Mở Bài
Biến đổi khí hậu đang tạo ra những tác động sâu rộng đến ngành nông nghiệp toàn cầu, một chủ đề xuất hiện ngày càng thường xuyên trong các kỳ thi IELTS Reading gần đây. Theo thống kê từ Cambridge Assessment, chủ đề về môi trường và nông nghiệp chiếm khoảng 15-20% tổng số bài đọc trong đề thi IELTS, đặc biệt là ở mức độ Academic.
Bài viết này cung cấp một bộ đề thi IELTS Reading hoàn chỉnh với 3 passages theo đúng chuẩn Cambridge, từ mức độ Easy đến Hard, giúp bạn làm quen với cách thức IELTS kiểm tra hiểu biết về tác động của biến đổi khí hậu lên nông nghiệp toàn cầu. Bạn sẽ được trải nghiệm 40 câu hỏi đa dạng giống thi thật, kèm theo đáp án chi tiết và giải thích cụ thể để tự đánh giá năng lực. Ngoài ra, phần từ vựng chuyên ngành được tổng hợp kỹ lưỡng sẽ giúp bạn nâng cao vốn từ học thuật cần thiết cho band điểm cao.
Đề thi này phù hợp cho học viên từ band 5.0 trở lên, với độ khó tăng dần giúp bạn làm quen với áp lực thời gian và yêu cầu tư duy phân tích trong kỳ thi thực tế.
Hướng Dẫn Làm Bài IELTS Reading
Tổng Quan Về IELTS Reading Test
Bài thi IELTS Reading gồm 3 passages với tổng cộng 40 câu hỏi, cần hoàn thành trong vòng 60 phút. Không có thời gian bổ sung để chuyển đáp án sang phiếu trả lời, vì vậy bạn cần quản lý thời gian thật hiệu quả.
Phân bổ thời gian khuyến nghị:
- Passage 1: 15-17 phút (độ khó thấp, nên làm nhanh để dành thời gian cho phần sau)
- Passage 2: 18-20 phút (độ khó trung bình, cần đọc kỹ hơn)
- Passage 3: 23-25 phút (độ khó cao nhất, yêu cầu phân tích sâu)
Lưu ý rằng điểm số không bị trừ khi trả lời sai, vì vậy hãy luôn điền đáp án cho tất cả các câu hỏi, ngay cả khi bạn không chắc chắn.
Các Dạng Câu Hỏi Trong Đề Này
Đề thi mẫu này bao gồm 7 dạng câu hỏi phổ biến nhất trong IELTS Reading:
- Multiple Choice – Câu hỏi trắc nghiệm nhiều lựa chọn
- True/False/Not Given – Xác định thông tin đúng/sai/không được đề cập
- Matching Information – Ghép thông tin với đoạn văn tương ứng
- Matching Headings – Chọn tiêu đề phù hợp cho từng đoạn
- Summary Completion – Hoàn thành tóm tắt bài đọc
- Sentence Endings – Nối câu với phần kết thúc phù hợp
- Short-answer Questions – Trả lời ngắn theo yêu cầu
Mỗi dạng câu hỏi đòi hỏi kỹ năng đọc hiểu khác nhau, từ việc tìm thông tin cụ thể đến phân tích ý chính và suy luận logic.
IELTS Reading Practice Test
PASSAGE 1 – Climate Change and Agricultural Productivity
Độ khó: Easy (Band 5.0-6.5)
Thời gian đề xuất: 15-17 phút
Climate change has emerged as one of the most significant challenges facing global agriculture in the 21st century. The relationship between climate variability and crop production is complex and multifaceted, affecting everything from soil quality to water availability. As temperatures rise and weather patterns become increasingly unpredictable, farmers around the world are experiencing both immediate and long-term impacts on their agricultural activities.
One of the most direct effects of climate change on agriculture is the alteration of growing seasons. In many temperate regions, warmer temperatures have led to longer growing periods, which might initially seem beneficial. However, this apparent advantage is often offset by increased heat stress during critical growth phases. For instance, wheat and rice crops are particularly vulnerable to high temperatures during flowering and grain-filling stages. When temperatures exceed 35°C, these crops can experience significant yield reductions, sometimes losing up to 50% of their potential harvest.
Precipitation patterns are also changing dramatically across the globe. Some agricultural regions are experiencing more frequent and intense droughts, while others face increased flooding. These extreme weather events can devastate crops in a matter of days. In sub-Saharan Africa, where many communities depend on rain-fed agriculture, changing rainfall patterns have made it increasingly difficult for farmers to predict the best planting times. This uncertainty has led to more frequent crop failures and increased food insecurity in already vulnerable populations.
Water resources, essential for irrigation systems worldwide, are becoming increasingly scarce in many agricultural zones. Glacial melt in mountain regions, which traditionally provides water for millions of hectares of farmland, is accelerating. While this creates temporary abundance, it threatens long-term water security as glaciers diminish. The Indus and Ganges river basins in South Asia, which support over one billion people, are particularly at risk from this phenomenon.
Climate change is also affecting pest and disease patterns in agricultural systems. Warmer temperatures allow many insect pests to expand their geographical range and increase their reproductive rates. For example, the fall armyworm, originally confined to tropical and subtropical Americas, has now spread to Africa and Asia, causing extensive damage to maize crops. Similarly, fungal diseases that were once limited by cold winters can now survive year-round in previously safe regions, requiring farmers to use more pesticides and adopt new crop management strategies.
Soil degradation represents another critical concern exacerbated by climate change. Higher temperatures increase evaporation rates, leading to soil moisture loss and increased salinity in many regions. Additionally, more intense rainfall events cause greater soil erosion, washing away the fertile topsoil that takes centuries to form. This degradation reduces the nutrient content of soil, forcing farmers to rely more heavily on chemical fertilizers, which in turn contributes to greenhouse gas emissions and creates a vicious cycle.
Despite these challenges, agricultural scientists and farmers are developing various adaptation strategies. Drought-resistant crop varieties are being bred and tested in affected regions. Conservation agriculture practices, such as minimal tillage and crop rotation, help maintain soil health and water retention. Some farmers are diversifying their crops to spread risk, while others are shifting to crops that are more suited to their changing climate conditions.
Technological innovations are also playing a crucial role in helping agriculture adapt to climate change. Precision farming techniques, using satellite imagery and sensors, allow farmers to optimize water and fertilizer use. Weather forecasting has become more sophisticated, giving farmers better information for decision-making. Climate-smart agriculture approaches integrate traditional knowledge with modern science to build more resilient farming systems.
International cooperation and policy support are essential for addressing climate change impacts on agriculture. Many countries are investing in agricultural research and providing financial assistance to farmers implementing adaptation measures. Knowledge-sharing platforms connect farmers across regions, allowing them to learn from each other’s experiences. However, much more needs to be done, particularly in supporting smallholder farmers in developing countries who are most vulnerable to climate impacts but have the least resources to adapt.
Questions 1-5: Multiple Choice
Choose the correct letter, A, B, C, or D.
-
According to the passage, longer growing seasons caused by warmer temperatures are:
A. Always beneficial for crop production
B. Particularly helpful for wheat and rice crops
C. Often negated by heat stress during crucial growth periods
D. Most useful in tropical regions -
The fall armyworm is mentioned as an example of:
A. A disease affecting crops in Africa
B. A pest expanding its range due to climate change
C. An insect that only affects maize in the Americas
D. A beneficial species for crop protection -
What happens to soil when temperatures increase?
A. It becomes more fertile
B. It retains more moisture
C. Evaporation increases and moisture is lost
D. Chemical composition improves -
According to the passage, precision farming techniques:
A. Replace traditional farming methods entirely
B. Are only suitable for large-scale farms
C. Help optimize the use of water and fertilizers
D. Have been rejected by most farmers -
The passage suggests that smallholder farmers in developing countries:
A. Have the best resources to adapt to climate change
B. Are least affected by climate impacts
C. Receive sufficient international support
D. Are most vulnerable but have limited resources for adaptation
Questions 6-10: True/False/Not Given
Do the following statements agree with the information in the passage? Write:
- TRUE if the statement agrees with the information
- FALSE if the statement contradicts the information
- NOT GIVEN if there is no information on this
- Wheat and rice crops can lose up to half their potential yield when exposed to temperatures above 35°C.
- All regions of sub-Saharan Africa have completely stopped practicing rain-fed agriculture.
- Glacial melt is currently creating a temporary increase in water availability for some agricultural areas.
- Chemical fertilizers are banned in regions experiencing soil degradation.
- Weather forecasting technology has eliminated all risks for farmers.
Questions 11-13: Sentence Completion
Complete the sentences below. Choose NO MORE THAN THREE WORDS from the passage for each answer.
- In South Asia, the Indus and Ganges river basins provide water for agriculture and support over __.
- Warmer winters now allow some __ to survive throughout the year in regions where they previously died off.
- Conservation agriculture practices include minimal tillage and __ to maintain soil health.
PASSAGE 2 – Regional Impacts and Agricultural Adaptation
Độ khó: Medium (Band 6.0-7.5)
Thời gian đề xuất: 18-20 phút
The ramifications of climate change on agriculture vary dramatically across different geographical regions, creating a complex mosaic of challenges and opportunities that require nuanced understanding and localized solutions. While some areas may experience marginal benefits from changing conditions, the overwhelming majority of agricultural regions face substantial threats to productivity and sustainability. Understanding these regional disparities is crucial for developing effective mitigation and adaptation strategies that address specific local contexts.
A. In North America, agricultural systems are experiencing a paradoxical mix of effects. The northern regions of Canada and the United States have seen their growing seasons extend by 10-14 days over the past three decades, potentially opening up new areas for cultivation. However, this expansion is counterbalanced by increasing frequency of extreme weather events, including devastating droughts in the American Midwest and unprecedented heatwaves across the Great Plains. The 2012 drought, for instance, affected more than 80% of agricultural land in the United States, causing approximately $30 billion in economic losses. Corn and soybean yields were severely impacted, with some regions experiencing 50% reductions. Furthermore, the depletion of the Ogallala Aquifer, which underpins irrigation for vast agricultural areas, is being accelerated by climate change, threatening the long-term viability of intensive farming in these regions.
B. European agriculture presents a similarly nuanced picture. Mediterranean countries, particularly Spain, Italy, and Greece, are experiencing intensifying water scarcity and desertification, with some areas witnessing a 20% decrease in precipitation over the last 50 years. The olive oil industry, a cornerstone of Mediterranean agriculture, faces particular challenges as olive trees require specific climatic conditions for optimal production. Conversely, Northern European countries such as Germany, Denmark, and the Netherlands might see some agricultural advantages from warmer temperatures, including the possibility of cultivating crops previously limited to southern regions. However, these potential gains are undermined by increased rainfall variability and the risk of flooding, which can damage crops and degrade arable land. Tương tự như những thách thức mà nông nghiệp bền vững đang phải đối mặt, các vùng này cần phát triển chiến lược thích ứng dài hạn.
C. The situation in Asia, home to more than 60% of the world’s population, is particularly critical. Rice production, which feeds billions, is highly susceptible to climate variations. Research indicates that every 1°C increase in nighttime temperatures could reduce rice yields by approximately 10%. The Indo-Gangetic Plain, one of the world’s most productive agricultural regions, faces compounded threats from erratic monsoons, groundwater depletion, and rising temperatures. In Southeast Asia, rising sea levels threaten fertile delta regions in Vietnam, Bangladesh, and Myanmar, where millions of people depend on rice cultivation. Saltwater intrusion into coastal agricultural lands is already forcing farmers to abandon traditional crops and seek alternative livelihoods. China, the world’s largest agricultural producer, is experiencing glacial retreat in the Tibetan Plateau, jeopardizing water supplies for major rivers that irrigate extensive farmlands.
D. Africa faces perhaps the most severe agricultural challenges from climate change, despite contributing the least to greenhouse gas emissions. The continent’s heavy reliance on rain-fed agriculture and limited adaptive capacity makes it exceptionally vulnerable. Sub-Saharan Africa has seen increasingly erratic rainfall patterns, with some regions experiencing prolonged droughts while others face unpredictable flooding. The Sahel region exemplifies these challenges, where desertification is advancing and traditional pastoral systems are collapsing. In East Africa, coffee production, a crucial export crop, is threatened by changing temperature and rainfall patterns. Studies suggest that areas suitable for coffee cultivation could decrease by 50% by 2050, devastating the livelihoods of millions of smallholder farmers. Additionally, the spread of crop pests and diseases in warmer conditions is exacerbating food security challenges across the continent.
E. Latin America’s diverse agricultural landscapes are experiencing varied impacts. The Amazon basin, often called “the lungs of the Earth,” is experiencing increased deforestation partly driven by agricultural expansion, which paradoxically accelerates climate change while being damaged by it. Brazilian coffee and sugar cane production face challenges from changing rainfall patterns and increased pest pressures. In Central America, the “Dry Corridor” affecting Guatemala, Honduras, and El Salvador has seen progressively drier conditions, leading to crop failures and contributing to migration pressures. Meanwhile, Andean communities that have practiced altitude-based agriculture for millennia are finding their traditional systems disrupted as microclimates shift and glacier-fed water sources diminish.
F. In response to these challenges, various adaptation strategies are being implemented with varying degrees of success. Agronomic interventions include developing climate-resilient crop varieties through both traditional breeding and genetic modification. The International Rice Research Institute, for example, has developed flood-tolerant and salt-tolerant rice varieties that can survive two weeks underwater or grow in saline soils. Water management innovations such as drip irrigation, rainwater harvesting, and improved storage systems are helping farmers cope with water scarcity. Agroforestry systems, which integrate trees and shrubs into agricultural landscapes, are gaining recognition for their multiple benefits, including soil conservation, carbon sequestration, and biodiversity enhancement.
G. Policy frameworks and financial mechanisms are equally important in supporting agricultural adaptation. Climate insurance schemes are being piloted in several developing countries, providing farmers with financial protection against weather-related losses. Payment for ecosystem services programs incentivize farmers to adopt climate-friendly practices. International initiatives such as the Green Climate Fund aim to channel resources toward climate adaptation in vulnerable countries. However, the scale of investment remains insufficient relative to the magnitude of the challenge, and ensuring that support reaches the most vulnerable farmers remains a persistent obstacle.
Tác động của biến đổi khí hậu lên các hệ thống nông nghiệp trên khắp thế giới
Questions 14-19: Matching Headings
Choose the correct heading for paragraphs A-G from the list of headings below.
List of Headings:
i. Policy responses and financial support systems
ii. The African agricultural crisis
iii. Adaptation techniques and innovative solutions
iv. Mixed effects in North American farming
v. Water scarcity in Australian agriculture
vi. European agricultural contrasts
vii. Latin American diversity in climate impacts
viii. Asia’s critical food security concerns
ix. The role of technology in modern farming
- Paragraph A
- Paragraph B
- Paragraph C
- Paragraph D
- Paragraph E
- Paragraph F
Questions 20-23: Summary Completion
Complete the summary below. Choose NO MORE THAN TWO WORDS from the passage for each answer.
Climate change affects different regions in unique ways. In North America, the 2012 drought impacted over 80% of agricultural land and caused around (20) __ in economic damage. Mediterranean European countries are facing water scarcity and (21) __, while Northern Europe might benefit from warmer temperatures. In Asia, rice yields could decrease by 10% for every 1°C rise in (22) __ temperatures. Africa’s heavy dependence on (23) __ makes it particularly vulnerable to climate variations.
Questions 24-26: Matching Information
Which paragraph contains the following information? Write the correct letter, A-G.
- Information about the development of rice varieties that can withstand flooding
- A reference to migration being influenced by agricultural failures
- Details about groundwater depletion affecting American agriculture
PASSAGE 3 – Systemic Transformations and Future Trajectories
Độ khó: Hard (Band 7.0-9.0)
Thời gian đề xuất: 23-25 phút
The nexus between climate change and global agriculture represents far more than a simple cause-and-effect relationship; it constitutes a complex, bidirectional interaction within a broader socio-ecological system that is fundamentally reconfiguring the parameters of food production worldwide. Contemporary agricultural science increasingly recognizes that addressing climate impacts requires not merely incremental adjustments to existing practices, but rather transformative changes that reconceptualize the very foundations of how humanity produces food. This paradigm shift necessitates integrating insights from climatology, agronomy, economics, sociology, and political science to develop holistic strategies that can ensure both food security and environmental sustainability in an era of unprecedented ecological change.
The thermodynamic realities of climate change impose fundamental constraints on agricultural productivity through multiple, interconnected pathways. Photosynthetic efficiency, the basis of all crop production, is highly temperature-dependent, with most C3 plants (including wheat, rice, and soybeans) exhibiting optimal photosynthesis between 20-25°C and experiencing progressive decline as temperatures exceed these thresholds. The relationship, however, is not linear; enzymatic reactions that underpin photosynthesis become increasingly inefficient at elevated temperatures due to the differential temperature sensitivity of RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase), the enzyme responsible for carbon fixation. At temperatures above 35°C, photorespiration increases exponentially, effectively reversing the carbon-capture process and dramatically reducing net primary productivity. This biochemical reality places a biophysical ceiling on agricultural productivity in a warming world that cannot be overcome through conventional breeding or management practices alone.
Furthermore, the temporal dynamics of climate change present challenges that extend beyond simple mean temperature increases. Phenological shifts—changes in the timing of biological events such as flowering, fruiting, and senescence—can create critical mismatches between crop developmental stages and optimal environmental conditions. For instance, many crops have evolved to utilize photoperiod (day length) as a cue for developmental transitions, a mechanism that remains unchanged even as temperatures shift. This can result in crops flowering at suboptimal temperatures or experiencing heat stress during critical reproductive phases, with cascading effects on yield potential. Additionally, the increased frequency and intensity of extreme weather events—including heatwaves, droughts, floods, and storms—introduce stochastic variability that undermines the predictability essential for agricultural planning and investment.
The hydrological cycle, fundamentally altered by climate change, represents another critical nexus affecting agriculture. Evapotranspiration rates are rising globally, increasing crop water requirements even in regions where precipitation remains stable. Altered precipitation patterns are creating new hydroclimatic regimes characterized by intensified seasonality, with longer dry periods punctuated by more intense rainfall events. This shift towards precipitation extremes is particularly problematic for agriculture, as it increases both drought stress and waterlogging, while reducing the effective precipitation available for crop uptake. Moreover, snow-dominated hydrological systems in mountain regions are transitioning to rain-dominated regimes, eliminating the natural water storage function of snowpack and creating asynchrony between water availability and peak irrigation demands.
The biogeographical reorganization of agricultural pests, pathogens, and beneficial organisms represents a frequently underestimated dimension of climate change impacts. Thermal envelopes that previously limited the distribution of many agricultural pests are expanding poleward and to higher elevations at rates averaging 2-3 kilometers per year. The mountain pine beetle outbreak in North American forests, which has killed billions of trees, exemplifies how warming temperatures can release previously controlled populations from natural limitations. In agricultural systems, this biological redistribution necessitates continuous adaptation of pest management strategies, often requiring increased pesticide applications that carry their own environmental and economic costs. Đối với những ai quan tâm đến tác động của biến đổi khí hậu đến nền kinh tế toàn cầu, những thay đổi này có hàm ý rộng lớn hơn cho sự phát triển bền vững.
Soil systems, often overlooked in climate discussions, are experiencing profound changes that will reverberate through agricultural productivity for decades. Soil organic matter, crucial for nutrient cycling, water retention, and soil structure, decomposes more rapidly at elevated temperatures, releasing stored carbon into the atmosphere and creating a positive feedback loop that accelerates climate change while degrading agricultural potential. Microbial communities that facilitate nutrient availability are shifting in composition and function, with unclear implications for long-term soil health. Erosion rates are intensifying with more severe precipitation events, removing topsoil that accumulates over centuries but can be lost in single storm events. These changes suggest that current agricultural lands may experience progressive degradation even with optimized management, necessitating fundamental changes in how societies approach land use and food production.
Adaptation strategies must therefore operate at multiple scales and temporal horizons. At the genetic level, crop breeding programs are incorporating climate resilience traits such as heat tolerance, drought resistance, and flooding tolerance. Marker-assisted selection and genomic editing technologies like CRISPR-Cas9 offer possibilities for accelerating the development of climate-adapted varieties, though ethical, regulatory, and accessibility concerns remain contentious. At the farm level, climate-smart agriculture practices are being promoted, including conservation tillage, cover cropping, integrated pest management, and precision agriculture technologies that optimize input use efficiency. Landscape-level interventions, such as agroforestry, riparian buffers, and habitat corridors, can provide ecosystem services that enhance resilience while supporting biodiversity conservation.
However, technical and agronomic innovations alone are insufficient without complementary transformations in economic structures, governance systems, and social institutions. Current agricultural subsidies in many countries perversely incentivize practices that exacerbate climate change, such as excessive tillage, monoculture cropping systems, and overuse of synthetic inputs. Reforming these policy frameworks to reward climate-friendly practices through payments for ecosystem services, carbon markets, and climate insurance could catalyze more rapid adoption of sustainable practices. Trade policies must balance the efficiency gains from agricultural specialization against the resilience benefits of diversified regional production systems. Land tenure systems that provide farmers with secure long-term rights are essential for encouraging investments in soil conservation and climate adaptation that have multigenerational payoffs.
The distributional implications of climate change impacts on agriculture demand particular attention. Smallholder farmers in low-income countries, who typically contribute minimally to greenhouse gas emissions, face disproportionate impacts while possessing minimal adaptive capacity. Women farmers, who constitute a substantial proportion of the agricultural workforce in many regions, often face additional barriers related to land rights, access to credit, and extension services that limit their ability to adapt. Climate justice principles suggest that international climate finance and technology transfer must prioritize supporting these vulnerable populations, yet current flows remain woefully inadequate relative to documented needs. Một ví dụ chi tiết về những thách thức của nông nghiệp bền vững trong thế kỷ 21 là minh chứng rõ ràng cho sự cần thiết phải có giải pháp toàn diện.
Looking forward, the trajectory of agricultural systems under climate change will be determined not only by biophysical factors but fundamentally by societal choices regarding mitigation ambition and adaptation investment. Emission reduction pathways consistent with limiting warming to 1.5-2°C above pre-industrial levels would substantially reduce agricultural disruption compared to higher warming scenarios, though significant adaptation would still be necessary. Conversely, failure to achieve substantial emissions reductions would lead to warming levels (3-4°C or higher) that could render many currently productive agricultural regions untenable for conventional farming, potentially triggering food system disruptions with catastrophic humanitarian consequences. The next two decades thus represent a critical window during which investments in both mitigation and adaptation will determine agricultural outcomes for the remainder of the century.
Ultimately, addressing climate change impacts on agriculture requires recognizing that food production systems are not separate from but rather embedded within broader social-ecological systems that include energy, water, biodiversity, and human well-being. Transformative adaptation must therefore pursue synergies across these domains, seeking solutions that simultaneously address climate change, food security, environmental degradation, and social inequality. Such an integrated approach demands unprecedented levels of international cooperation, interdisciplinary research, policy innovation, and social mobilization—challenging but not impossible given the stakes involved.
Các giải pháp và công nghệ nông nghiệp thích ứng với biến đổi khí hậu
Questions 27-31: Multiple Choice
Choose the correct letter, A, B, C, or D.
-
According to the passage, photosynthetic efficiency in C3 plants:
A. Increases continuously as temperatures rise
B. Is optimal between 20-25°C and declines at higher temperatures
C. Is unaffected by temperature variations
D. Improves above 35°C due to enzymatic reactions -
The term “phenological shifts” refers to:
A. Changes in soil composition over time
B. Variations in temperature patterns
C. Changes in the timing of biological events in crops
D. The movement of pests to new regions -
The passage suggests that current agricultural subsidies in many countries:
A. Successfully promote climate-friendly farming
B. Have no impact on farming practices
C. Encourage practices that worsen climate change
D. Are sufficient to support adaptation efforts -
According to the passage, soil organic matter at elevated temperatures:
A. Increases nutrient availability
B. Decomposes more rapidly and releases carbon
C. Becomes more stable and resistant
D. Has no significant effect on climate -
The passage argues that transformative adaptation requires:
A. Only technological innovations
B. Solely agronomic improvements
C. Changes across economic, governance, and social systems
D. Minimal international cooperation
Questions 32-36: Yes/No/Not Given
Do the following statements agree with the claims of the writer in the passage? Write:
- YES if the statement agrees with the claims of the writer
- NO if the statement contradicts the claims of the writer
- NOT GIVEN if it is impossible to say what the writer thinks about this
- Climate change and agriculture have a simple, one-directional relationship.
- Photoperiod remains unchanged even as temperatures shift, which can cause problems for crop development.
- Mountain pine beetle outbreaks demonstrate how warming can release pest populations from natural limitations.
- CRISPR-Cas9 technology has been universally accepted without any ethical concerns.
- Current international climate finance adequately supports vulnerable farming populations.
Questions 37-40: Matching Sentence Endings
Complete each sentence with the correct ending, A-H, below.
- C3 plants experience progressive photosynthetic decline when
- The transition from snow-dominated to rain-dominated hydrological systems eliminates
- Women farmers in many regions face additional barriers that limit
- Limiting global warming to 1.5-2°C would substantially reduce
Endings:
A. their ability to adapt to climate change.
B. the natural water storage function of snowpack.
C. agricultural disruption compared to higher warming scenarios.
D. temperatures exceed 20-25°C optimal range.
E. the use of pesticides in conventional farming.
F. international cooperation between countries.
G. the development of new crop varieties.
H. erosion rates in agricultural regions.
Answer Keys – Đáp Án
PASSAGE 1: Questions 1-13
- C
- B
- C
- C
- D
- TRUE
- FALSE
- TRUE
- NOT GIVEN
- FALSE
- one billion people
- fungal diseases
- crop rotation
PASSAGE 2: Questions 14-26
- iv
- vi
- viii
- ii
- vii
- iii
- $30 billion
- desertification
- nighttime
- rain-fed agriculture
- F
- E
- A
PASSAGE 3: Questions 27-40
- B
- C
- C
- B
- C
- NO
- YES
- YES
- NO
- NO
- D
- B
- A
- C
Giải Thích Đáp Án Chi Tiết
Passage 1 – Giải Thích
Câu 1: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: longer growing seasons, warmer temperatures
- Vị trí trong bài: Đoạn 2, dòng 1-4
- Giải thích: Bài đọc nói rõ “this apparent advantage is often offset by increased heat stress during critical growth phases” (lợi thế rõ ràng này thường bị bù trừ bởi căng thẳng nhiệt tăng cao trong các giai đoạn sinh trưởng quan trọng). Từ “offset” được paraphrase thành “negated” trong đáp án C.
Câu 2: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: fall armyworm
- Vị trí trong bài: Đoạn 5, dòng 3-5
- Giải thích: Bài viết mô tả fall armyworm là ví dụ về loài sâu có thể “expand their geographical range” (mở rộng phạm vi địa lý) nhờ nhiệt độ ấm hơn, và đã lan từ châu Mỹ sang châu Phi và châu Á.
Câu 6: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: wheat and rice, lose up to half, 35°C
- Vị trí trong bài: Đoạn 2, dòng 5-7
- Giải thích: Bài đọc nêu rõ “these crops can experience significant yield reductions, sometimes losing up to 50% of their potential harvest” khi nhiệt độ vượt quá 35°C. “Up to 50%” chính là “up to half” (lên đến một nửa).
Câu 7: FALSE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: sub-Saharan Africa, completely stopped, rain-fed agriculture
- Vị trí trong bài: Đoạn 3, dòng 3-5
- Giải thích: Bài chỉ nói việc dự đoán thời điểm trồng trọt trở nên khó hơn (“increasingly difficult”), không nói là đã ngừng hoàn toàn (completely stopped). Câu phát biểu này quá cực đoan so với thông tin trong bài.
Câu 8: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: glacial melt, temporary increase, water availability
- Vị trí trong bài: Đoạn 4, dòng 2-3
- Giải thích: Bài viết nói “While this creates temporary abundance” (Trong khi điều này tạo ra sự dồi dào tạm thời), xác nhận rằng băng tan tạo ra sự gia tăng tạm thời về nước.
Câu 11: one billion people
- Dạng câu hỏi: Sentence Completion
- Từ khóa: Indus and Ganges river basins, South Asia
- Vị trí trong bài: Đoạn 4, dòng 4-5
- Giải thích: Câu gốc: “support over one billion people” – cần điền “one billion people” để hoàn thành câu về số người được hỗ trợ bởi các lưu vực sông này.
Passage 2 – Giải Thích
Câu 14: iv (Mixed effects in North American farming)
- Dạng câu hỏi: Matching Headings
- Từ khóa: North America, paradoxical mix
- Vị trí trong bài: Đoạn A
- Giải thích: Đoạn A mô tả “paradoxical mix of effects” (sự pha trộn nghịch lý của các tác động) ở Bắc Mỹ, với cả lợi ích (mùa sinh trưởng dài hơn) và thách thức (hạn hán, sóng nhiệt). “Mixed effects” (tác động hỗn hợp) là paraphrase của “paradoxical mix”.
Câu 15: vi (European agricultural contrasts)
- Dạng câu hỏi: Matching Headings
- Từ khóa: Europe, Mediterranean, Northern Europe, contrasts
- Vị trí trong bài: Đoạn B
- Giải thích: Đoạn B trình bày sự tương phản giữa Nam Âu (khan hiếm nước) và Bắc Âu (có thể được lợi từ nhiệt độ ấm hơn). “Contrasts” chính xác mô tả những khác biệt này.
Câu 20: $30 billion
- Dạng câu hỏi: Summary Completion
- Từ khóa: 2012 drought, economic damage
- Vị trí trong bài: Đoạn A, dòng 5-6
- Giải thích: Bài viết nêu rõ “causing approximately $30 billion in economic losses” (gây ra khoảng 30 tỷ đô la tổn thất kinh tế).
Câu 21: desertification
- Dạng câu hỏi: Summary Completion
- Từ khóa: Mediterranean countries, water scarcity and…
- Vị trí trong bài: Đoạn B, dòng 2-3
- Giải thích: Câu gốc liệt kê “intensifying water scarcity and desertification” (khan hiếm nước ngày càng tăng và sa mạc hóa) như hai vấn đề chính ở khu vực Địa Trung Hải.
Câu 24: F
- Dạng câu hỏi: Matching Information
- Từ khóa: rice varieties, withstand flooding
- Vị trí trong bài: Đoạn F, dòng 3-5
- Giải thích: Đoạn F nói về Viện Nghiên cứu Lúa Quốc tế đã phát triển “flood-tolerant and salt-tolerant rice varieties” (các giống lúa chịu ngập và chịu mặn).
Passage 3 – Giải Thích
Câu 27: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: photosynthetic efficiency, C3 plants
- Vị trí trong bài: Đoạn 2, dòng 2-4
- Giải thích: Bài viết nêu rõ C3 plants “exhibiting optimal photosynthesis between 20-25°C and experiencing progressive decline as temperatures exceed these thresholds” (thể hiện quá trình quang hợp tối ưu ở 20-25°C và giảm dần khi nhiệt độ vượt ngưỡng này).
Câu 28: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: phenological shifts
- Vị trí trong bài: Đoạn 3, dòng 2-3
- Giải thích: Thuật ngữ được định nghĩa là “changes in the timing of biological events such as flowering, fruiting, and senescence” (thay đổi thời điểm của các sự kiện sinh học như ra hoa, kết quả và lão hóa).
Câu 32: NO
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: simple, one-directional relationship
- Vị trí trong bài: Đoạn 1, dòng 1-2
- Giải thích: Bài viết khẳng định mối quan hệ là “complex, bidirectional interaction” (tương tác hai chiều phức tạp), trái ngược hoàn toàn với “simple, one-directional relationship” (mối quan hệ đơn giản, một chiều).
Câu 33: YES
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: photoperiod, unchanged, temperatures shift
- Vị trí trong bài: Đoạn 3, dòng 5-6
- Giải thích: Bài viết nói “many crops have evolved to utilize photoperiod as a cue…a mechanism that remains unchanged even as temperatures shift” (nhiều loại cây trồng đã tiến hóa để sử dụng chu kỳ ánh sáng như một tín hiệu…một cơ chế vẫn không thay đổi ngay cả khi nhiệt độ thay đổi), xác nhận chính xác phát biểu.
Câu 37: D
- Dạng câu hỏi: Matching Sentence Endings
- Từ khóa: C3 plants, photosynthetic decline
- Vị trí trong bài: Đoạn 2, dòng 3-4
- Giải thích: Bài viết nói C3 plants có quang hợp tối ưu ở 20-25°C và giảm dần khi vượt ngưỡng này. Đáp án D “temperatures exceed 20-25°C optimal range” (nhiệt độ vượt quá phạm vi tối ưu 20-25°C) hoàn thiện câu một cách logic.
Câu 40: C
- Dạng câu hỏi: Matching Sentence Endings
- Từ khóa: limiting warming to 1.5-2°C
- Vị trí trong bài: Đoạn 10, dòng 2-3
- Giải thích: Bài viết nêu “Emission reduction pathways consistent with limiting warming to 1.5-2°C…would substantially reduce agricultural disruption compared to higher warming scenarios” (Các con đường giảm phát thải phù hợp với việc giới hạn sự nóng lên ở 1.5-2°C…sẽ giảm đáng kể sự gián đoạn nông nghiệp so với các kịch bản nóng lên cao hơn).
Từ Vựng Quan Trọng Theo Passage
Passage 1 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| significant | adj | /sɪɡˈnɪfɪkənt/ | đáng kể, quan trọng | significant challenges facing global agriculture | significant impact/change |
| variability | n | /ˌveəriəˈbɪləti/ | sự thay đổi, biến động | climate variability and crop production | climate/weather variability |
| multifaceted | adj | /ˌmʌltiˈfæsɪtɪd/ | nhiều mặt, đa diện | The relationship is complex and multifaceted | multifaceted problem/approach |
| unpredictable | adj | /ˌʌnprɪˈdɪktəbl/ | không thể dự đoán | weather patterns become increasingly unpredictable | unpredictable weather/behavior |
| offset | v | /ˈɒfset/ | bù trừ, đền bù | this advantage is offset by increased heat stress | offset costs/losses |
| vulnerable | adj | /ˈvʌlnərəbl/ | dễ bị tổn thương | crops are particularly vulnerable to high temperatures | vulnerable to attack/damage |
| precipitation | n | /prɪˌsɪpɪˈteɪʃn/ | lượng mưa | Precipitation patterns are changing dramatically | annual precipitation |
| exacerbated | v | /ɪɡˈzæsəbeɪtɪd/ | làm trầm trọng thêm | Soil degradation exacerbated by climate change | exacerbate problems/tensions |
| degradation | n | /ˌdeɡrəˈdeɪʃn/ | sự suy thoái, thoái hóa | Soil degradation represents another critical concern | environmental degradation |
| adaptation | n | /ˌædæpˈteɪʃn/ | sự thích nghi | developing various adaptation strategies | climate adaptation |
| resilient | adj | /rɪˈzɪliənt/ | có khả năng phục hồi | build more resilient farming systems | resilient communities |
| precision farming | n | /prɪˈsɪʒn ˈfɑːmɪŋ/ | nông nghiệp chính xác | Precision farming techniques using satellite imagery | precision agriculture |
Passage 2 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| ramifications | n | /ˌræmɪfɪˈkeɪʃnz/ | hậu quả, tác động | ramifications of climate change on agriculture | serious ramifications |
| nuanced | adj | /ˈnjuːɑːnst/ | tinh tế, nhiều sắc thái | require nuanced understanding | nuanced approach/view |
| paradoxical | adj | /ˌpærəˈdɒksɪkl/ | nghịch lý | experiencing a paradoxical mix of effects | paradoxical situation |
| counterbalanced | v | /ˈkaʊntəbælənst/ | cân bằng, bù trừ | expansion is counterbalanced by extreme weather | counterbalance effects |
| depletion | n | /dɪˈpliːʃn/ | sự cạn kiệt | depletion of the Ogallala Aquifer | resource depletion |
| underpins | v | /ˌʌndəˈpɪnz/ | hỗ trợ, làm nền tảng | aquifer underpins irrigation | underpin the economy |
| intensifying | v | /ɪnˈtensɪfaɪɪŋ/ | tăng cường, mạnh hơn | intensifying water scarcity | intensify efforts |
| cornerstone | n | /ˈkɔːnəstəʊn/ | nền tảng, trụ cột | olive oil industry, a cornerstone of Mediterranean agriculture | cornerstone of policy |
| undermined | v | /ˌʌndəˈmaɪnd/ | làm suy yếu | potential gains are undermined by rainfall variability | undermine confidence |
| susceptible | adj | /səˈseptəbl/ | dễ bị ảnh hưởng | Rice production is highly susceptible to climate variations | susceptible to disease |
| compounded | adj | /ˈkɒmpaʊndɪd/ | phức tạp thêm, chồng chất | faces compounded threats | compounded problems |
| erratic | adj | /ɪˈrætɪk/ | thất thường, không ổn định | erratic monsoons and rainfall patterns | erratic behavior/weather |
| intrusion | n | /ɪnˈtruːʒn/ | sự xâm nhập | Saltwater intrusion into coastal lands | intrusion of privacy |
| adaptive capacity | n | /əˈdæptɪv kəˈpæsəti/ | khả năng thích ứng | limited adaptive capacity makes it vulnerable | build adaptive capacity |
| agroforestry | n | /ˈæɡrəʊˌfɒrɪstri/ | nông lâm kết hợp | Agroforestry systems integrate trees and agriculture | agroforestry practices |
Passage 3 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| nexus | n | /ˈneksəs/ | mối liên hệ chặt chẽ | nexus between climate change and agriculture | energy-water nexus |
| bidirectional | adj | /ˌbaɪdəˈrekʃənl/ | hai chiều | complex, bidirectional interaction | bidirectional relationship |
| socio-ecological | adj | /ˌsəʊsiəʊ-iːkəˈlɒdʒɪkl/ | thuộc về xã hội-sinh thái | within a broader socio-ecological system | socio-ecological systems |
| reconfiguring | v | /ˌriːkənˈfɪɡərɪŋ/ | tái cấu hình | fundamentally reconfiguring the parameters | reconfigure systems |
| incremental | adj | /ˌɪŋkrəˈmentl/ | tăng dần, từng bước | not merely incremental adjustments | incremental changes |
| transformative | adj | /trænsˈfɔːmətɪv/ | mang tính biến đổi | requires transformative changes | transformative impact |
| thermodynamic | adj | /ˌθɜːməʊdaɪˈnæmɪk/ | nhiệt động lực học | thermodynamic realities of climate change | thermodynamic principles |
| photosynthetic | adj | /ˌfəʊtəʊsɪnˈθetɪk/ | quang hợp | Photosynthetic efficiency is temperature-dependent | photosynthetic rate |
| enzymatic | adj | /ˌenzaɪˈmætɪk/ | thuộc enzyme | enzymatic reactions that underpin photosynthesis | enzymatic activity |
| photorespiration | n | /ˌfəʊtəʊˌrespəˈreɪʃn/ | quá trình hô hấp ánh sáng | photorespiration increases exponentially | photorespiration rate |
| phenological | adj | /ˌfiːnəˈlɒdʒɪkl/ | thuộc sinh thái học thời vụ | Phenological shifts in biological events | phenological changes |
| stochastic | adj | /stəˈkæstɪk/ | ngẫu nhiên | introduce stochastic variability | stochastic process |
| evapotranspiration | n | /ɪˌvæpəʊˌtrænspəˈreɪʃn/ | bay hơi thoát hơi nước | Evapotranspiration rates are rising globally | evapotranspiration losses |
| hydroclimatic | adj | /ˌhaɪdrəʊklaɪˈmætɪk/ | thủy văn khí hậu | creating new hydroclimatic regimes | hydroclimatic conditions |
| biogeographical | adj | /ˌbaɪəʊdʒiːəˈɡræfɪkl/ | sinh địa lý | biogeographical reorganization of pests | biogeographical distribution |
| reverberate | v | /rɪˈvɜːbəreɪt/ | gây vang động, tác động | will reverberate through agricultural productivity | reverberate through society |
| genomic editing | n | /dʒɪˈnəʊmɪk ˈedɪtɪŋ/ | chỉnh sửa gen | genomic editing technologies like CRISPR-Cas9 | genomic editing tools |
| perversely | adv | /pəˈvɜːsli/ | một cách sai lầm | perversely incentivize harmful practices | perversely encourage |
Kết Bài
Chủ đề về tác động của biến đổi khí hậu đến nông nghiệp toàn cầu không chỉ là một nội dung phổ biến trong IELTS Reading mà còn phản ánh một thách thức cấp bách của thế giới hiện đại. Qua bộ đề thi hoàn chỉnh này, bạn đã được trải nghiệm ba passages với độ khó tăng dần, từ giới thiệu cơ bản về các tác động khí hậu, đến phân tích chi tiết theo khu vực, và cuối cùng là những thảo luận học thuật sâu rộng về các hệ thống sinh thái-xã hội phức tạp.
Bộ đề cung cấp đầy đủ 40 câu hỏi với 7 dạng bài khác nhau, giúp bạn làm quen với đa dạng các kỹ năng cần thiết: từ tìm thông tin cụ thể, hiểu ý chính, đến phân tích và suy luận. Đáp án chi tiết kèm giải thích đã chỉ ra cách xác định thông tin trong bài, nhận biết paraphrase, và áp dụng chiến lược làm bài hiệu quả. Điều này giúp bạn không chỉ kiểm tra kết quả mà còn hiểu rõ logic đằng sau mỗi câu trả lời đúng.
Phần từ vựng được tổng hợp theo từng passage cung cấp hơn 40 từ và cụm từ học thuật quan trọng, từ những thuật ngữ cơ bản như “precipitation” và “adaptation” đến các khái niệm chuyên sâu như “phenological shifts” và “socio-ecological systems”. Những từ vựng này không chỉ hữu ích cho bài thi Reading mà còn có thể áp dụng trong Writing Task 2 và Speaking Part 3 khi thảo luận về các chủ đề môi trường.
Hãy dành thời gian làm lại đề thi này nhiều lần, chú ý đến cách thông tin được paraphrase và cách câu hỏi được thiết kế. Những gì bạn quan tâm đến sự phát triển của nông nghiệp thông minh trong phát triển nông thôn cũng có thể bổ trợ kiến thức cho chủ đề này, giúp tăng vốn hiểu biết về nông nghiệp hiện đại. Tương tự, việc tìm hiểu về nông nghiệp thông minh trong sản xuất lương thực sẽ giúp bạn mở rộng kiến thức về các giải pháp công nghệ cho thách thức khí hậu. Đừng quên rằng việc đạt band điểm cao trong IELTS Reading không chỉ phụ thuộc vào từ vựng mà còn vào khả năng quản lý thời gian, đọc skimming và scanning hiệu quả, cũng như kỹ năng phân tích cấu trúc bài đọc.
Chúc bạn luyện tập hiệu quả và đạt được band điểm mong muốn trong kỳ thi IELTS sắp tới!