Mở bài
Biến đổi khí hậu không chỉ ảnh hưởng đến môi trường mà còn tác động nghiêm trọng đến sức khỏe con người, đặc biệt là sự lây lan của các bệnh truyền nhiễm. Chủ đề “Impact Of Climate Change On Disease Spread” thường xuyên xuất hiện trong IELTS Reading với tần suất cao, phản ánh tính cấp thiết của vấn đề toàn cầu này.
Bài viết này cung cấp một đề thi IELTS Reading hoàn chỉnh với 3 passages được thiết kế theo đúng chuẩn Cambridge, giúp bạn:
- Làm quen với đề thi đầy đủ 3 passages từ Easy đến Hard
- Luyện tập 40 câu hỏi đa dạng giống thi thật 100%
- Nắm vững đáp án chi tiết kèm giải thích cụ thể
- Học từ vựng chuyên ngành và kỹ thuật làm bài hiệu quả
Đề thi phù hợp cho học viên từ band 5.0 trở lên, đặc biệt hữu ích cho những ai muốn cải thiện kỹ năng đọc hiểu và đạt band điểm cao trong kỳ thi IELTS. Hãy phân bổ đúng thời gian và làm bài nghiêm túc như thi thật để đánh giá chính xác trình độ của mình.
Hướng dẫn làm bài IELTS Reading
Tổng Quan Về IELTS Reading Test
IELTS Reading Test là phần thi quan trọng đánh giá khả năng đọc hiểu tiếng Anh học thuật của bạn. Hiểu rõ cấu trúc sẽ giúp bạn phân bổ thời gian hợp lý và tối ưu điểm số.
Cấu trúc bài thi:
- Thời gian: 60 phút cho 3 passages (không có thời gian chuyển đáp án)
- Tổng số câu hỏi: 40 câu
- Phân bổ thời gian khuyến nghị:
- Passage 1: 15-17 phút (độ khó dễ)
- Passage 2: 18-20 phút (độ khó trung bình)
- Passage 3: 23-25 phút (độ khó cao)
Lưu ý quan trọng:
- Viết đáp án ngay lên Answer Sheet, không có thời gian phụ
- Mỗi câu đúng được 1 điểm, không trừ điểm câu sai
- Chú ý chính tả và giới hạn số từ trong đáp án
- Đọc kỹ instructions để tránh mất điểm oan
Các Dạng Câu Hỏi Trong Đề Này
Đề thi mẫu này bao gồm các dạng câu hỏi phổ biến nhất trong IELTS Reading:
- Multiple Choice – Chọn đáp án đúng từ các phương án cho sẵn
- True/False/Not Given – Xác định thông tin đúng, sai hay không được đề cập
- Matching Information – Nối thông tin với đoạn văn tương ứng
- Sentence Completion – Hoàn thành câu với từ trong bài
- Yes/No/Not Given – Xác định ý kiến của tác giả
- Matching Headings – Nối tiêu đề với đoạn văn
- Summary Completion – Điền từ vào đoạn tóm tắt
- Short-answer Questions – Trả lời câu hỏi ngắn
IELTS Reading Practice Test
PASSAGE 1 – Climate Change and Mosquito-Borne Diseases
Độ khó: Easy (Band 5.0-6.5)
Thời gian đề xuất: 15-17 phút
The relationship between climate change and the spread of mosquito-borne diseases has become increasingly evident over the past few decades. As global temperatures rise and weather patterns shift, mosquitoes – one of the deadliest creatures on Earth – are expanding their geographical range into previously inhospitable regions. This phenomenon poses significant challenges for public health systems worldwide, particularly in areas that have never had to deal with these diseases before.
Mosquitoes are highly sensitive to environmental conditions, especially temperature and humidity. Most mosquito species require warm temperatures to survive and reproduce. The Aedes aegypti mosquito, which transmits dengue fever, yellow fever, and Zika virus, thrives in temperatures between 20°C and 30°C. When temperatures fall below this range, mosquito development slows dramatically, and their ability to transmit diseases decreases. However, as global temperatures continue to rise, these optimal conditions are becoming more common in regions where they were once rare.
Scientists have observed that warming temperatures are allowing mosquitoes to survive at higher altitudes and latitudes. Mountain communities in East Africa, South America, and Southeast Asia that were once too cool for mosquitoes are now experiencing outbreaks of malaria and dengue fever. For example, in the Colombian Andes, malaria cases have been reported at altitudes exceeding 2,000 meters – areas where the disease was previously unknown. Similarly, European countries such as France, Spain, and Italy have recorded their first locally transmitted cases of dengue fever in recent years.
Biến đổi khí hậu làm tăng vùng phân bố của muỗi truyền bệnh trên toàn cầu
The warming climate also extends the transmission season for mosquito-borne diseases. In temperate regions, mosquitoes traditionally appear only during warm summer months. However, milder winters and earlier springs mean that mosquitoes are active for longer periods each year. This extended season provides more opportunities for disease transmission. Research from the United States shows that the mosquito season has lengthened by an average of three weeks over the past 30 years in many states.
Rainfall patterns, another consequence of climate change, significantly affect mosquito populations. Mosquitoes lay their eggs in standing water, and increased rainfall creates more breeding sites. However, the relationship is complex. While moderate rainfall boosts mosquito numbers, extreme weather events such as floods and droughts can have mixed effects. Heavy floods may wash away breeding sites temporarily, but they also create new pools of standing water once the water recedes. Conversely, droughts force people to store water in containers, inadvertently creating ideal breeding grounds close to human populations.
The impact of climate change on disease spread extends beyond mosquitoes’ geographical expansion. Warmer temperatures also accelerate the life cycle of both mosquitoes and the pathogens they carry. At higher temperatures, mosquitoes develop from eggs to adults more quickly, bite more frequently, and the viruses they carry replicate faster inside their bodies. This means that disease transmission becomes more efficient. A mosquito that might take 12 days to become infectious at 20°C could become infectious in just 7 days at 28°C.
Public health authorities face mounting challenges in responding to these changes. Traditional disease control methods, such as insecticide spraying and the elimination of breeding sites, must now be implemented in new regions with limited experience in vector control. Healthcare systems in areas experiencing diseases for the first time often lack the necessary diagnostic tools, treatment facilities, and trained personnel. Moreover, local populations may not recognize early symptoms or understand prevention measures, leading to delayed treatment and further spread.
Education campaigns have become crucial in helping communities adapt to these new health threats. Teaching people to eliminate standing water around their homes, use mosquito nets, and recognize disease symptoms can significantly reduce transmission rates. In regions where dengue fever is newly emerging, such programs have proven essential in preventing large-scale outbreaks.
The situation is particularly concerning for vulnerable populations. Young children, elderly people, and those with weakened immune systems are at highest risk of severe complications from mosquito-borne diseases. In developing countries, where access to healthcare is already limited, the additional burden of new diseases can overwhelm medical facilities. Economic impacts are also substantial, as illness affects workforce productivity and requires increased healthcare spending.
Looking forward, scientists predict that without significant action to reduce greenhouse gas emissions, the problem will worsen. Climate models suggest that by 2050, an additional 1 billion people could be at risk of mosquito-borne diseases. This projection has prompted calls for integrated approaches that combine climate change mitigation, improved disease surveillance, and strengthened healthcare infrastructure.
Questions 1-13
Questions 1-5: Multiple Choice
Choose the correct letter, A, B, C or D.
1. According to the passage, the Aedes aegypti mosquito transmits all of the following diseases EXCEPT:
A. dengue fever
B. malaria
C. yellow fever
D. Zika virus
2. In the Colombian Andes, malaria cases have been reported at altitudes:
A. below 1,000 meters
B. between 1,000 and 1,500 meters
C. over 2,000 meters
D. at sea level only
3. The mosquito season in many US states has become longer by approximately:
A. one week
B. two weeks
C. three weeks
D. one month
4. At higher temperatures, a mosquito might become infectious in:
A. 12 days
B. 10 days
C. 9 days
D. 7 days
5. Climate models suggest that by 2050, the additional number of people at risk will be:
A. 500 million
B. 1 billion
C. 2 billion
D. 3 billion
Questions 6-9: True/False/Not Given
Do the following statements agree with the information in the passage?
Write:
- TRUE if the statement agrees with the information
- FALSE if the statement contradicts the information
- NOT GIVEN if there is no information on this
6. Mosquitoes can only survive in tropical climates.
7. European countries have experienced their first cases of locally transmitted dengue fever in recent years.
8. Heavy floods always reduce mosquito populations permanently.
9. Wealthy countries are better prepared to handle new mosquito-borne diseases than developing countries.
Questions 10-13: Sentence Completion
Complete the sentences below.
Choose NO MORE THAN TWO WORDS from the passage for each answer.
10. Mosquitoes lay their eggs in __.
11. Disease control methods include insecticide spraying and the elimination of __.
12. Education campaigns teach people to use __ as protection against mosquitoes.
13. Scientists are calling for integrated approaches that include climate change mitigation and improved __.
PASSAGE 2 – Tick-Borne Diseases in a Warming World
Độ khó: Medium (Band 6.0-7.5)
Thời gian đề xuất: 18-20 phút
While mosquitoes receive considerable attention in discussions about climate change and disease, another vector-borne threat is quietly expanding across the globe: tick-borne illnesses. These arachnids, which include various species responsible for transmitting Lyme disease, tick-borne encephalitis (TBE), and several other serious infections, are experiencing dramatic changes in their distribution and seasonal activity patterns as the planet warms. The implications for human health are profound, yet public awareness remains relatively limited compared to other climate-related health risks.
Ticks differ fundamentally from mosquitoes in their biology and behavior, which means climate change affects them through distinct mechanisms. Unlike mosquitoes, which have aquatic larval stages, ticks spend their entire life cycle on land, making them particularly sensitive to changes in temperature, humidity, and vegetation patterns. The Ixodes ricinus tick, the primary vector for Lyme disease in Europe, requires relatively high humidity levels – typically above 80% – to survive in the environment. As climate patterns shift, areas that previously lacked sufficient humidity are becoming more suitable for tick populations.
Lyme disease, caused by the bacterium Borrelia burgdorferi, has shown one of the most dramatic expansions of any infectious disease in recent decades. In North America, the number of reported cases has more than tripled since the 1990s, with the disease now endemic in areas that were previously unaffected. Canadian provinces that rarely reported Lyme disease 20 years ago now record hundreds of cases annually. Epidemiological studies attribute much of this expansion to climate change, which has extended the geographical range of the blacklegged tick (Ixodes scapularis) northward and to higher elevations.
Sự mở rộng vùng dịch bệnh Lyme do biến đổi khí hậu tại Bắc Mỹ và châu Âu
The relationship between temperature and tick development is complex but well-documented. Warmer temperatures accelerate tick development through all life stages – from larva to nymph to adult – and increase their reproductive success. However, extreme heat can be detrimental, causing desiccation and death. This creates a nuanced picture where moderate warming in cooler regions facilitates tick expansion, while excessive heat in already warm areas might limit populations. Research from Scandinavia demonstrates this principle clearly: regions that were historically too cold for established tick populations are now reporting sustained tick activity, with corresponding increases in TBE cases.
Seasonal shifts represent another significant dimension of climate change’s impact on tick-borne diseases. In temperate zones, ticks traditionally become active in spring and remain so until autumn. However, milder winters with less snow cover are allowing ticks to survive in greater numbers and emerge earlier in the year. Some studies have documented tick activity occurring in winter months when temperatures briefly rise above freezing. This extended activity season increases the window during which humans can encounter ticks, thereby elevating disease transmission risk.
The role of host animals adds further complexity to the climate-disease relationship. Ticks require blood meals from various hosts – typically small mammals, birds, and deer – to complete their life cycle. Climate change affects these host populations through multiple pathways, including altered food availability, habitat shifts, and changes in predator-prey dynamics. For instance, white-tailed deer populations in North America have expanded their range northward, following changes in snow depth and vegetation patterns. As key reproductive hosts for adult blacklegged ticks, deer movement facilitates tick expansion into new territories.
Ecological changes triggered by climate warming create feedback loops that amplify disease risk. Consider the relationship between ticks, mice, and acorn production in northeastern North America. Oak trees produce more acorns during warm years, leading to population booms in white-footed mice – the primary reservoir host for Lyme disease bacteria. Higher mouse densities mean more infected ticks, increasing human exposure risk two years later when the nymphal ticks that fed on infected mice emerge and seek new hosts. Climate scientists have developed predictive models that use mast seeding patterns to forecast Lyme disease risk years in advance.
Land use changes, often interacting with climate factors, further influence tick-borne disease patterns. Reforestation in parts of Europe and suburban development in North America have created fragmented landscapes that bring humans into closer contact with tick habitats. Climate change affects vegetation growth and composition, potentially creating more favorable conditions for both ticks and their hosts in periurban environments. The concept of dilution effect – where high biodiversity reduces disease transmission – becomes relevant here, as simplified ecosystems with fewer host species can actually increase infection rates in ticks.
Public health responses to expanding tick-borne diseases face distinct challenges compared to mosquito control. Unlike mosquitoes, ticks cannot be effectively controlled through widespread insecticide application in natural environments due to ecological concerns and practical limitations. Instead, interventions focus on personal protective measures – wearing appropriate clothing, using repellents containing DEET or permethrin, and conducting thorough tick checks after outdoor activities. Public education campaigns must reach diverse audiences, from hikers and campers to gardeners and outdoor workers.
Surveillance systems for tick-borne diseases have evolved considerably, incorporating citizen science initiatives where the public submits ticks for identification and pathogen testing. These programs, operating in countries including the Netherlands, the United States, and Australia, generate valuable data on tick distribution and infection rates while raising public awareness. Advanced geospatial modeling techniques now integrate climate data, land cover information, and disease reports to create risk maps that inform public health planning and guide targeted interventions.
Vaccine development represents a critical but challenging frontier. While an effective vaccine for TBE exists and is widely used in endemic European regions, Lyme disease vaccine development has proven more difficult. A vaccine was briefly available in the United States in the 1990s but was withdrawn due to poor uptake and liability concerns. Current research efforts focus on developing new vaccines that target multiple bacterial strains and potentially prevent infection by targeting tick proteins rather than the pathogen itself.
The intersection of climate change and tick-borne diseases exemplifies the complex, interconnected nature of environmental health threats. Addressing this challenge requires multidisciplinary collaboration among climate scientists, ecologists, epidemiologists, and public health professionals. As temperatures continue to rise and ecosystems transform, understanding and responding to these emerging patterns will become increasingly critical for protecting human health in a changing world.
Questions 14-26
Questions 14-18: Yes/No/Not Given
Do the following statements agree with the views of the writer in the passage?
Write:
- YES if the statement agrees with the views of the writer
- NO if the statement contradicts the views of the writer
- NOT GIVEN if it is impossible to say what the writer thinks about this
14. Public awareness of tick-borne diseases is lower than awareness of mosquito-borne diseases.
15. All species of ticks require aquatic environments to complete their life cycle.
16. The expansion of Lyme disease is entirely due to climate change.
17. Extreme heat conditions benefit tick populations in all regions.
18. Personal protective measures are more effective against ticks than widespread insecticide use.
Questions 19-23: Matching Information
Which paragraph contains the following information?
Write the correct letter, A-L.
NB: You may use any letter more than once.
19. An explanation of how acorn production affects Lyme disease risk
20. Information about the withdrawal of a Lyme disease vaccine
21. A comparison between tick and mosquito biology
22. Details about citizen science programs for tick surveillance
23. Statistics showing the increase in Lyme disease cases
Questions 24-26: Summary Completion
Complete the summary below.
Choose NO MORE THAN TWO WORDS from the passage for each answer.
Ticks require specific environmental conditions to survive, particularly high levels of (24)__. Climate change has enabled ticks to expand into new geographical areas, with Canadian provinces now reporting hundreds of cases where the disease was rare previously. The relationship between temperature and tick development shows that (25)__ warming in cooler regions helps tick expansion, while excessive heat can cause death through desiccation. The role of (26)__ animals, such as white-tailed deer and mice, is crucial in tick life cycles and disease transmission patterns.
PASSAGE 3 – Anthropogenic Climate Change and Zoonotic Disease Emergence: A Multifaceted Paradigm
Độ khó: Hard (Band 7.0-9.0)
Thời gian đề xuất: 23-25 phút
The nexus between anthropogenic climate change and the emergence of zoonotic diseases represents one of the most formidable challenges confronting global health security in the twenty-first century. While much discourse has centered on the direct effects of rising temperatures on vector distributions and pathogen replication rates, a more comprehensive analysis reveals a labyrinthine network of interconnected ecological, evolutionary, and socioeconomic processes through which climatic perturbations facilitate disease spillover events and subsequent transmission to human populations. Understanding these multifarious pathways requires synthesis across disciplines and recognition that climate change operates not as an isolated variable but as a systemic disruptor of the delicate equilibria that have historically constrained pathogen-host interactions.
Zoonotic pathogens – those capable of transmission between animals and humans – account for approximately 60% of known infectious diseases and 75% of emerging infectious diseases. The processes governing zoonotic spillover are inherently complex, involving intricate ecological interfaces where pathogen, reservoir host, potential vector, and human populations intersect. Climate change fundamentally restructures these interfaces through multiple mechanisms. Habitat degradation and fragmentation, often exacerbated by climatic stressors such as prolonged droughts or altered precipitation regimes, force wildlife into closer proximity with human settlements, increasing contact rates and spillover probability. The compression of biodiversity into shrinking suitable habitats creates what epidemiologists term “spillover hotspots” – geographical crucibles where heightened interspecies interactions catalyze pathogen exchange.
The phenomenon of range shifts in reservoir species populations exemplifies climate change’s role in reconfiguring disease landscapes. As isotherms migrate poleward at an average rate of approximately 5.6 kilometers per year, animal species are compelled to track suitable climatic conditions, resulting in novel species assemblages and unprecedented ecological encounters. These reassortments of community composition can bring together reservoir hosts, vectors, and naive susceptible populations in combinations that historically never coexisted, creating opportunities for pathogen adaptation and host switching. The emergence of West Nile virus in North America provides a salient illustration: the virus’s successful establishment involved complex interactions among multiple mosquito species, numerous bird species serving as amplification hosts, and mammalian spillover hosts, all influenced by temperature-dependent transmission dynamics.
Các con đường lây nhiễm bệnh từ động vật sang người do biến đổi khí hậu
Phenological mismatches – disruptions in the temporal synchrony of ecological events – represent another mechanistic pathway through which climate change influences disease dynamics. Many ecological relationships depend on precise timing: predator emergence coinciding with prey availability, plant flowering aligning with pollinator activity, or host immunity peaking when parasite pressure is highest. Climate change disrupts these finely tuned synchronies, potentially altering disease transmission patterns in unpredictable ways. For instance, if warming temperatures cause ticks to emerge earlier in spring but host species’ behavioral patterns or immune responses remain tied to photoperiod rather than temperature, a temporal mismatch could either increase or decrease transmission efficiency, depending on the specific system.
The concept of thermal mismatch extends beyond phenology to encompass the differential temperature sensitivities of hosts, vectors, and pathogens. Each component of a disease system possesses unique thermal performance curves – relationships between temperature and biological rates such as development, reproduction, or immune function. These curves often peak at different temperatures, creating complex, non-linear relationships between ambient temperature and overall transmission potential. Recent theoretical work has demonstrated that for many vector-borne diseases, transmission peaks at intermediate temperatures well below the thermal optima of the vector or pathogen in isolation, because the various temperature-dependent processes interact multiplicatively rather than additively. This nuanced understanding challenges simplistic predictions that warming universally increases disease risk.
Evolutionary pressures imposed by rapid climate change may accelerate pathogen evolution and adaptation. Thermal stress and other climatic stressors can increase mutation rates in pathogens while simultaneously altering selective pressures on traits related to transmission efficiency, virulence, and host range. Experimental evolution studies have shown that pathogens can adapt to novel temperature regimes within relatively few generations, potentially expanding their thermal tolerance and geographical potential. Furthermore, climate-driven changes in host immune competence may alter the evolutionary trajectories of pathogens, potentially selecting for increased virulence if weakened host defenses reduce the fitness costs of more aggressive pathogen strategies.
The hydrology of disease systems deserves particular emphasis given the pivotal role of water in numerous pathogen life cycles and transmission routes. Waterborne diseases, including cholera, schistosomiasis, and leptospirosis, exhibit clear sensitivities to climate-driven changes in water availability, temperature, and flow regimes. The relationship between cholera and climate, particularly the El Niño Southern Oscillation (ENSO), has been extensively documented, with warming ocean temperatures creating favorable conditions for Vibrio cholerae proliferation in coastal waters and plankton blooms. Paradoxically, both flooding events and droughts can increase waterborne disease risks through different mechanisms – floods through contamination of water supplies and displacement of populations, droughts through concentration of pathogens in diminishing water sources and deterioration of sanitation infrastructure.
Socioeconomic vulnerabilities interact synergistically with climatic drivers to determine ultimate disease burden. Climate change disproportionately affects populations in low- and middle-income countries, where adaptive capacity is constrained by limited resources, inadequate infrastructure, and often higher baseline disease burdens. Agricultural disruptions caused by climatic extremes can precipitate food insecurity and malnutrition, compromising immune function and increasing susceptibility to infections. Climate-induced displacement and migration brings populations into new disease environments while potentially overwhelming the public health systems in receiving areas. The concept of syndemic interactions – whereby multiple health threats interact synergistically to produce worse outcomes than the sum of their individual effects – becomes particularly relevant in climate-vulnerable populations experiencing concurrent nutritional, infectious, and chronic disease burdens.
The One Health paradigm, which recognizes the interconnectedness of human, animal, and environmental health, offers an essential framework for addressing climate-mediated disease emergence. Traditional siloed approaches that treat human health in isolation from ecological and veterinary considerations are fundamentally inadequate for understanding and responding to complex zoonotic threats in a changing climate. Operationalizing One Health requires institutional mechanisms that facilitate cross-sectoral collaboration, integrated surveillance systems that monitor pathogens across human, domestic animal, and wildlife populations, and policy frameworks that address the upstream drivers of disease emergence, including climate change mitigation, sustainable land use, and biodiversity conservation.
Predictive modeling of climate-disease relationships has advanced considerably, integrating increasingly sophisticated climate projections with ecological niche models, transmission dynamics models, and socioeconomic scenarios. Ensemble modeling approaches that combine multiple model structures and parameter sets help quantify uncertainty and identify robust patterns amid complexity. However, significant challenges remain. Non-stationary relationships – where the associations between climate variables and disease outcomes change over time due to adaptation, intervention, or other factors – complicate prediction. The potential for threshold effects and regime shifts, where gradual climatic changes trigger abrupt disease system transitions, introduces the possibility of surprises that models may fail to anticipate.
Adaptive governance structures capable of responding to evolving disease threats in real-time will be essential. This requires not only strengthened surveillance and rapid response capacities but also anticipatory systems that act on early warning signals before major outbreaks occur. Scenario planning exercises that explore plausible future disease landscapes under different climate and development pathways can help build institutional flexibility and response repertoires. Critically, addressing climate-related disease emergence demands confronting its root cause: the continued accumulation of greenhouse gases in the atmosphere. The most effective long-term strategy for reducing climate-associated disease burden remains aggressive mitigation of anthropogenic climate change itself, complemented by adaptation measures that enhance resilience in vulnerable populations and ecosystems.
The intersection of climate change and infectious disease emergence ultimately reflects humanity’s altered relationship with the biosphere. As we continue to modify Earth’s climate system at unprecedented rates, we simultaneously reshape the ecological contexts that govern pathogen transmission and evolution. Recognizing these connections and developing integrated responses that span from greenhouse gas reduction to disease surveillance represents not merely a public health imperative but a fundamental requirement for navigating the Anthropocene – an era defined by humanity’s planetary influence and the consequent imperative for environmental stewardship at every scale.
Questions 27-40
Questions 27-31: Multiple Choice
Choose the correct letter, A, B, C or D.
27. According to the passage, what percentage of emerging infectious diseases are zoonotic?
A. 50%
B. 60%
C. 75%
D. 85%
28. The passage states that isotherms are migrating poleward at approximately:
A. 3.5 kilometers per year
B. 4.6 kilometers per year
C. 5.6 kilometers per year
D. 6.6 kilometers per year
29. According to the passage, transmission of many vector-borne diseases peaks at:
A. the highest temperatures the vector can tolerate
B. the lowest temperatures the pathogen can survive
C. intermediate temperatures below the thermal optima
D. temperatures that vary unpredictably
30. The passage suggests that both flooding and droughts can increase waterborne disease risks because:
A. they both create the same conditions for pathogens
B. they work through different mechanisms
C. they both eliminate safe water sources
D. they only affect developing countries
31. The One Health paradigm emphasizes:
A. focusing primarily on human health interventions
B. treating animal diseases separately from human diseases
C. the interconnectedness of human, animal, and environmental health
D. prioritizing wildlife conservation over public health
Questions 32-36: Matching Features
Match the following concepts (32-36) with the correct descriptions (A-H).
Write the correct letter, A-H, next to questions 32-36.
32. Spillover hotspots
33. Phenological mismatches
34. Thermal performance curves
35. Syndemic interactions
36. Non-stationary relationships
Descriptions:
A. Relationships between temperature and biological rates
B. Multiple health threats producing worse combined outcomes
C. Geographical areas with high interspecies interactions
D. Disruptions in the timing of ecological events
E. Seasonal patterns of disease occurrence
F. Associations between variables that change over time
G. Genetic mutations in pathogens
H. Migration patterns of bird species
Questions 37-40: Short-answer Questions
Answer the questions below.
Choose NO MORE THAN THREE WORDS from the passage for each answer.
37. What type of pressures may accelerate pathogen evolution according to the passage?
38. What climate phenomenon has been extensively documented in relation to cholera?
39. What type of approaches are described as inadequate for addressing zoonotic threats?
40. In what era is humanity’s planetary influence defining our relationship with the biosphere?
Answer Keys – Đáp Án
PASSAGE 1: Questions 1-13
- B
- C
- C
- D
- B
- FALSE
- TRUE
- FALSE
- NOT GIVEN
- standing water
- breeding sites
- mosquito nets
- disease surveillance
PASSAGE 2: Questions 14-26
- YES
- NO
- NO
- NO
- YES
- (Paragraph referring to acorns, mice, and Lyme – 7th paragraph)
- (Paragraph about vaccine withdrawal – 11th paragraph)
- (Paragraph comparing tick and mosquito biology – 2nd paragraph)
- (Paragraph about citizen science – 10th paragraph)
- (Paragraph with statistics about Lyme disease – 3rd paragraph)
- humidity
- moderate
- host
PASSAGE 3: Questions 27-40
- C
- C
- C
- B
- C
- C
- D
- A
- B
- F
- Evolutionary pressures
- El Niño Southern Oscillation / ENSO
- Siloed approaches
- Anthropocene / the Anthropocene
Giải Thích Đáp Án Chi Tiết
Passage 1 – Giải Thích
Câu 1: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: Aedes aegypti mosquito, transmits diseases
- Vị trí trong bài: Đoạn 2, dòng 3-5
- Giải thích: Bài đọc nêu rõ “The Aedes aegypti mosquito, which transmits dengue fever, yellow fever, and Zika virus”. Malaria không được nhắc đến trong danh sách này. Malaria được đề cập riêng ở đoạn 3 nhưng không liên quan đến Aedes aegypti.
Câu 2: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: Colombian Andes, malaria cases, altitudes
- Vị trí trong bài: Đoạn 3, dòng 5-7
- Giải thích: Bài viết nêu rõ “in the Colombian Andes, malaria cases have been reported at altitudes exceeding 2,000 meters”. Từ “exceeding” (vượt quá) tương đương với “over” trong đáp án C.
Câu 3: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: mosquito season, US states, longer
- Vị trí trong bài: Đoạn 4, dòng cuối
- Giải thích: Câu cuối đoạn 4 ghi “Research from the United States shows that the mosquito season has lengthened by an average of three weeks”. Đáp án chính xác là three weeks.
Câu 6: FALSE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: mosquitoes, only survive, tropical climates
- Vị trí trong bài: Đoạn 2, 3
- Giải thích: Bài viết cho thấy muỗi đang mở rộng sang các khu vực ôn đới và miền núi, không chỉ tồn tại ở vùng nhiệt đới. Đoạn 3 nói về European countries và mountain communities đang có muỗi, chứng minh câu này là FALSE.
Câu 7: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: European countries, first locally transmitted cases, dengue fever
- Vị trí trong bài: Đoạn 3, dòng cuối
- Giải thích: Bài viết nêu rõ “European countries such as France, Spain, and Italy have recorded their first locally transmitted cases of dengue fever in recent years”. Câu này khớp hoàn toàn với thông tin trong đề.
Câu 8: FALSE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: heavy floods, reduce mosquito populations, permanently
- Vị trí trong bài: Đoạn 5, giữa đoạn
- Giải thích: Bài viết giải thích “Heavy floods may wash away breeding sites temporarily, but they also create new pools of standing water once the water recedes”. Từ “temporarily” (tạm thời) và việc tạo ra các vũng nước mới sau lũ chứng minh việc giảm quần thể muỗi không phải vĩnh viễn.
Câu 10: standing water
- Dạng câu hỏi: Sentence Completion
- Từ khóa: mosquitoes lay eggs
- Vị trí trong bài: Đoạn 5, dòng 2
- Giải thích: Câu trong bài: “Mosquitoes lay their eggs in standing water”. Đây là thông tin trực tiếp, không cần paraphrase.
Câu 12: mosquito nets
- Dạng câu hỏi: Sentence Completion
- Từ khóa: education campaigns, protection
- Vị trí trong bài: Đoạn 8
- Giải thích: Bài viết nêu “Teaching people to eliminate standing water around their homes, use mosquito nets, and recognize disease symptoms”. Mosquito nets là biện pháp bảo vệ được dạy trong các chiến dịch giáo dục.
Chiến lược phòng chống muỗi và bệnh truyền nhiễm hiệu quả trong đề thi IELTS Reading
Passage 2 – Giải Thích
Câu 14: YES
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: public awareness, tick-borne diseases, lower, mosquito-borne diseases
- Vị trí trong bài: Đoạn 1, câu cuối
- Giải thích: Bài viết nêu rõ “yet public awareness remains relatively limited compared to other climate-related health risks” (nhận thức công chúng vẫn còn hạn chế tương đối so với các rủi ro sức khỏe liên quan đến khí hậu khác). Câu này thể hiện quan điểm của tác giả rằng nhận thức về bệnh do ve truyền thấp hơn.
Câu 15: NO
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: all species of ticks, aquatic environments, life cycle
- Vị trí trong bài: Đoạn 2, dòng 2-3
- Giải thích: Bài viết nêu “Unlike mosquitoes, which have aquatic larval stages, ticks spend their entire life cycle on land”. Điều này trực tiếp mâu thuẫn với nhận định rằng ve cần môi trường nước để hoàn thành vòng đời.
Câu 16: NO
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: expansion of Lyme disease, entirely due to, climate change
- Vị trí trong bài: Đoạn 3, câu cuối
- Giải thích: Bài viết nói “Epidemiological studies attribute much of this expansion to climate change” (các nghiên cứu dịch tễ học cho rằng phần lớn sự mở rộng này là do biến đổi khí hậu). Từ “much of” (phần lớn) không phải “entirely” (hoàn toàn), cho thấy có các yếu tố khác góp phần.
Câu 18: YES
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: personal protective measures, more effective, widespread insecticide use
- Vị trí trong bài: Đoạn 9, đầu đoạn
- Giải thích: Tác giả viết “Unlike mosquitoes, ticks cannot be effectively controlled through widespread insecticide application… Instead, interventions focus on personal protective measures”. Điều này thể hiện quan điểm rõ ràng rằng các biện pháp bảo vệ cá nhân hiệu quả hơn với ve.
Câu 24: humidity
- Dạng câu hỏi: Summary Completion
- Từ khóa: ticks require, environmental conditions, high levels
- Vị trí trong bài: Đoạn 2, giữa đoạn
- Giải thích: Bài viết nêu “The Ixodes ricinus tick… requires relatively high humidity levels – typically above 80% – to survive”. Từ cần điền là “humidity”.
Câu 25: moderate
- Dạng câu hỏi: Summary Completion
- Từ khóa: warming in cooler regions, tick expansion
- Vị trí trong bài: Đoạn 4, giữa đoạn
- Giải thích: Bài viết viết “moderate warming in cooler regions facilitates tick expansion, while excessive heat in already warm areas might limit populations”. Tính từ bổ nghĩa cho “warming” là “moderate”.
Câu 26: host
- Dạng câu hỏi: Summary Completion
- Từ khóa: animals, white-tailed deer, mice, crucial
- Vị trí trong bài: Đoạn 6, tiêu đề và nội dung
- Giải thích: Đoạn 6 có tiêu đề ẩn về “host animals” và nói về vai trò của chúng. Cụm từ chính xác trong bài là “host animals”.
Passage 3 – Giải Thích
Câu 27: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: percentage, emerging infectious diseases, zoonotic
- Vị trí trong bài: Đoạn 2, câu đầu
- Giải thích: Câu đầu đoạn 2 nêu rõ “Zoonotic pathogens… account for approximately 60% of known infectious diseases and 75% of emerging infectious diseases”. Câu hỏi về emerging diseases nên đáp án là 75% (C).
Câu 28: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: isotherms, migrating poleward, kilometers per year
- Vị trí trong bài: Đoạn 3, dòng 2
- Giải thích: Bài viết nêu “As isotherms migrate poleward at an average rate of approximately 5.6 kilometers per year”. Đáp án chính xác là 5.6 kilometers.
Câu 29: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: transmission, vector-borne diseases, peaks
- Vị trí trong bài: Đoạn 5, cuối đoạn
- Giải thích: Bài viết giải thích “Recent theoretical work has demonstrated that for many vector-borne diseases, transmission peaks at intermediate temperatures well below the thermal optima of the vector or pathogen in isolation”. Đáp án C mô tả chính xác điều này.
Câu 30: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: flooding, droughts, increase waterborne disease risks
- Vị trí trong bài: Đoạn 7, cuối đoạn
- Giải thích: Bài viết nêu rõ “Paradoxically, both flooding events and droughts can increase waterborne disease risks through different mechanisms” và giải thích hai cơ chế khác nhau. Đáp án B là chính xác.
Câu 31: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: One Health paradigm, emphasizes
- Vị trí trong bài: Đoạn 9, câu đầu
- Giải thích: Câu đầu đoạn 9 định nghĩa “The One Health paradigm, which recognizes the interconnectedness of human, animal, and environmental health”. Đáp án C là paraphrase chính xác.
Câu 32: C
- Dạng câu hỏi: Matching Features
- Từ khóa: spillover hotspots
- Vị trí trong bài: Đoạn 2, giữa đoạn
- Giải thích: Bài viết định nghĩa spillover hotspots là “geographical crucibles where heightened interspecies interactions catalyze pathogen exchange” – tương ứng với mô tả C “Geographical areas with high interspecies interactions”.
Câu 33: D
- Dạng câu hỏi: Matching Features
- Từ khóa: phenological mismatches
- Vị trí trong bài: Đoạn 4, câu đầu
- Giải thích: Đoạn 4 định nghĩa “Phenological mismatches – disruptions in the temporal synchrony of ecological events”. Đáp án D “Disruptions in the timing of ecological events” là paraphrase chính xác.
Câu 37: Evolutionary pressures
- Dạng câu hỏi: Short-answer
- Từ khóa: accelerate pathogen evolution
- Vị trí trong bài: Đoạn 6, câu đầu
- Giải thích: Câu đầu đoạn 6 nêu “Evolutionary pressures imposed by rapid climate change may accelerate pathogen evolution and adaptation”. Đáp án là “Evolutionary pressures” (không vượt quá 3 từ).
Câu 38: El Niño Southern Oscillation / ENSO
- Dạng câu hỏi: Short-answer
- Từ khóa: climate phenomenon, documented, cholera
- Vị trí trong bài: Đoạn 7, giữa đoạn
- Giải thích: Bài viết nêu “The relationship between cholera and climate, particularly the El Niño Southern Oscillation (ENSO), has been extensively documented”. Cả hai cách viết đều được chấp nhận.
Câu 40: Anthropocene / the Anthropocene
- Dạng câu hỏi: Short-answer
- Từ khóa: era, humanity’s planetary influence
- Vị trí trong bài: Đoạn cuối, câu cuối
- Giải thích: Câu cuối bài viết định nghĩa “the Anthropocene – an era defined by humanity’s planetary influence”. Đáp án có hoặc không có “the” đều đúng.
Từ Vựng Quan Trọng Theo Passage
Passage 1 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| geographical range | noun phrase | /ˌdʒiːəˈɡræfɪkəl reɪndʒ/ | phạm vi địa lý | mosquitoes are expanding their geographical range | expand/extend geographical range |
| outbreak | noun | /ˈaʊtbreɪk/ | sự bùng phát (dịch bệnh) | experiencing outbreaks of malaria | disease outbreak, major outbreak |
| transmission season | noun phrase | /trænzˈmɪʃən ˈsiːzən/ | mùa lây truyền | extends the transmission season | prolong transmission season |
| breeding site | noun phrase | /ˈbriːdɪŋ saɪt/ | nơi sinh sản | creates more breeding sites | eliminate breeding sites |
| vector control | noun phrase | /ˈvektə kənˈtrəʊl/ | kiểm soát vật truyền bệnh | limited experience in vector control | effective vector control |
| public health system | noun phrase | /ˈpʌblɪk helθ ˈsɪstəm/ | hệ thống y tế công cộng | challenges for public health systems | strengthen public health system |
| replicate | verb | /ˈreplɪkeɪt/ | nhân bản, sao chép | viruses replicate faster | replicate rapidly/quickly |
| greenhouse gas emissions | noun phrase | /ˈɡriːnhaʊs ɡæs ɪˈmɪʃənz/ | phát thải khí nhà kính | reduce greenhouse gas emissions | cut/reduce emissions |
| climate model | noun phrase | /ˈklaɪmət ˈmɒdəl/ | mô hình khí hậu | climate models suggest | develop climate models |
| vulnerable population | noun phrase | /ˈvʌlnərəbəl ˌpɒpjʊˈleɪʃən/ | dân số dễ bị tổn thương | particularly concerning for vulnerable populations | protect vulnerable populations |
| weakened immune system | noun phrase | /ˈwiːkənd ɪˈmjuːn ˈsɪstəm/ | hệ miễn dịch suy yếu | those with weakened immune systems | compromised/weakened immune system |
| disease surveillance | noun phrase | /dɪˈziːz səˈveɪləns/ | giám sát dịch bệnh | improved disease surveillance | enhance disease surveillance |
Passage 2 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| vector-borne threat | noun phrase | /ˈvektə bɔːn θret/ | mối đe dọa từ vật truyền bệnh | another vector-borne threat | emerging vector-borne threat |
| tick-borne illness | noun phrase | /tɪk bɔːn ˈɪlnəs/ | bệnh do ve truyền | expanding tick-borne illnesses | prevent tick-borne illness |
| seasonal activity pattern | noun phrase | /ˈsiːzənəl ækˈtɪvɪti ˈpætən/ | mô hình hoạt động theo mùa | changes in seasonal activity patterns | alter activity patterns |
| endemic | adjective | /enˈdemɪk/ | địa phương (bệnh), đặc hữu | the disease now endemic in areas | become endemic |
| epidemiological study | noun phrase | /ˌepɪˌdiːmiəˈlɒdʒɪkəl ˈstʌdi/ | nghiên cứu dịch tễ học | epidemiological studies attribute | conduct epidemiological studies |
| reproductive success | noun phrase | /ˌriːprəˈdʌktɪv səkˈses/ | thành công sinh sản | increase reproductive success | enhance reproductive success |
| desiccation | noun | /ˌdesɪˈkeɪʃən/ | sự làm khô, mất nước | causing desiccation and death | prevent desiccation |
| sustained tick activity | noun phrase | /səˈsteɪnd tɪk ækˈtɪvɪti/ | hoạt động liên tục của ve | reporting sustained tick activity | maintain sustained activity |
| host animal | noun phrase | /həʊst ˈænɪməl/ | động vật chủ | role of host animals | primary host animal |
| reservoir host | noun phrase | /ˈrezəvwɑː həʊst/ | vật chủ chứa (mầm bệnh) | primary reservoir host | natural reservoir host |
| feedback loop | noun phrase | /ˈfiːdbæk luːp/ | vòng phản hồi | create feedback loops | positive/negative feedback loop |
| dilution effect | noun phrase | /daɪˈluːʃən ɪˈfekt/ | hiệu ứng pha loãng | concept of dilution effect | demonstrate dilution effect |
| geospatial modeling | noun phrase | /ˌdʒiːəʊˈspeɪʃəl ˈmɒdəlɪŋ/ | mô hình hóa không gian địa lý | advanced geospatial modeling | use geospatial modeling |
| citizen science | noun phrase | /ˈsɪtɪzən ˈsaɪəns/ | khoa học công dân | incorporating citizen science | promote citizen science |
| multidisciplinary collaboration | noun phrase | /ˌmʌltiˈdɪsəplɪnəri kəˌlæbəˈreɪʃən/ | hợp tác đa ngành | requires multidisciplinary collaboration | foster collaboration |
Passage 3 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| anthropogenic | adjective | /ˌænθrəpəˈdʒenɪk/ | do con người gây ra | anthropogenic climate change | anthropogenic impacts/effects |
| zoonotic disease | noun phrase | /ˌzuːəˈnɒtɪk dɪˈziːz/ | bệnh lây từ động vật | emergence of zoonotic diseases | prevent zoonotic disease |
| nexus | noun | /ˈneksəs/ | mối liên kết, điểm giao | the nexus between climate and disease | critical nexus |
| labyrinthine | adjective | /ˌlæbəˈrɪnθaɪn/ | phức tạp như mê cung | labyrinthine network | labyrinthine complexity |
| spillover event | noun phrase | /ˈspɪləʊvə ɪˈvent/ | sự kiện lây lan (từ động vật sang người) | facilitate spillover events | zoonotic spillover event |
| multifarious | adjective | /ˌmʌltɪˈfeəriəs/ | đa dạng, nhiều loại | multifarious pathways | multifarious factors |
| systemic disruptor | noun phrase | /sɪˈstemɪk dɪsˈrʌptə/ | yếu tố gây rối loạn hệ thống | operates as systemic disruptor | major systemic disruptor |
| habitat fragmentation | noun phrase | /ˈhæbɪtæt ˌfræɡmənˈteɪʃən/ | phân mảnh môi trường sống | habitat degradation and fragmentation | prevent habitat fragmentation |
| isotherm | noun | /ˈaɪsəʊθɜːm/ | đường đẳng nhiệt | isotherms migrate poleward | shift of isotherms |
| species assemblage | noun phrase | /ˈspiːʃiːz əˈsemblɪdʒ/ | quần xã sinh vật | novel species assemblages | diverse species assemblage |
| amplification host | noun phrase | /ˌæmplɪfɪˈkeɪʃən həʊst/ | vật chủ khuếch đại | birds serving as amplification hosts | primary amplification host |
| phenological mismatch | noun phrase | /ˌfiːnəˈlɒdʒɪkəl ˈmɪsmætʃ/ | sự lệch pha sinh thái | phenological mismatches disrupt timing | create phenological mismatch |
| thermal performance curve | noun phrase | /ˈθɜːməl pəˈfɔːməns kɜːv/ | đường cong hiệu suất nhiệt | unique thermal performance curves | analyze performance curves |
| evolutionary trajectory | noun phrase | /ˌiːvəˈluːʃənəri trəˈdʒektəri/ | quỹ đạo tiến hóa | alter evolutionary trajectories | predict evolutionary trajectory |
| hydrology | noun | /haɪˈdrɒlədʒi/ | thủy văn học | hydrology of disease systems | study hydrology |
| syndemic interaction | noun phrase | /sɪnˈdemɪk ˌɪntərˈækʃən/ | tương tác hiệp dịch | concept of syndemic interactions | syndemic interactions occur |
| adaptive capacity | noun phrase | /əˈdæptɪv kəˈpæsɪti/ | năng lực thích ứng | limited adaptive capacity | enhance adaptive capacity |
| One Health paradigm | noun phrase | /wʌn helθ ˈpærədaɪm/ | mô hình Y tế Toàn diện | One Health paradigm offers framework | adopt One Health paradigm |
| siloed approach | noun phrase | /ˈsaɪləʊd əˈprəʊtʃ/ | cách tiếp cận rời rạc | traditional siloed approaches | avoid siloed approaches |
| ensemble modeling | noun phrase | /ɒnˈsɒmbl ˈmɒdəlɪŋ/ | mô hình hóa tổng hợp | ensemble modeling approaches | use ensemble modeling |
| non-stationary relationship | noun phrase | /nɒn ˈsteɪʃənəri rɪˈleɪʃənʃɪp/ | mối quan hệ không ổn định | non-stationary relationships complicate | identify non-stationary relationships |
| regime shift | noun phrase | /reɪˈʒiːm ʃɪft/ | sự chuyển đổi chế độ | potential for regime shifts | ecological regime shift |
| adaptive governance | noun phrase | /əˈdæptɪv ˈɡʌvənəns/ | quản trị thích ứng | adaptive governance structures | develop adaptive governance |
| Anthropocene | noun | /ˈænθrəpəsiːn/ | Kỷ Nhân Sinh | navigating the Anthropocene | living in Anthropocene |
Bộ từ vựng IELTS Reading chuyên ngành về bệnh dịch và biến đổi khí hậu cho band điểm cao
Kết bài
Chủ đề “Impact of climate change on disease spread” không chỉ quan trọng trong IELTS Reading mà còn phản ánh một vấn đề toàn cầu đang diễn ra. Qua bài thi mẫu này, bạn đã được trải nghiệm một đề thi hoàn chỉnh với 3 passages tăng dần độ khó từ Easy đến Hard, bao gồm đầy đủ 40 câu hỏi với các dạng bài đa dạng như trong kỳ thi thật.
Đáp án chi tiết kèm giải thích cụ thể đã giúp bạn hiểu rõ cách xác định thông tin trong bài, kỹ thuật paraphrase, và chiến lược làm từng dạng câu hỏi. Bộ từ vựng chuyên ngành được tổng hợp theo từng passage sẽ là tài liệu quý giá cho việc mở rộng vốn từ học thuật của bạn.
Để đạt kết quả tốt nhất, hãy luyện tập thường xuyên với các đề thi tương tự, chú ý quản lý thời gian, và không ngừng cải thiện khả năng đọc hiểu. Hãy xem bài thi này như một công cụ đánh giá trình độ và xác định những điểm cần cải thiện trong hành trình chinh phục IELTS Reading của bạn.
Chúc bạn ôn tập hiệu quả và đạt band điểm như mong muốn trong kỳ thi IELTS sắp tới!