IELTS Reading: Công Nghệ Xanh Đang Ảnh Hưởng Như Thế Nào Đến Nông Nghiệp Toàn Cầu – Đề Thi Mẫu Có Đáp Án Chi Tiết

Mở Bài

Công nghệ xanh trong nông nghiệp đang trở thành một trong những chủ đề nóng hổi và thường xuyên xuất hiện trong IELTS Reading, đặc biệt trong các đề thi từ năm 2020 đến nay. Chủ đề “How Green Technologies Are Influencing Global Agriculture” không chỉ phản ánh xu hướng phát triển bền vững toàn cầu mà còn thử thách khả năng đọc hiểu các văn bản học thuật về khoa học công nghệ, môi trường và kinh tế của thí sinh.

Bài viết này cung cấp cho bạn một bộ đề thi IELTS Reading hoàn chỉnh với 3 passages được thiết kế tăng dần độ khó từ Easy (Band 5.0-6.5) đến Hard (Band 7.0-9.0), bao gồm 40 câu hỏi đa dạng giống như thi thật. Bạn sẽ được luyện tập với các dạng câu hỏi phổ biến nhất như True/False/Not Given, Matching Headings, Summary Completion, và Multiple Choice.

Ngoài đề thi mẫu, bạn còn nhận được đáp án chi tiết với giải thích cụ thể về vị trí thông tin, kỹ thuật paraphrase, và cách xác định đáp án đúng. Phần từ vựng quan trọng được tổng hợp theo từng passage sẽ giúp bạn mở rộng vốn từ vựng học thuật về nông nghiệp bền vững và công nghệ xanh. Đề thi này phù hợp cho học viên có trình độ từ band 5.0 trở lên, đặc biệt hữu ích cho những ai đang nhắm đến band điểm 7.0+.

1. Hướng Dẫn Làm Bài IELTS Reading

Tổng Quan Về IELTS Reading Test

IELTS Reading Test kéo dài 60 phút với 3 passages và tổng cộng 40 câu hỏi. Mỗi câu trả lời đúng được tính 1 điểm, không bị trừ điểm cho câu sai. Độ khó của các passages tăng dần từ Passage 1 đến Passage 3, với độ dài mỗi passage từ 650-1000 từ.

Phân bổ thời gian khuyến nghị:

  • Passage 1: 15-17 phút (13 câu hỏi) – Độ khó Easy
  • Passage 2: 18-20 phút (13 câu hỏi) – Độ khó Medium
  • Passage 3: 23-25 phút (14 câu hỏi) – Độ khó Hard

Lưu ý dành 2-3 phút cuối để chuyển đáp án sang Answer Sheet. Tuyệt đối không được viết quá số từ quy định trong các câu hỏi dạng gap-filling.

Các Dạng Câu Hỏi Trong Đề Này

Đề thi mẫu này bao gồm 7 dạng câu hỏi phổ biến nhất:

  1. True/False/Not Given – Xác định thông tin đúng, sai hay không được đề cập
  2. Multiple Choice – Chọn đáp án đúng từ các phương án cho sẵn
  3. Matching Headings – Ghép tiêu đề phù hợp với các đoạn văn
  4. Summary Completion – Điền từ vào chỗ trống trong đoạn tóm tắt
  5. Matching Information – Tìm đoạn văn chứa thông tin cụ thể
  6. Sentence Completion – Hoàn thiện câu với thông tin từ bài đọc
  7. Short-answer Questions – Trả lời câu hỏi ngắn trong giới hạn từ quy định

2. IELTS Reading Practice Test

PASSAGE 1 – The Green Revolution in Modern Farming

Độ khó: Easy (Band 5.0-6.5)

Thời gian đề xuất: 15-17 phút

Agriculture has undergone tremendous changes over the past few decades, with green technologies playing an increasingly important role in transforming traditional farming practices. These innovations are not only helping farmers increase productivity but also addressing critical environmental concerns such as soil degradation, water scarcity, and greenhouse gas emissions. The integration of sustainable technologies into agriculture represents a significant shift towards more environmentally responsible food production methods.

One of the most notable developments in green agriculture is precision farming, which uses advanced sensors, GPS technology, and data analytics to optimize crop management. Farmers can now monitor soil conditions, moisture levels, and nutrient content in real-time, allowing them to apply water, fertilizers, and pesticides only where and when needed. This targeted approach significantly reduces waste and minimizes the environmental impact of farming operations. Studies have shown that precision farming can reduce fertilizer use by up to 30% while maintaining or even increasing crop yields.

Solar-powered irrigation systems represent another groundbreaking innovation in sustainable agriculture. Traditional irrigation methods often rely on diesel pumps, which are expensive to operate and contribute to carbon emissions. Solar irrigation systems, by contrast, harness clean energy from the sun to power water pumps, making them both cost-effective and environmentally friendly. In developing countries, where access to electricity is limited, these systems have proven particularly valuable. Farmers in rural India, for example, have reported dramatic reductions in their energy costs after switching to solar irrigation, while also contributing to national efforts to combat climate change.

Vertical farming is emerging as a revolutionary solution to the challenge of feeding growing urban populations while minimizing agricultural land use. This method involves growing crops in stacked layers within controlled indoor environments, often in repurposed warehouses or specially designed buildings in cities. Vertical farms use LED lighting, hydroponic systems, and climate control technology to create optimal growing conditions year-round. Because these farms are located close to consumers, they significantly reduce transportation costs and food miles, resulting in fresher produce with a smaller carbon footprint. Moreover, vertical farming uses up to 95% less water than traditional agriculture and eliminates the need for pesticides.

Biotechnology is also contributing to greener agriculture through the development of drought-resistant and pest-resistant crop varieties. Through genetic modification and selective breeding techniques, scientists have created plants that require less water, tolerate poor soil conditions, and naturally resist common pests and diseases. These resilient crops help farmers maintain stable yields even in challenging environmental conditions, reducing the need for chemical inputs such as pesticides and herbicides. Critics of genetically modified organisms (GMOs) raise concerns about long-term environmental effects, but proponents argue that these technologies are essential for ensuring food security in an era of climate change.

The adoption of renewable energy sources on farms extends beyond irrigation to include heating, cooling, and power generation for various agricultural operations. Many farms now feature solar panels on barn roofs, wind turbines in fields, and biogas digesters that convert animal waste into energy. These systems allow farms to become more energy self-sufficient while reducing their reliance on fossil fuels. In some cases, farms generate more energy than they consume, selling the surplus back to the electrical grid and creating an additional revenue stream.

Drone technology has become an invaluable tool for modern farmers seeking to implement more sustainable practices. Agricultural drones equipped with multispectral cameras can survey large areas of farmland quickly, identifying problems such as pest infestations, irrigation issues, or nutrient deficiencies before they become visible to the naked eye. This early detection enables farmers to take targeted action, treating only affected areas rather than applying chemicals across entire fields. Drones also assist with precision seeding and can even perform targeted pesticide application, further reducing chemical usage.

The shift toward green technologies in agriculture is supported by government policies and international initiatives aimed at promoting sustainable farming. Many countries offer subsidies and tax incentives to farmers who invest in renewable energy systems, water-efficient irrigation, or organic farming practices. International organizations like the Food and Agriculture Organization (FAO) provide technical assistance and funding to help farmers in developing nations access green technologies. These efforts reflect a growing recognition that the future of agriculture depends on balancing productivity with environmental stewardship.

Despite the clear benefits, the transition to green agriculture faces several challenges. The initial investment costs for technologies like solar irrigation systems or precision farming equipment can be prohibitively high for small-scale farmers, particularly in developing countries. Additionally, many farmers lack the technical knowledge required to operate and maintain these sophisticated systems. Addressing these barriers will require comprehensive training programs, better access to financing, and continued technological innovation to make green solutions more affordable and user-friendly. Nevertheless, as awareness of environmental issues grows and technology becomes more accessible, green agriculture is expected to become increasingly mainstream, reshaping the future of global food production.

Công nghệ xanh đang thay đổi nông nghiệp toàn cầu với các giải pháp bền vững và thân thiện môi trườngCông nghệ xanh đang thay đổi nông nghiệp toàn cầu với các giải pháp bền vững và thân thiện môi trường

Questions 1-13

Questions 1-5: True/False/Not Given

Do the following statements agree with the information given in the passage?

Write:

  • TRUE if the statement agrees with the information
  • FALSE if the statement contradicts the information
  • NOT GIVEN if there is no information on this
  1. Precision farming can reduce fertilizer usage by approximately one-third while keeping crop yields stable or higher.

  2. Solar irrigation systems are more expensive to operate than traditional diesel-powered pumps.

  3. Vertical farms require the same amount of water as conventional farming methods.

  4. All scientists agree that genetically modified crops are safe for the environment.

  5. Some farms now produce more renewable energy than they need for their own operations.

Questions 6-9: Multiple Choice

Choose the correct letter, A, B, C, or D.

  1. According to the passage, precision farming allows farmers to:

    • A. Eliminate the use of all fertilizers and pesticides
    • B. Monitor soil and apply resources only where necessary
    • C. Increase crop yields by exactly 30%
    • D. Replace all traditional farming equipment
  2. What is mentioned as a particular advantage of solar irrigation in developing countries?

    • A. It produces higher quality crops
    • B. It is useful in areas with limited electricity access
    • C. It requires no maintenance
    • D. It works better than in developed countries
  3. Vertical farming is described as beneficial because it:

    • A. Produces crops that taste better
    • B. Requires more land than traditional farming
    • C. Reduces transportation distances to consumers
    • D. Uses more water than conventional methods
  4. What does the passage suggest about agricultural drones?

    • A. They can completely replace human farmers
    • B. They are only used for taking photographs
    • C. They help identify problems before they become visible
    • D. They are too expensive for any farmers to use

Questions 10-13: Sentence Completion

Complete the sentences below.

Choose NO MORE THAN THREE WORDS from the passage for each answer.

  1. Biotechnology has enabled scientists to develop crop varieties that are resistant to both drought and __.

  2. Farms can convert __ into energy using biogas digesters.

  3. Many governments provide __ and tax incentives to encourage farmers to adopt green technologies.

  4. Small-scale farmers in developing countries often find it difficult to afford the __ required for green agricultural technologies.


PASSAGE 2 – Economic and Environmental Impacts of Agricultural Innovation

Độ khó: Medium (Band 6.0-7.5)

Thời gian đề xuất: 18-20 phút

The paradigm shift toward green agricultural technologies represents more than just an environmental imperative; it constitutes a fundamental restructuring of the economic foundations of global food production. As the world grapples with the twin challenges of feeding a population projected to reach 9.7 billion by 2050 and mitigating climate change, the agricultural sector finds itself at a critical juncture. The adoption trajectory of sustainable farming practices reveals complex interdependencies between economic viability, technological accessibility, and environmental outcomes, with profound implications for both developed and developing nations.

Economic analyses of green technology adoption in agriculture present a nuanced picture that defies simple cost-benefit calculations. While the upfront capital requirements for implementing systems such as precision agriculture platforms, automated irrigation networks, or controlled environment agriculture can be substantial – often ranging from tens of thousands to millions of dollars depending on farm size and technology sophistication – the long-term financial returns frequently justify these investments. Longitudinal studies conducted across diverse agricultural contexts demonstrate that farms employing integrated green technology solutions typically achieve payback periods of three to seven years, after which they enjoy sustained cost savings through reduced input expenses and enhanced productivity.

The concept of “technological leapfrogging” has gained considerable traction in discussions about agricultural development in emerging economies. This phenomenon, whereby regions bypass intermediate stages of technological development to adopt the most advanced solutions directly, is particularly evident in the proliferation of mobile-based agricultural advisory systems and solar-powered infrastructure in sub-Saharan Africa and South Asia. Farmers in these regions, many of whom never had access to traditional agricultural extension services or reliable electricity, are now utilizing smartphone applications that provide real-time weather forecasts, market price information, and crop management advice tailored to their specific conditions. This direct transition to digital agricultural solutions has enabled productivity gains that might have taken decades to achieve through conventional development pathways.

However, the distributional effects of green agricultural innovation remain contentious. Critics argue that the technology-driven transformation of agriculture risks exacerbating existing inequalities between large-scale commercial operations and smallholder farmers who constitute the majority of food producers globally. Large agribusinesses possess the financial resources, technical expertise, and risk tolerance necessary to invest in experimental technologies and absorb potential failures. In contrast, smallholders operating on marginal land with limited access to credit markets face substantial barriers to adoption. This technological divide could potentially consolidate agricultural production in the hands of fewer, larger entities, with socioeconomic consequences extending beyond the farming sector to affect rural employment, land tenure patterns, and food sovereignty.

The environmental calculus of green agricultural technologies extends beyond the immediate metrics of reduced pesticide application or water conservation. Life cycle assessmentscomprehensive analyses that account for environmental impacts from raw material extraction through manufacturing, operation, and eventual disposal – reveal both anticipated benefits and unexpected trade-offs. For instance, while vertical farming systems dramatically reduce agricultural land use and eliminate pesticide requirements, they are energy-intensive operations. The environmental credentials of such systems depend critically on the carbon intensity of the electricity grid powering them; vertical farms operating in regions dependent on coal-fired power generation may actually have a larger carbon footprint than conventional agriculture, whereas those powered by renewable sources deliver substantial net environmental benefits.

Tương tự như cách du lịch sinh thái đang ảnh hưởng đến ngành du lịch truyền thống, việc chuyển đổi sang công nghệ xanh trong nông nghiệp cũng đòi hỏi sự cân bằng tinh tế giữa lợi ích kinh tếtrách nhiệm môi trường.

Regulatory frameworks and policy interventions play a decisive role in shaping the adoption landscape for green agricultural technologies. The European Union’s Common Agricultural Policy (CAP), which allocates substantial subsidies toward environmentally sustainable practices, has catalyzed significant shifts in farming methods across member states. Similarly, China’s ambitious targets for agricultural modernization and pollution reduction have driven massive investments in greenhouse infrastructure and precision agriculture. These top-down initiatives demonstrate how governmental commitment can accelerate technological transitions, though critics note that subsidy-dependent adoption may prove unsustainable if policy priorities shift or fiscal constraints emerge.

The intellectual property dimensions of agricultural innovation present another layer of complexity. Many advanced agricultural technologies are protected by patents and proprietary systems, creating dependency relationships between farmers and technology providers. Seed companies that develop genetically modified varieties often require farmers to purchase new seeds annually rather than saving seeds from their harvest, fundamentally altering traditional agricultural practices and raising concerns about corporate control over food systems. Conversely, open-source agricultural technology movements advocate for freely accessible innovations, arguing that democratizing access to green technologies is essential for achieving widespread adoption and equitable benefits.

Knowledge transfer mechanisms emerge as critical determinants of successful technology implementation. Technical sophistication alone does not guarantee positive outcomes; farmers must possess the skills and understanding necessary to operate, maintain, and optimize these systems. Extension services, farmer training programs, and peer-to-peer learning networks serve as vital conduits for agricultural knowledge. Innovative approaches such as farmer field schools and demonstration farms have proven particularly effective in facilitating adoption by allowing farmers to observe technologies in operation and learn from experienced practitioners before making their own investments.

The intersection of green agricultural technologies with năng lượng xanh cho nông nghiệp bền vững creates synergistic opportunities that transcend individual innovations. Integrated farming systems that combine renewable energy generation, precision management, waste recycling, and diversified production represent holistic approaches to sustainability. These systems not only reduce environmental impacts but also enhance farm resilience by diversifying income streams and reducing external dependencies. As climate variability increases, such adaptive capacity becomes increasingly valuable, potentially reshaping the fundamental economics of agricultural production in vulnerable regions.

Phân tích tác động kinh tế và môi trường của công nghệ xanh trong nông nghiệp hiện đạiPhân tích tác động kinh tế và môi trường của công nghệ xanh trong nông nghiệp hiện đại

Questions 14-26

Questions 14-18: Matching Headings

The passage has nine paragraphs (1-9).

Choose the correct heading for paragraphs 2, 4, 6, 7, and 8 from the list of headings below.

List of Headings:

  • i. The role of government policies in promoting technology adoption
  • ii. Economic considerations of implementing green technologies
  • iii. Concerns about inequality in access to agricultural innovation
  • iv. Environmental assessment complexities of modern farming systems
  • v. The importance of farmer education and skill development
  • vi. Direct adoption of advanced technologies in developing regions
  • vii. Patent issues in agricultural technology development
  • viii. Future predictions for global agriculture
  • ix. The integration of multiple sustainable approaches
  1. Paragraph 2 _____
  2. Paragraph 4 _____
  3. Paragraph 6 _____
  4. Paragraph 7 _____
  5. Paragraph 8 _____

Questions 19-22: Yes/No/Not Given

Do the following statements agree with the views of the writer in the passage?

Write:

  • YES if the statement agrees with the views of the writer
  • NO if the statement contradicts the views of the writer
  • NOT GIVEN if it is impossible to say what the writer thinks about this
  1. The financial benefits of green agricultural technologies always outweigh the initial investment costs.

  2. Technological leapfrogging has enabled some developing regions to achieve rapid productivity improvements.

  3. Vertical farming is environmentally superior to conventional agriculture in all circumstances.

  4. Open-source technology movements believe that making innovations freely available is crucial for equitable adoption.

Questions 23-26: Summary Completion

Complete the summary below.

Choose NO MORE THAN TWO WORDS from the passage for each answer.

The transition to green agriculture involves various economic and social considerations. While large agricultural businesses have sufficient (23) __ and expertise to invest in new technologies, smallholder farmers often face significant challenges. The environmental benefits of technologies like vertical farming depend heavily on the (24) __ of the electricity used to power them. Government policies, such as the EU’s (25) __, have successfully encouraged farmers to adopt sustainable practices. However, concerns exist about (26) __** over agricultural technologies, as many innovations are protected by patents, creating dependencies between farmers and technology companies.


PASSAGE 3 – Systemic Transformations and Future Trajectories in Agricultural Sustainability

Độ khó: Hard (Band 7.0-9.0)

Thời gian đề xuất: 23-25 phút

The confluence of green technological innovation and agricultural practice represents not merely an incremental evolution of farming methodologies but rather a fundamental reconceptualization of humanity’s relationship with food production systems. This transformation operates simultaneously across multiple spatial scales – from the molecular manipulations of plant genetics to the reconfiguration of entire agricultural landscapes – and temporal dimensions, with implications extending from immediate operational efficiencies to multi-generational sustainability. Understanding the full ramifications of this shift requires examining the intricate interplay among technological capabilities, ecological constraints, socioeconomic structures, and evolving consumer preferences within an increasingly interconnected global system.

Contemporary discourse surrounding agricultural sustainability has progressively moved beyond simplistic dichotomies that positioned conventional and organic farming as mutually exclusive paradigms. The emerging consensus among agricultural scientists and policymakers recognizes that optimal approaches must synthesize diverse methodologies, selectively integrating technologies based on context-specific factors including agroecological zones, socioeconomic conditions, market dynamics, and cultural practices. This pragmatic eclecticism acknowledges that no single technological solution possesses universal applicability; rather, sustainable agriculture demands adaptive strategies tailored to particular circumstances while remaining responsive to rapidly evolving environmental and economic conditions.

The concept of “climate-smart agriculture” has gained considerable traction as a unifying framework that simultaneously addresses productivity enhancement, climate change adaptation, and greenhouse gas mitigation. This tripartite objective reflects recognition that agricultural systems must concurrently increase output to meet growing demand, withstand increasingly volatile weather patterns, and reduce their contribution to atmospheric carbon loading. Technologies contributing to these interconnected goals include conservation tillage practices that enhance soil carbon sequestration, alternate wetting and drying irrigation methods that reduce methane emissions from rice paddies, and agroforestry systems that provide diversified outputs while maintaining ecosystem services. The implementation complexity of climate-smart approaches stems from the need to balance potentially competing objectives and navigate trade-offs among different sustainability dimensions.

Precision agriculture, having matured considerably since its nascent stages in the 1990s, now encompasses increasingly sophisticated technologies that leverage artificial intelligence, machine learning algorithms, and autonomous systems. Contemporary precision platforms integrate data from satellite imagery, ground-based sensors, weather stations, and historical yield records to generate prescriptive recommendations with unprecedented granularity. Autonomous tractors equipped with computer vision systems can distinguish between crop plants and weeds with remarkable accuracy, enabling targeted herbicide application that reduces chemical usage by up to 90% compared to broadcast spraying. Meanwhile, predictive analytics can forecast disease outbreaks or pest infestations days or weeks in advance, allowing preventive interventions that minimize both crop losses and pesticide requirements.

The digitalization of agriculture extends beyond on-farm technologies to encompass entire value chains through blockchain-based traceability systems, direct-to-consumer digital marketplaces, and supply chain optimization algorithms. These developments promise enhanced transparency regarding production methods, reduced post-harvest losses through improved logistics, and more equitable value distribution among supply chain participants. However, the data-intensive nature of digital agriculture raises substantive concerns about data ownership, privacy, and the potential for information asymmetries that could disadvantage farmers lacking digital literacy or bargaining power relative to technology providers and agricultural processors.

Một ví dụ chi tiết về sự gia tăng của chế độ ăn thực vật ảnh hưởng đến ngành thực phẩm cho thấy cách consumer preferences đang reshaping không chỉ agricultural production mà còn cả entire food systems.

Gene editing technologies, particularly CRISPR-Cas9 and related techniques, represent a qualitative departure from earlier genetic modification approaches. Unlike transgenic methods that introduce foreign genetic material across species boundaries, gene editing makes precise modifications to organisms’ existing genomes, potentially circumventing some regulatory and public acceptance challenges that have impeded GMO adoption in certain jurisdictions. Applications under development include crops with enhanced nutritional profiles, improved nitrogen use efficiency, and tolerance to abiotic stresses such as salinity, drought, and extreme temperatures. The regulatory landscape for gene-edited organisms remains fragmented globally, with different jurisdictions adopting divergent frameworks ranging from equivalence to conventional breeding (as in the United States and several South American countries) to stringent oversight comparable to transgenic organisms (as in the European Union).

The ecological implications of agricultural intensification, even when employing green technologies, merit careful scrutiny. While precision techniques can reduce per-hectare environmental impacts, they may simultaneously enable further agricultural expansion into marginal lands or ecologically sensitive areas – a phenomenon economists term the “rebound effect” or “Jevons paradox”. Additionally, the emphasis on maximizing productivity of staple crops through technological intervention may inadvertently undermine agricultural biodiversity, as farmers consolidate production around a narrow genetic base of high-performing varieties. Maintaining agrobiodiversity – encompassing not only crop genetic diversity but also the diverse organisms comprising agricultural ecosystems – constitutes a critical buffer against unforeseen challenges including novel pests, diseases, and climate disruptions.

The governance architecture surrounding agricultural innovation involves complex negotiations among multiple stakeholders with potentially conflicting interests: agribusiness corporations seeking returns on research investments, farmers requiring practical and affordable solutions, consumers desiring safe and sustainably produced food, environmental advocates prioritizing ecological integrity, and governments balancing food security imperatives against environmental commitments and trade considerations. Multi-stakeholder initiatives, such as the Global Alliance for Climate-Smart Agriculture and various roundtables on sustainable commodity production, attempt to forge consensus around best practices and certification standards, though their effectiveness remains subject to debate.

Looking forward, the trajectory of green agricultural technology will likely be shaped by several critical uncertainties. The pace and nature of climate change will determine which adaptation technologies prove most valuable and may render currently productive agricultural regions less suitable for traditional crops. Advances in synthetic biology and cellular agriculture could fundamentally disrupt conventional animal agriculture by enabling production of meat, dairy, and other animal products through cell culture rather than livestock rearing, with profound implications for land use and environmental impacts. Meanwhile, evolving social movements emphasizing food sovereignty, agroecology, and traditional knowledge systems challenge technology-centric narratives of agricultural development, advocating for approaches that prioritize farmer autonomy, cultural values, and ecological harmony over narrow productivity metrics.

The ultimate success of green agricultural technologies in fostering genuinely sustainable food systems will depend not merely on continued innovation but on addressing systemic challenges of equitable access, appropriate regulation, institutional support, and alignment with broader societal values. As agriculture confronts the formidable task of feeding a growing, increasingly affluent global population within planetary boundaries, the strategic deployment of green technologies – guided by ecological wisdom, social justice considerations, and long-term thinking – offers perhaps humanity’s most promising pathway toward a food-secure and environmentally sustainable future.

Tương lai của nông nghiệp bền vững với công nghệ xanh và các giải pháp tiên tiến toàn cầuTương lai của nông nghiệp bền vững với công nghệ xanh và các giải pháp tiên tiến toàn cầu

Questions 27-40

Questions 27-31: Matching Features

Match the following technologies (A-G) with the statements below (Questions 27-31).

Write the correct letter, A-G.

Technologies:

  • A. Climate-smart agriculture
  • B. Autonomous tractors with computer vision
  • C. Blockchain-based systems
  • D. CRISPR-Cas9 gene editing
  • E. Conservation tillage
  • F. Alternate wetting and drying irrigation
  • G. Agroforestry systems
  1. Enhances carbon storage in soil _____

  2. Reduces methane emissions from rice cultivation _____

  3. Can distinguish between crops and unwanted plants with high precision _____

  4. Makes precise changes to organisms’ own genetic material _____

  5. Improves transparency throughout production and supply processes _____

Questions 32-36: Multiple Choice

Choose the correct letter, A, B, C, or D.

  1. According to the passage, the current consensus among agricultural experts is that:
  • A. Organic farming is always superior to conventional methods
  • B. Only technological solutions can solve agricultural challenges
  • C. Sustainable approaches should combine different methods based on local conditions
  • D. Traditional farming practices should be completely abandoned
  1. The “rebound effect” in agriculture refers to:
  • A. The recovery of damaged ecosystems
  • B. How efficiency improvements may lead to increased resource use overall
  • C. The return to traditional farming methods
  • D. Increased crop yields from new technologies
  1. Gene editing techniques like CRISPR differ from traditional GMOs because they:
  • A. Are completely safe and unregulated
  • B. Modify existing genes rather than introducing foreign genetic material
  • C. Can only be used on certain types of crops
  • D. Have been rejected by all countries globally
  1. The passage suggests that digital agriculture raises concerns about:
  • A. The complete replacement of human farmers
  • B. Data ownership and potential disadvantages for less digitally literate farmers
  • C. The end of traditional crop varieties
  • D. Increased use of chemical pesticides
  1. What does the passage indicate about agricultural biodiversity?
  • A. It is no longer necessary with modern technology
  • B. It only matters for organic farmers
  • C. It provides important protection against unexpected challenges
  • D. It decreases productivity and should be minimized

Questions 37-40: Short-answer Questions

Answer the questions below.

Choose NO MORE THAN THREE WORDS from the passage for each answer.

  1. What type of agriculture could potentially replace conventional livestock farming through cell culture technology?

  2. According to the passage, what three objectives does climate-smart agriculture aim to achieve simultaneously?

  3. What economic term describes the paradox where efficiency improvements lead to increased overall consumption?

  4. What do social movements advocating for food sovereignty prioritize over productivity measures?


3. Answer Keys – Đáp Án

PASSAGE 1: Questions 1-13

  1. TRUE
  2. FALSE
  3. FALSE
  4. FALSE
  5. TRUE
  6. B
  7. B
  8. C
  9. C
  10. pests/pest-resistant/common pests
  11. animal waste
  12. subsidies
  13. initial investment costs

PASSAGE 2: Questions 14-26

  1. ii
  2. iii
  3. i
  4. vii
  5. v
  6. NOT GIVEN
  7. YES
  8. NO
  9. YES
  10. financial resources
  11. carbon intensity
  12. Common Agricultural Policy/CAP
  13. corporate control

PASSAGE 3: Questions 27-40

  1. E
  2. F
  3. B
  4. D
  5. C
  6. C
  7. B
  8. B
  9. B
  10. C
  11. cellular agriculture
  12. productivity enhancement, adaptation, mitigation
  13. Jevons paradox
  14. farmer autonomy/cultural values/ecological harmony

4. Giải Thích Đáp Án Chi Tiết

Passage 1 – Giải Thích

Câu 1: TRUE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: precision farming, reduce fertilizer, one-third, crop yields
  • Vị trí trong bài: Đoạn 2, dòng 4-6
  • Giải thích: Bài đọc nói rõ “Studies have shown that precision farming can reduce fertilizer use by up to 30%” và “maintaining or even increasing crop yields”. 30% tương đương với approximately one-third (khoảng một phần ba), và thông tin về việc duy trì hoặc tăng năng suất khớp với “keeping crop yields stable or higher”. Đây là paraphrase chính xác.

Câu 2: FALSE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: solar irrigation, more expensive, diesel pumps
  • Vị trí trong bài: Đoạn 3, dòng 2-3
  • Giải thích: Đoạn văn nói “Traditional irrigation methods often rely on diesel pumps, which are expensive to operate” và “Solar irrigation systems…are both cost-effective and environmentally friendly”. Thông tin này mâu thuẫn với câu hỏi vì solar irrigation được mô tả là cost-effective (tiết kiệm chi phí), không phải expensive to operate.

Câu 3: FALSE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: vertical farms, same amount of water, conventional farming
  • Vị trí trong bài: Đoạn 4, dòng 8-9
  • Giải thích: Bài đọc nêu rõ “vertical farming uses up to 95% less water than traditional agriculture”. Điều này hoàn toàn trái ngược với “require the same amount of water”.

Câu 6: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: precision farming allows farmers
  • Vị trí trong bài: Đoạn 2, dòng 2-4
  • Giải thích: “Farmers can now monitor soil conditions…allowing them to apply water, fertilizers, and pesticides only where and when needed.” Đây là paraphrase của đáp án B “Monitor soil and apply resources only where necessary”. Các đáp án khác không chính xác: A quá tuyệt đối (eliminate ALL), C sai về con số cụ thể, D không được đề cập.

Câu 10: pests/pest-resistant/common pests

  • Dạng câu hỏi: Sentence Completion
  • Từ khóa: crop varieties, resistant, drought
  • Vị trí trong bài: Đoạn 5, dòng 1-2
  • Giải thích: “drought-resistant and pest-resistant crop varieties” hoặc “naturally resist common pests and diseases”. Câu hỏi yêu cầu NO MORE THAN THREE WORDS nên có thể viết “pests”, “pest-resistant” hoặc “common pests” đều đúng.

Câu 13: initial investment costs

  • Dạng câu hỏi: Sentence Completion
  • Từ khóa: small-scale farmers, developing countries, difficult to afford
  • Vị trí trong bài: Đoạn 9, dòng 2-3
  • Giải thích: “The initial investment costs for technologies…can be prohibitively high for small-scale farmers, particularly in developing countries.” Đây là paraphrase trực tiếp của câu hỏi.

Passage 2 – Giải Thích

Câu 14: ii (Paragraph 2)

  • Dạng câu hỏi: Matching Headings
  • Từ khóa chính của đoạn: economic analyses, upfront capital, long-term financial returns, cost savings
  • Giải thích: Đoạn 2 tập trung phân tích chi tiết các khía cạnh kinh tế của việc áp dụng công nghệ xanh, từ chi phí ban đầu đến lợi nhuận dài hạn và thời gian hoàn vốn. Heading ii “Economic considerations of implementing green technologies” khớp hoàn hảo.

Câu 15: iii (Paragraph 4)

  • Dạng câu hỏi: Matching Headings
  • Từ khóa chính của đoạn: distributional effects, inequalities, large-scale commercial operations, smallholder farmers, technological divide
  • Giải thích: Toàn bộ đoạn 4 thảo luận về sự bất bình đẳng trong việc tiếp cận công nghệ giữa các tập đoàn lớn và nông dân nhỏ. Heading iii “Concerns about inequality in access to agricultural innovation” phản ánh chính xác nội dung này.

Câu 19: NOT GIVEN

  • Dạng câu hỏi: Yes/No/Not Given
  • Từ khóa: financial benefits, always outweigh, initial investment
  • Vị trí liên quan: Đoạn 2
  • Giải thích: Bài đọc nói “long-term financial returns frequently justify these investments” và “typically achieve payback periods of three to seven years”, nhưng không khẳng định rằng lợi ích ALWAYS (luôn luôn) vượt trội hơn chi phí. Từ “frequently” và “typically” cho thấy đây không phải là quy luật tuyệt đối.

Câu 20: YES

  • Dạng câu hỏi: Yes/No/Not Given
  • Từ khóa: technological leapfrogging, developing regions, rapid productivity improvements
  • Vị trí trong bài: Đoạn 3, câu cuối
  • Giải thích: “This direct transition to digital agricultural solutions has enabled productivity gains that might have taken decades to achieve through conventional development pathways” – rõ ràng đồng ý với quan điểm về rapid productivity improvements.

Câu 23: financial resources

  • Dạng câu hỏi: Summary Completion
  • Từ khóa: large agricultural businesses, expertise, invest
  • Vị trí trong bài: Đoạn 4, dòng 3-4
  • Giải thích: “Large agribusinesses possess the financial resources, technical expertise, and risk tolerance necessary to invest in experimental technologies.”

Câu 24: carbon intensity

  • Dạng câu hỏi: Summary Completion
  • Từ khóa: environmental benefits, vertical farming, electricity
  • Vị trí trong bài: Đoạn 5, dòng 5-6
  • Giải thích: “The environmental credentials of such systems depend critically on the carbon intensity of the electricity grid powering them.”

Passage 3 – Giải Thích

Câu 27: E (Conservation tillage)

  • Dạng câu hỏi: Matching Features
  • Từ khóa: enhances carbon storage, soil
  • Vị trí trong bài: Đoạn 3, dòng 4-5
  • Giải thích: “conservation tillage practices that enhance soil carbon sequestration” – sequestration có nghĩa là storage (lưu trữ).

Câu 32: C

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: current consensus, agricultural experts
  • Vị trí trong bài: Đoạn 2, dòng 2-5
  • Giải thích: “The emerging consensus…recognizes that optimal approaches must synthesize diverse methodologies, selectively integrating technologies based on context-specific factors” – đây chính xác là đáp án C “combine different methods based on local conditions”. Các đáp án khác quá tuyệt đối hoặc không được đề cập.

Câu 33: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: rebound effect
  • Vị trí trong bài: Đoạn 7, dòng 2-4
  • Giải thích: “While precision techniques can reduce per-hectare environmental impacts, they may simultaneously enable further agricultural expansion into marginal lands” – đây là hiện tượng efficiency improvements dẫn đến increased overall resource use, chính là đáp án B.

Câu 37: cellular agriculture

  • Dạng câu hỏi: Short-answer Questions
  • Từ khóa: replace conventional livestock, cell culture
  • Vị trí trong bài: Đoạn 9, dòng 3-5
  • Giải thích: “Advances in synthetic biology and cellular agriculture could fundamentally disrupt conventional animal agriculture by enabling production of meat, dairy, and other animal products through cell culture.”

Câu 38: productivity enhancement, adaptation, mitigation

  • Dạng câu hỏi: Short-answer Questions
  • Từ khóa: climate-smart agriculture, three objectives, simultaneously
  • Vị trí trong bài: Đoạn 3, dòng 2-3
  • Giải thích: “This tripartite objective reflects recognition that agricultural systems must concurrently increase output (productivity enhancement), withstand increasingly volatile weather patterns (adaptation), and reduce their contribution to atmospheric carbon loading (mitigation).”

5. Từ Vựng Quan Trọng Theo Passage

Passage 1 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
tremendous adj /trɪˈmendəs/ to lớn, khổng lồ tremendous changes tremendous impact, tremendous growth
precision farming noun phrase /prɪˈsɪʒən ˈfɑːmɪŋ/ nông nghiệp chính xác precision farming uses advanced sensors precision agriculture, precision technology
soil degradation noun phrase /sɔɪl ˌdeɡrəˈdeɪʃən/ suy thoái đất addressing soil degradation prevent soil degradation, combat soil degradation
greenhouse gas noun phrase /ˈɡriːnhaʊs ɡæs/ khí nhà kính reduce greenhouse gas emissions greenhouse gas emissions, greenhouse effect
groundbreaking adj /ˈɡraʊndbreɪkɪŋ/ mang tính đột phá groundbreaking innovation groundbreaking research, groundbreaking technology
carbon emissions noun phrase /ˈkɑːbən ɪˈmɪʃənz/ khí thải carbon contribute to carbon emissions reduce carbon emissions, carbon footprint
cost-effective adj /ˌkɒst ɪˈfektɪv/ tiết kiệm chi phí cost-effective and environmentally friendly cost-effective solution, cost-effective method
vertical farming noun phrase /ˈvɜːtɪkəl ˈfɑːmɪŋ/ nông nghiệp thẳng đứng vertical farming is emerging vertical farm, vertical agriculture
hydroponic systems noun phrase /ˌhaɪdrəˈpɒnɪk ˈsɪstəmz/ hệ thống thủy canh using hydroponic systems hydroponic cultivation, hydroponic growing
drought-resistant adj /draʊt rɪˈzɪstənt/ chống chịu hạn hán drought-resistant crop varieties drought-resistant plants, drought tolerance
genetic modification noun phrase /dʒəˈnetɪk ˌmɒdɪfɪˈkeɪʃən/ biến đổi gen through genetic modification genetic engineering, genetically modified
food security noun phrase /fuːd sɪˈkjʊərəti/ an ninh lương thực ensuring food security global food security, food security crisis

Passage 2 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
paradigm shift noun phrase /ˈpærədaɪm ʃɪft/ sự thay đổi mô hình tư duy represents a paradigm shift paradigm change, shift in paradigm
fundamental restructuring noun phrase /ˌfʌndəˈmentəl ˌriːˈstrʌktʃərɪŋ/ tái cấu trúc cơ bản fundamental restructuring of foundations fundamental change, structural reform
mitigating verb /ˈmɪtɪɡeɪtɪŋ/ giảm thiểu mitigating climate change mitigate risks, mitigate effects
adoption trajectory noun phrase /əˈdɒpʃən trəˈdʒektəri/ quỹ đạo áp dụng adoption trajectory of practices technology adoption, adoption rate
upfront capital noun phrase /ˌʌpˈfrʌnt ˈkæpɪtəl/ vốn ban đầu upfront capital requirements upfront costs, upfront investment
longitudinal studies noun phrase /ˌlɒndʒɪˈtjuːdɪnəl ˈstʌdiz/ nghiên cứu dọc longitudinal studies demonstrate longitudinal research, longitudinal data
technological leapfrogging noun phrase /ˌteknəˈlɒdʒɪkəl ˈliːpfrɒɡɪŋ/ nhảy vọt công nghệ concept of technological leapfrogging leapfrog technology, leapfrog development
distributional effects noun phrase /ˌdɪstrɪˈbjuːʃənəl ɪˈfekts/ tác động phân phối distributional effects remain contentious distribution of benefits, distributional impact
smallholder farmers noun phrase /ˈsmɔːlhəʊldə ˈfɑːməz/ nông dân nhỏ smallholder farmers face barriers small-scale farmers, smallholder agriculture
life cycle assessments noun phrase /laɪf ˈsaɪkəl əˈsesmənt/ đánh giá vòng đời life cycle assessments reveal life cycle analysis, environmental assessment
carbon footprint noun phrase /ˈkɑːbən ˈfʊtprɪnt/ dấu chân carbon larger carbon footprint reduce carbon footprint, environmental footprint
intellectual property noun phrase /ˌɪntəˈlektʃuəl ˈprɒpəti/ sở hữu trí tuệ intellectual property dimensions intellectual property rights, IP protection
open-source adj /ˈəʊpən sɔːs/ mã nguồn mở open-source agricultural technology open-source software, open-source movement
synergistic opportunities noun phrase /ˌsɪnəˈdʒɪstɪk ˌɒpəˈtjuːnətiz/ cơ hội tương hỗ creates synergistic opportunities synergy effects, synergistic benefits
adaptive capacity noun phrase /əˈdæptɪv kəˈpæsəti/ năng lực thích ứng enhance adaptive capacity adaptation capacity, resilience capacity

Passage 3 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
confluence noun /ˈkɒnfluəns/ sự hội tụ confluence of innovation confluence of factors, confluence of ideas
reconceptualization noun /ˌriːkənˌseptʃuəlaɪˈzeɪʃən/ tái khái niệm hóa fundamental reconceptualization reconceptualize approach, conceptual framework
ramifications noun /ˌræmɪfɪˈkeɪʃənz/ hệ quả, sự phân nhánh full ramifications of shift far-reaching ramifications, serious ramifications
intricate interplay noun phrase /ˈɪntrɪkət ˈɪntəpleɪ/ sự tương tác phức tạp intricate interplay among factors complex interplay, dynamic interplay
dichotomies noun /daɪˈkɒtəmiz/ sự phân đôi simplistic dichotomies false dichotomy, binary opposition
pragmatic eclecticism noun phrase /præɡˈmætɪk ɪˈklektɪsɪzəm/ chủ nghĩa chiết trung thực dụng pragmatic eclecticism acknowledges eclectic approach, pragmatic solution
climate-smart agriculture noun phrase /ˈklaɪmət smɑːt ˈæɡrɪkʌltʃə/ nông nghiệp thông minh khí hậu concept of climate-smart agriculture climate-smart practices, climate adaptation
tripartite objective noun phrase /traɪˈpɑːtaɪt əbˈdʒektɪv/ mục tiêu ba bên tripartite objective reflects three-pronged approach, triple aim
carbon sequestration noun phrase /ˈkɑːbən ˌsiːkwəˈstreɪʃən/ cô lập carbon enhance carbon sequestration carbon capture, carbon storage
agroforestry noun /ˈæɡrəʊˌfɒrɪstri/ nông lâm kết hợp agroforestry systems provide agroforestry practices, agroforestry integration
prescriptive recommendations noun phrase /prɪˈskrɪptɪv ˌrekəmenˈdeɪʃənz/ khuyến nghị mang tính quy định generate prescriptive recommendations prescriptive analytics, prescriptive advice
blockchain-based adj /ˈblɒktʃeɪn beɪst/ dựa trên chuỗi khối blockchain-based traceability blockchain technology, blockchain system
CRISPR-Cas9 noun /ˈkrɪspə kæs naɪn/ công nghệ chỉnh sửa gen CRISPR-Cas9 gene editing CRISPR technology, gene editing tools
transgenic methods noun phrase /trænzˈdʒenɪk ˈmeθədz/ phương pháp chuyển gen unlike transgenic methods transgenic organisms, genetic engineering
rebound effect noun phrase /rɪˈbaʊnd ɪˈfekt/ hiệu ứng phản hồi economists term the rebound effect Jevons paradox, efficiency paradox
agrobiodiversity noun /ˌæɡrəʊˌbaɪəʊdaɪˈvɜːsəti/ đa dạng sinh học nông nghiệp maintaining agrobiodiversity agricultural biodiversity, genetic diversity
multi-stakeholder initiatives noun phrase /ˌmʌlti ˈsteɪkhəʊldə ɪˈnɪʃətɪvz/ sáng kiến đa bên liên quan multi-stakeholder initiatives attempt stakeholder engagement, collaborative initiatives
food sovereignty noun phrase /fuːd ˈsɒvrənti/ chủ quyền lương thực emphasizing food sovereignty food independence, food autonomy

Kết Bài

Chủ đề “How green technologies are influencing global agriculture” không chỉ phản ánh một xu hướng quan trọng trong thực tế mà còn là dạng đề tài xuất hiện thường xuyên trong IELTS Reading, đặc biệt ở Passage 2 và Passage 3. Qua bài tập này, bạn đã được luyện tập với ba passages tăng dần độ khó từ Easy (Band 5.0-6.5) qua Medium (Band 6.0-7.5) đến Hard (Band 7.0-9.0), giúp bạn làm quen với cách thức mà đề thi IELTS thực tế được thiết kế.

Bộ đề thi mẫu này bao gồm đầy đủ 40 câu hỏi với 7 dạng bài khác nhau, từ True/False/Not Given, Multiple Choice, Matching Headings đến Summary Completion và Short-answer Questions. Mỗi dạng câu hỏi đòi hỏi kỹ năng đọc hiểu và chiến lược làm bài riêng biệt, vì vậy việc luyện tập đa dạng như thế này sẽ giúp bạn tự tin hơn khi bước vào phòng thi thực tế.

Phần đáp án chi tiết kèm giải thích về vị trí thông tin và kỹ thuật paraphrase sẽ giúp bạn hiểu rõ cách xác định đáp án đúng, đồng thời học được cách IELTS “chơi chữ” với các từ đồng nghĩa và cấu trúc câu khác nhau. Hãy dành thời gian xem lại từng câu giải thích, đặc biệt là những câu bạn làm sai hoặc không chắc chắn.

Cuối cùng, phần từ vựng được phân loại theo từng passage không chỉ giúp bạn mở rộng vốn từ về chủ đề nông nghiệp bền vững và công nghệ xanh mà còn cung cấp collocations hữu ích cho cả phần Writing và Speaking. Hãy ghi chú lại những từ mới và ôn tập thường xuyên để chúng trở thành một phần trong vốn từ vựng tích cực của bạn. Chúc bạn học tập hiệu quả và đạt band điểm cao trong kỳ thi IELTS sắp tới!

Previous Article

Thay Đổi Đại Từ Trong Câu Tường Thuật IELTS - Công Thức & Ví Dụ Band 8.0

Next Article

IELTS Speaking: Cách Trả Lời "Describe a Time When You Had to Lead a Group Project" - Bài Mẫu Band 6-9

View Comments (2)

Leave a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Đăng ký nhận thông tin bài mẫu

Để lại địa chỉ email của bạn, chúng tôi sẽ thông báo tới bạn khi có bài mẫu mới được biên tập và xuất bản thành công.
Chúng tôi cam kết không spam email ✨