỏi.
Câu 4: NOT GIVEN
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: all cities worldwide, regulations, renewable energy
- Vị trí trong bài: Đoạn 5
- Giải thích: Bài đọc chỉ đề cập “Some cities have begun implementing regulations” (một số thành phố), không đề cập đến TẤT CẢ các thành phố trên toàn thế giới. Do đó thông tin này NOT GIVEN.
Câu 7: the last mile
- Dạng câu hỏi: Sentence Completion
- Từ khóa: transport planners, difficulty, transit station, final destination
- Vị trí trong bài: Đoạn 2, dòng 8-9
- Giải thích: Bài đọc nêu rõ “what transport planners call ‘the last mile problem’ – the challenge of getting from a transit station to one’s final destination”, khớp với yêu cầu của câu hỏi.
Câu 11: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: main advantage, dockless e-scooter systems
- Vị trí trong bài: Đoạn 2
- Giải thích: Bài đọc nêu “This flexibility has made them extremely popular”, trong đó “this” đề cập đến khả năng có thể lấy và để xe ở bất kỳ đâu trong khu vực cho phép, không cần trạm cố định. Đây chính là sự linh hoạt (flexibility) mà đáp án C đề cập.
Câu 12: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: concern, critics raise
- Vị trí trong bài: Đoạn 4
- Giải thích: Đoạn 4 bắt đầu bằng “However, the environmental credentials of e-scooters are not without controversy. Critics point out that the lifecycle emissions…” và kết thúc với “manufacturing and disposal of these vehicles create a significant environmental footprint that may offset some of the benefits”. Điều này khớp với đáp án B về việc khí thải vòng đời có thể làm giảm lợi ích môi trường.
Passage 2 – Giải Thích
Câu 14: B
- Dạng câu hỏi: Matching Information
- Từ khóa: proportion, e-scooter journeys, replace car trips
- Vị trí trong bài: Section B, dòng cuối
- Giải thích: Section B đề cập “Survey data from various cities suggests that only 30-40% of e-scooter trips directly replace car journeys”, cung cấp thông tin về tỷ lệ chuyến đi thay thế xe hơi.
Câu 16: F
- Dạng câu hỏi: Matching Information
- Từ khóa: financial challenges, e-scooter companies
- Vị trí trong bài: Section F
- Giải thích: Toàn bộ Section F tập trung vào “Economic Sustainability and Market Dynamics”, thảo luận về lợi nhuận khó đạt được, chi phí vận hành cao và những khó khăn tài chính của các công ty.
Câu 21: energy-intensive
- Dạng câu hỏi: Summary Completion
- Từ khóa: aluminum production
- Vị trí trong bài: Section A, dòng 3-4
- Giải thích: Bài viết nêu rõ “Aluminum production is particularly energy-intensive, requiring approximately 45 megajoules of energy per kilogram”.
Câu 23: rebalancing
- Dạng câu hỏi: Summary Completion
- Từ khóa: process, collecting and redistributing
- Vị trí trong bài: Section C
- Giải thích: Section C đề cập đến “rebalancing process” khi mô tả hoạt động thu gom và phân phối lại xe scooter hàng đêm.
Câu 25-26: A, C
- Dạng câu hỏi: Multiple Choice (chọn 2 đáp án)
- Vị trí trong bài: Section D
- Giải thích:
- A đúng vì bài viết nêu “Early shared mobility models experienced average vehicle lifespans of just 28 days in some cities”
- C đúng vì bài viết đề cập “modular designs that facilitate component replacement”
- B sai vì bài viết nói xe hơi thường dùng 10-15 năm, không phải 5-8 năm
- D sai vì không có thông tin nói TẤT CẢ xe scooter giờ kéo dài ít nhất 12 tháng
Passage 3 – Giải Thích
Câu 27: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: Hollingsworth et al. (2019), reveal
- Vị trí trong bài: Đoạn 2, giữa
- Giải thích: Bài viết nêu “determining a median value of 202 grams CO2e per passenger-kilometer. Significantly, this figure exceeded the emissions intensity of several alternative modes, including electric bicycles (133 g CO2e/pkm) and buses with moderate occupancy rates”. Điều này chứng tỏ khí thải của e-scooter đôi khi vượt cả xe đạp điện và xe buýt có độ lấp đầy vừa phải.
Câu 28: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: de Bortoli (2021), meta-analysis
- Vị trí trong bài: Đoạn 3, đầu
- Giải thích: Bài viết nêu rõ “identified vehicle lifespan as the most critical determinant of environmental performance”, chính xác như đáp án B.
Câu 29: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: challenge, modal substitution research
- Vị trí trong bài: Đoạn 4
- Giải thích: Đoạn 4 đề cập “behavioral economists caution that self-reported data may suffer from social desirability bias and recall inaccuracies”, chính xác là vấn đề mà đáp án B nêu ra.
Câu 32: upstream impacts
- Dạng câu hỏi: Summary Completion
- Từ khóa: lifecycle assessments, must consider
- Vị trí trong bài: Đoạn 2, đầu
- Giải thích: Bài viết liệt kê “Comprehensive lifecycle assessments must account for upstream impacts (raw material extraction, component manufacturing, assembly)”.
Câu 37: NO
- Dạng câu hỏi: Yes/No/Not Given (quan điểm tác giả)
- Từ khóa: current environmental assessments, definitive conclusions
- Vị trí trong bài: Đoạn cuối, gần cuối
- Giải thích: Tác giả nêu rõ “The nascent nature of the industry means that current environmental assessments represent a snapshot of rapidly evolving systems rather than definitive judgments”. Điều này mâu thuẫn trực tiếp với ý kiến trong câu hỏi, do đó đáp án là NO.
Câu 40: NO
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: micro-mobility solutions alone, sufficient, complete decarbonization
- Vị trí trong bài: Đoạn cuối
- Giải thích: Tác giả nhấn mạnh cần “comprehensive sustainable transport strategies encompassing public transit investment, active travel infrastructure, land use planning, and demand management”, cho thấy micro-mobility chỉ là một phần của chiến lược tổng thể, không đủ một mình. Điều này mâu thuẫn với ý trong câu hỏi.
Từ Vựng Quan Trọng Theo Passage
Passage 1 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| e-scooters | n | /ˈiː skuːtəz/ | xe scooter điện | Electric scooters have become an increasingly common sight | electric scooters, shared e-scooters |
| compact | adj | /kəmˈpækt/ | nhỏ gọn, gọn nhẹ | These compact, battery-powered vehicles | compact size, compact design |
| environmentally friendly | adj phrase | /ɪnˌvaɪrənˈmentəli ˈfrendli/ | thân thiện với môi trường | environmentally friendly alternative to traditional modes | environmentally friendly transport |
| dockless | adj | /ˈdɒkləs/ | không cần trạm đỗ | dockless sharing systems were introduced | dockless system, dockless bikes |
| designated stations | n phrase | /ˈdezɪɡneɪtɪd ˈsteɪʃənz/ | các trạm được chỉ định | pick up and return vehicles at designated stations | designated areas, designated parking |
| permitted zone | n phrase | /pəˈmɪtɪd zəʊn/ | khu vực được phép | left anywhere within a permitted zone | permitted area, restricted zone |
| commuters | n | /kəˈmjuːtəz/ | người đi làm hàng ngày | extremely popular among commuters | daily commuters, urban commuters |
| emissions | n | /ɪˈmɪʃənz/ | khí thải | produces zero direct emissions during use | carbon emissions, greenhouse gas emissions |
| carbon dioxide | n | /ˌkɑːbən daɪˈɒksaɪd/ | khí carbon dioxide | urban carbon dioxide emissions could be reduced | carbon dioxide levels, reduce carbon dioxide |
| traffic congestion | n phrase | /ˈtræfɪk kənˈdʒestʃən/ | tắc nghẽn giao thông | potentially reducing traffic congestion | reduce congestion, ease congestion |
| lifecycle emissions | n phrase | /ˈlaɪfsaɪkəl ɪˈmɪʃənz/ | khí thải trong vòng đời | the lifecycle emissions of these vehicles | lifecycle impact, lifecycle assessment |
| lithium-ion batteries | n phrase | /ˈlɪθiəm ˈaɪən ˈbætəriz/ | pin lithium-ion | The lithium-ion batteries that power e-scooters | rechargeable batteries, battery pack |
Passage 2 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| proliferation | n | /prəˌlɪfəˈreɪʃən/ | sự gia tăng nhanh chóng | The rapid proliferation of electric scooters | nuclear proliferation, rapid proliferation |
| micro-mobility | n | /ˈmaɪkrəʊ məʊˈbɪləti/ | phương tiện di chuyển cá nhân nhỏ | micro-mobility devices in urban environments | micro-mobility solutions, micro-mobility sector |
| ecological impact | n phrase | /ˌiːkəˈlɒdʒɪkəl ˈɪmpækt/ | tác động sinh thái | their true ecological impact | ecological footprint, ecological damage |
| lifecycle footprint | n phrase | /ˈlaɪfsaɪkəl ˈfʊtprɪnt/ | dấu chân vòng đời | examining their entire lifecycle environmental footprint | carbon footprint, environmental footprint |
| supply chain | n phrase | /səˈplaɪ tʃeɪn/ | chuỗi cung ứng | involves a complex global supply chain | supply chain management, supply chain disruption |
| energy-intensive | adj | /ˈenədʒi ɪnˈtensɪv/ | tiêu tốn nhiều năng lượng | Aluminum production is particularly energy-intensive | energy-intensive process, energy-intensive industry |
| water consumption | n phrase | /ˈwɔːtə kənˈsʌmpʃən/ | tiêu thụ nước | involves substantial water consumption | water consumption levels, reduce water consumption |
| soil contamination | n phrase | /sɔɪl kənˌtæmɪˈneɪʃən/ | ô nhiễm đất | can lead to soil contamination | soil pollution, environmental contamination |
| operational phase | n phrase | /ˌɒpəˈreɪʃənəl feɪz/ | giai đoạn vận hành | During their operational phase | operational efficiency, operational costs |
| substitute | v | /ˈsʌbstɪtjuːt/ | thay thế | If users substitute e-scooter trips for car journeys | substitute for, substitute with |
| induced demand | n phrase | /ɪnˈdjuːst dɪˈmɑːnd/ | nhu cầu được tạo ra | a phenomenon known as induced demand | create demand, stimulate demand |
| rebalancing | n | /ˌriːˈbælənsɪŋ/ | tái phân bổ, cân bằng lại | This rebalancing process can generate emissions | rebalancing operations, fleet rebalancing |
| greenhouse gas | n phrase | /ˈɡriːnhaʊs ɡæs/ | khí nhà kính | substantial greenhouse gas emissions | greenhouse gas emissions, reduce greenhouse gases |
| swappable battery | n phrase | /ˈswɒpəbəl ˈbætəri/ | pin có thể thay đổi | deploying swappable battery systems | swappable components, battery swap |
| robust designs | n phrase | /rəʊˈbʌst dɪˈzaɪnz/ | thiết kế bền vững | developed more robust designs | robust construction, robust framework |
| amortized | v | /ˈæmətaɪzd/ | được khấu hao | environmental costs are amortized over relatively few trips | amortize costs, amortization period |
| grid carbon intensity | n phrase | /ɡrɪd ˈkɑːbən ɪnˈtensəti/ | cường độ carbon của lưới điện | electricity grid carbon intensity | power grid, grid emissions |
Passage 3 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| paradigmatic shift | n phrase | /ˌpærədɪɡˈmætɪk ʃɪft/ | sự thay đổi mô hình | represents a paradigmatic shift | paradigm shift, paradigmatic change |
| ostensibly | adv | /ɒˈstensəbli/ | có vẻ như, bề ngoài | the ostensibly straightforward proposition | ostensibly simple, ostensibly different |
| panacea | n | /ˌpænəˈsiːə/ | liều thuốc vạn năng | an unequivocal environmental panacea | universal panacea, magic panacea |
| critical scrutiny | n phrase | /ˈkrɪtɪkəl ˈskruːtɪni/ | sự xem xét kỹ lưỡng | warrants critical scrutiny | face scrutiny, under scrutiny |
| nuanced understanding | n phrase | /ˈnjuːɑːnst ˌʌndəˈstændɪŋ/ | sự hiểu biết sâu sắc, tinh tế | A nuanced understanding of their impact | nuanced approach, nuanced view |
| rigorous | adj | /ˈrɪɡərəs/ | nghiêm ngặt, chặt chẽ | necessitates rigorous interdisciplinary analysis | rigorous testing, rigorous standards |
| decarbonization | n | /diːˌkɑːbənaɪˈzeɪʃən/ | khử carbon | contribute to decarbonization objectives | energy decarbonization, decarbonization strategy |
| inextricably linked | adj phrase | /ˌɪnɪkˈstrɪkəbli lɪŋkt/ | gắn liền không thể tách rời | is inextricably linked to policy architectures | inextricably connected, inextricably bound |
| methodological heterogeneity | n phrase | /ˌmeθədəˈlɒdʒɪkəl ˌhetərədʒəˈniːəti/ | tính không đồng nhất về phương pháp | reveals considerable methodological heterogeneity | methodological approach, methodological issues |
| upstream impacts | n phrase | /ˈʌpstriːm ˈɪmpækts/ | các tác động ở khâu đầu nguồn | must account for upstream impacts | upstream activities, upstream processes |
| modal substitution | n phrase | /ˈməʊdəl ˌsʌbstɪˈtjuːʃən/ | sự thay thế phương thức vận chuyển | The question of modal substitution | modal shift, mode substitution |
| predominant | adj | /prɪˈdɒmɪnənt/ | chiếm ưu thế, chủ đạo | the predominant contributors to lifecycle emissions | predominant factor, predominant feature |
| variance | n | /ˈveəriəns/ | sự khác biệt, phương sai | demonstrated substantial variance | high variance, variance analysis |
| contingent upon | adj phrase | /kənˈtɪndʒənt əˈpɒn/ | phụ thuộc vào | contingent upon system-specific parameters | contingent on, contingent factor |
| parameterization sensitivity | n phrase | /pəˌræmɪtəraɪˈzeɪʃən ˌsensɪˈtɪvəti/ | độ nhạy của tham số hóa | the parameterization sensitivity inherent in lifecycle assessment | sensitivity analysis, parameter sensitivity |
| telemetry data | n phrase | /təˈlemətri ˈdeɪtə/ | dữ liệu đo từ xa | Recent telemetry data from third-generation e-scooters | telemetry systems, collect telemetry |
| quasi-experimental | adj | /ˌkweɪzaɪ ɪkˌsperɪˈmentəl/ | giả thực nghiệm | quasi-experimental designs employing difference-in-differences methodologies | quasi-experimental study, quasi-experimental approach |
| confounding variables | n phrase | /kənˈfaʊndɪŋ ˈveəriəbəlz/ | các biến gây nhiễu | identification challenges related to confounding variables | control for confounding, confounding factors |
| laissez-faire | adj | /ˌleseɪ ˈfeə/ | tự do, không can thiệp | ranging from laissez-faire approaches | laissez-faire policy, laissez-faire economics |
| geofencing | n | /ˈdʒiːəʊfensɪŋ/ | công nghệ hàng rào địa lý | Oslo has implemented geofencing technology | geofencing capabilities, geofencing system |
| confluence | n | /ˈkɒnfluəns/ | sự hợp lưu, giao thoa | determined by the confluence of technological advancement | confluence of factors, confluence of events |
| nascent | adj | /ˈnæsənt/ | mới nổi, sơ khai | The nascent nature of the industry | nascent technology, nascent market |
| solutionism | n | /səˈluːʃənɪzəm/ | chủ nghĩa giải pháp công nghệ | simplistic narratives of technological solutionism | technological solutionism, digital solutionism |
| holistic | adj | /həʊˈlɪstɪk/ | toàn diện | toward holistic approaches | holistic view, holistic approach |
Kết Bài
Chủ đề về xe scooter điện và vai trò của chúng trong việc giảm khí thải giao thông đô thị là một trong những chủ đề môi trường, công nghệ và phát triển bền vững thường xuyên xuất hiện trong IELTS Reading. Qua bài thi mẫu này, bạn đã được thực hành với đầy đủ ba passages có độ khó tăng dần, từ Easy (Band 5.0-6.5) đến Medium (Band 6.0-7.5) và Hard (Band 7.0-9.0), phản ánh chính xác cấu trúc của đề thi IELTS thực tế.
Bộ đề thi bao gồm 40 câu hỏi với 8 dạng câu hỏi khác nhau – từ True/False/Not Given, Yes/No/Not Given, Multiple Choice, Matching Headings, đến Sentence Completion và Summary Completion. Mỗi dạng câu hỏi yêu cầu kỹ năng đọc hiểu và chiến lược làm bài riêng biệt. Phần đáp án chi tiết không chỉ cung cấp đáp án đúng mà còn giải thích rõ ràng vị trí thông tin trong bài, cách paraphrase được sử dụng, và tại sao các đáp án khác là sai.
Danh sách từ vựng được phân loại theo từng passage giúp bạn xây dựng vốn từ vựng học thuật quan trọng, đặc biệt trong các lĩnh vực môi trường, công nghệ và chính sách đô thị. Những từ vựng này không chỉ hữu ích cho phần Reading mà còn có thể áp dụng trong Writing Task 2 và Speaking Part 3 khi bàn về các chủ đề tương tự.
Để đạt kết quả tốt nhất, hãy xem lại những câu bạn làm sai, đọc kỹ phần giải thích để hiểu tại sao bạn nhầm, và luyện tập thêm với các dạng câu hỏi đó. Nhớ rằng, việc quản lý thời gian và xác định đúng loại câu hỏi là chìa khóa để đạt band điểm cao trong IELTS Reading. Chúc bạn ôn tập hiệu quả và đạt được mục tiêu IELTS của mình!