Mở Bài
Chủ đề về tác động của công nghệ thông minh đến đời sống đô thị đang trở thành một trong những đề tài phổ biến nhất trong kỳ thi IELTS Reading hiện nay. Với sự phát triển nhanh chóng của các thành phố thông minh trên toàn cầu, chủ đề này xuất hiện với tần suất cao trong các đề thi thực tế, đặc biệt là từ năm 2020 đến nay. Các bài đọc thường xoay quanh công nghệ IoT, hệ thống giao thông thông minh, quản lý năng lượng và các giải pháp đô thị bền vững.
Bài viết này cung cấp cho bạn một bộ đề thi IELTS Reading hoàn chỉnh với ba passages có độ khó tăng dần từ Easy (Band 5.0-6.5) đến Medium (Band 6.0-7.5) và Hard (Band 7.0-9.0). Mỗi passage được thiết kế giống với đề thi thật, kèm theo 40 câu hỏi đa dạng các dạng bài từ Multiple Choice, True/False/Not Given, Matching đến Summary Completion. Bạn sẽ nhận được đáp án chi tiết với giải thích cụ thể về vị trí thông tin, kỹ thuật paraphrase, và các từ vựng học thuật quan trọng được phân loại theo từng passage.
Đề thi này phù hợp cho học viên từ band 5.0 trở lên, giúp bạn làm quen với format thi thật, rèn luyện kỹ năng quản lý thời gian và nâng cao khả năng đọc hiểu học thuật. Hãy chuẩn bị đồng hồ bấm giờ và bắt đầu luyện tập ngay hôm nay!
1. Hướng Dẫn Làm Bài IELTS Reading
Tổng Quan Về IELTS Reading Test
IELTS Reading Test là một phần quan trọng trong kỳ thi IELTS Academic, yêu cầu thí sinh hoàn thành 40 câu hỏi trong vòng 60 phút. Bài thi bao gồm ba passages với độ dài tổng cộng khoảng 2000-2750 từ, độ khó tăng dần từ passage 1 đến passage 3.
Phân bổ thời gian khuyến nghị:
- Passage 1: 15-17 phút (độ khó thấp nhất, nên làm nhanh để dành thời gian cho các passage sau)
- Passage 2: 18-20 phút (độ khó trung bình, cần đọc kỹ hơn)
- Passage 3: 23-25 phút (độ khó cao nhất, yêu cầu phân tích sâu)
Lưu ý rằng không có thời gian riêng để chép đáp án sang phiếu trả lời, vì vậy bạn cần quản lý thời gian hiệu quả và có thể chép đáp án song song trong khi làm bài.
Các Dạng Câu Hỏi Trong Đề Này
Đề thi mẫu này bao gồm 7 dạng câu hỏi phổ biến nhất trong IELTS Reading:
- Multiple Choice – Câu hỏi trắc nghiệm nhiều lựa chọn
- True/False/Not Given – Xác định thông tin đúng/sai/không được nhắc đến
- Matching Information – Nối thông tin với đoạn văn tương ứng
- Sentence Completion – Hoàn thành câu với từ trong bài
- Yes/No/Not Given – Xác định ý kiến của tác giả
- Matching Headings – Nối tiêu đề với đoạn văn
- Summary Completion – Hoàn thành đoạn tóm tắt
2. IELTS Reading Practice Test
PASSAGE 1 – Smart Transportation Systems Transform Urban Mobility
Độ khó: Easy (Band 5.0-6.5)
Thời gian đề xuất: 15-17 phút
The integration of smart technologies into urban transportation systems has revolutionized the way people move around cities. In the past decade, cities worldwide have begun implementing intelligent transportation systems (ITS) that use sensors, cameras, and data analytics to manage traffic flow more efficiently. These systems collect real-time information about road conditions, vehicle movements, and public transport schedules, enabling city authorities to make informed decisions about traffic management.
One of the most visible impacts of smart transportation is the reduction in traffic congestion. Traditional traffic lights operated on fixed timers, regardless of actual traffic conditions. However, adaptive traffic signals now adjust their timing based on the number of vehicles waiting at intersections. In Los Angeles, the implementation of such systems has reduced travel time by approximately 12% during peak hours. These signals use embedded sensors in the road surface and cameras mounted on poles to detect vehicle presence and adjust accordingly.
Public transportation has also benefited significantly from smart technologies. Many cities now offer real-time tracking systems that allow passengers to see exactly when the next bus or train will arrive at their stop. This information is accessible through smartphone applications, electronic displays at stations, and websites. Singapore’s public transport system, for example, provides passengers with accurate arrival predictions within one minute of the actual time, improving the overall user experience and encouraging more people to use public transport instead of private vehicles.
The rise of ride-sharing services and electric scooters represents another dimension of smart urban mobility. These services use GPS technology and mobile applications to connect users with available vehicles nearby. Cities like Paris and Barcelona have established dedicated parking zones for shared bicycles and scooters, which can be located through apps. This has reduced the need for private car ownership in urban centers, contributing to lower emissions and less demand for parking spaces.
Smart parking solutions address one of the most frustrating aspects of urban driving – finding a parking space. Sensors installed in parking lots and on-street parking spaces detect whether spots are occupied or vacant. This information is transmitted to a central system and made available to drivers through mobile apps or digital signs. In San Francisco, drivers using the SFpark system have reduced their search time for parking by an average of 43%, which also means less fuel consumption and lower emissions from vehicles circling blocks looking for spaces.
However, the implementation of smart transportation systems faces several challenges. The initial infrastructure investment can be substantial, with cities needing to install thousands of sensors, cameras, and communication networks. Data privacy concerns also arise when systems track vehicle movements and collect information about travel patterns. Some citizens worry about constant surveillance and how their personal mobility data might be used. Additionally, ensuring that these technologies are accessible to all residents, including elderly people who may not be comfortable with smartphone applications, remains an important consideration.
Despite these challenges, the benefits of smart transportation systems are becoming increasingly clear. Cities report not only reduced congestion and travel times but also improved air quality due to more efficient traffic flow and increased use of public transport. The environmental impact is particularly significant, with some cities recording up to 20% reduction in transport-related carbon emissions after implementing comprehensive smart mobility solutions. As technology continues to advance and costs decrease, more cities are expected to adopt these systems, fundamentally changing how urban residents experience transportation in their daily lives.
Questions 1-13
Questions 1-5: Multiple Choice
Choose the correct letter, A, B, C, or D.
-
What is the main advantage of adaptive traffic signals over traditional ones?
A. They are cheaper to install
B. They adjust timing based on actual traffic conditions
C. They use less electricity
D. They are easier to maintain -
According to the passage, Singapore’s public transport tracking system can predict arrival times
A. within five minutes
B. within three minutes
C. within one minute
D. exactly on time -
The SFpark system in San Francisco has helped drivers reduce parking search time by
A. 12%
B. 20%
C. 43%
D. 50% -
Which of the following is NOT mentioned as a challenge for implementing smart transportation?
A. High initial costs
B. Privacy concerns
C. Weather conditions
D. Accessibility for elderly people -
Cities with comprehensive smart mobility solutions have seen transport-related carbon emissions reduced by up to
A. 10%
B. 12%
C. 15%
D. 20%
Questions 6-9: True/False/Not Given
Do the following statements agree with the information given in the passage?
Write:
- TRUE if the statement agrees with the information
- FALSE if the statement contradicts the information
- NOT GIVEN if there is no information on this
-
Traditional traffic lights changed their timing based on traffic volume.
-
Los Angeles reduced travel time by 12% after installing adaptive traffic signals.
-
Ride-sharing services are more expensive than traditional taxis.
-
All residents in cities with smart parking systems use mobile apps to find parking.
Questions 10-13: Sentence Completion
Complete the sentences below. Choose NO MORE THAN TWO WORDS from the passage for each answer.
-
Adaptive traffic signals use __ in the road and cameras to detect vehicles.
-
Paris and Barcelona have created __ for shared bicycles and scooters.
-
Smart parking sensors transmit information to a __ that drivers can access.
-
One concern about smart transportation is how __ about travel patterns might be used.
PASSAGE 2 – Energy Management in Smart Cities
Độ khó: Medium (Band 6.0-7.5)
Thời gian đề xuất: 18-20 phút
The transformation of urban areas into smart cities has placed significant emphasis on energy management, with cities worldwide implementing sophisticated technologies to monitor, control, and optimize energy consumption. Unlike conventional approaches that relied on centralized power generation and unidirectional distribution, smart city energy systems employ distributed energy resources (DERs) and bidirectional communication networks that enable more efficient and sustainable power usage. This paradigm shift is driven by the dual imperatives of reducing carbon emissions and ensuring reliable energy supply in the face of growing urban populations.
At the heart of smart energy management lies the smart grid, an enhanced electrical grid that uses digital technology to gather and act on information about the behaviors of suppliers and consumers. Smart meters, installed in homes and businesses, provide granular data on energy consumption patterns, typically at 15-minute or even 1-minute intervals. This real-time monitoring allows both utilities and consumers to identify peak usage periods, detect anomalies that might indicate equipment malfunction or energy waste, and make data-driven decisions about energy use. Cities like Amsterdam have achieved remarkable results, with residential areas reducing energy consumption by 15-20% after smart meter installation, primarily through increased awareness of usage patterns.
The integration of renewable energy sources represents another crucial dimension of smart city energy management. Solar panels on rooftops, small wind turbines, and other decentralized generation sources feed electricity back into the grid when production exceeds local demand. This requires sophisticated algorithms to balance supply and demand dynamically, as renewable energy generation can be intermittent and weather-dependent. Copenhagen has pioneered such systems, with over 40% of its electricity now coming from wind power, managed through an intelligent grid that can accommodate fluctuations in supply while maintaining stable power delivery to all users.
Energy storage technologies play an increasingly vital role in this ecosystem. Battery systems, ranging from large grid-scale installations to smaller residential units, store excess energy during periods of high generation or low demand and release it when needed. Tesla’s deployment of a 100-megawatt battery system in South Australia has demonstrated the viability of this approach, providing grid stability and responding to demand spikes within milliseconds. In smart cities, these storage systems are often coordinated through central management platforms that optimize charging and discharging cycles based on predictive algorithms that anticipate demand patterns.
Building management systems (BMS) constitute another significant component of urban energy optimization. Modern commercial buildings equipped with BMS can automatically adjust lighting, heating, ventilation, and air conditioning based on occupancy, time of day, and weather conditions. The Edge building in Amsterdam, often cited as the world’s smartest building, uses 70% less electricity than typical office buildings through an integrated system of sensors, LED lighting, and climate control. The building’s 28,000 sensors continuously monitor temperature, light, motion, and even air quality, making micro-adjustments that maintain optimal conditions while minimizing energy use.
However, the deployment of smart energy systems is not without complications. The cybersecurity risks associated with interconnected digital systems are substantial. A coordinated attack on a city’s smart grid could potentially cause widespread blackouts or manipulate energy prices. This has led cities to invest heavily in security protocols and redundant systems. Moreover, the sheer volume of data generated by smart energy systems raises questions about data management, privacy protection, and the computational resources required for real-time analysis. Barcelona’s smart city initiative, while largely successful, has faced criticism over insufficient transparency regarding how energy consumption data is collected, stored, and used.
The economic implications of smart energy management are multifaceted. Initial investment costs can be prohibitive, particularly for cities in developing nations. The installation of smart meters, sensors, and communication infrastructure requires substantial capital expenditure, and the return on investment may take years to materialize. Nevertheless, cities that have made these investments report long-term savings that justify the initial costs. Seoul’s smart grid project, which cost approximately $65 million, is expected to save the city over $300 million in energy costs over two decades while reducing carbon emissions by an estimated one million tons annually.
Looking ahead, artificial intelligence and machine learning are poised to further revolutionize urban energy management. These technologies can identify complex patterns in energy consumption that humans might miss, predict future demand with increasing accuracy, and automatically implement optimization strategies. Several cities are now piloting AI systems that can autonomously manage entire neighborhoods’ energy flows, learning from past patterns to improve efficiency continuously. As these technologies mature and costs decline, smart energy management systems will likely become ubiquitous features of urban landscapes, fundamentally altering the relationship between cities and their energy resources.
Questions 14-26
Questions 14-18: Yes/No/Not Given
Do the following statements agree with the views of the writer in the passage?
Write:
- YES if the statement agrees with the views of the writer
- NO if the statement contradicts the views of the writer
- NOT GIVEN if it is impossible to say what the writer thinks about this
-
Smart grids represent a fundamental change from traditional energy distribution methods.
-
Smart meters are too expensive for most homeowners to install.
-
Renewable energy sources provide more reliable power than traditional sources.
-
The Edge building in Amsterdam is the most energy-efficient building in the world.
-
Cybersecurity risks in smart energy systems are manageable with current technology.
Questions 19-22: Matching Information
Match each statement with the correct city. Write the correct letter, A-E.
A. Amsterdam
B. Copenhagen
C. South Australia
D. Barcelona
E. Seoul
-
Achieved residential energy reduction of 15-20% through smart meter use
-
Generates over 40% of electricity from wind power
-
Faced criticism about transparency in data collection
-
Expected to save over $300 million in energy costs over twenty years
Questions 23-26: Summary Completion
Complete the summary below. Choose NO MORE THAN TWO WORDS from the passage for each answer.
Smart city energy management relies on several key technologies. Smart meters provide (23) __ about energy consumption at frequent intervals, helping identify usage patterns. (24) __ such as batteries store excess energy for later use, helping to balance supply and demand. Modern buildings use (25) __ that automatically adjust various systems based on occupancy and conditions. Looking to the future, (26) __ technologies will be able to identify complex patterns and manage energy flows automatically.
PASSAGE 3 – The Socio-Technical Dimensions of Smart Urban Governance
Độ khó: Hard (Band 7.0-9.0)
Thời gian đề xuất: 23-25 phút
The emergence of smart cities as a dominant paradigm in urban development discourse represents far more than a mere technological upgrade to existing infrastructure. Rather, it embodies a fundamental reconceptualization of urban governance, one that interweaves digital technologies, data analytics, and algorithmic decision-making into the very fabric of municipal administration and civic life. This transformation raises profound questions about power, participation, and the nature of citizenship in digitally mediated urban environments, questions that extend well beyond the technocratic narratives often propagated by technology vendors and some policy makers.
The theoretical underpinnings of smart urbanism draw heavily from cybernetic thinking, which conceives of cities as complex systems that can be monitored, analyzed, and optimized through continuous feedback loops. This perspective is epitomized by the concept of the “urban dashboard” – a centralized platform that aggregates real-time data from myriad sensors deployed throughout the city, presenting this information through visualizations intended to enable rapid response to emerging issues. Rio de Janeiro’s pioneering Operations Center, which consolidates data from more than 30 municipal agencies, exemplifies this approach, allowing officials to coordinate responses to everything from traffic accidents to incipient flooding with unprecedented speed and comprehensiveness.
However, critics argue that this technocratic model of governance embodies several problematic assumptions. First, it presupposes that urban challenges are primarily technical problems amenable to data-driven solutions, potentially marginalizing political, social, and historical dimensions of urban inequality and contestation. The implementation of predictive policing algorithms in several American cities illustrates this concern. While proponents claim these systems optimize police resource allocation, research has demonstrated that they often perpetuate and even amplify existing biases in law enforcement, as the historical data upon which they are trained reflects patterns of discriminatory policing. Thus, the ostensibly neutral technological system becomes a mechanism for reproducing systemic inequalities under the guise of objective optimization.
Second, the centralization of data and decision-making authority raises fundamental questions about democratic governance and accountability. Traditional forms of urban governance, imperfect though they may be, typically involve multiple stakeholders, deliberative processes, and mechanisms for public scrutiny. In contrast, algorithmic governance systems often operate as “black boxes” – their internal logic opaque even to the officials who rely on their outputs. When a city’s traffic management system automatically reroutes vehicles or a building’s energy management system adjusts power consumption, these decisions are made by algorithms whose specific parameters and trade-offs may not be transparent or subject to democratic oversight. This epistemic opacity becomes particularly problematic when algorithmic systems make decisions that have differential impacts on various urban populations.
The question of data ownership and governance constitutes another critical dimension of smart urbanism. The sensors, platforms, and analytics capabilities that undergird smart city systems are often provided by private technology corporations through public-private partnerships. This arrangement can create asymmetries in data access and control, with companies accumulating valuable information about urban dynamics while cities themselves may have limited analytical capacity or even contractual rights to access and use the data generated within their own jurisdictions. Toronto’s controversial Sidewalk Labs project, ultimately abandoned in 2020, crystallized these concerns, as debates over data governance and privacy protections became central points of contention between the company, the city, and civil society organizations.
Moreover, the implementation of smart city technologies intersects with existing patterns of urban inequality in complex ways. While these technologies promise benefits such as improved services and enhanced sustainability, their deployment is often geographically uneven, with affluent neighborhoods receiving cutting-edge infrastructure while marginalized communities are overlooked. This “digital divide” extends beyond mere access to technology to encompass differences in the capacity to meaningfully engage with and benefit from smart city initiatives. Elderly residents, those with limited digital literacy, or individuals without smartphones may find themselves excluded from services and information increasingly delivered through digital platforms, exacerbating social marginalization.
Paradoxically, while smart city discourse often emphasizes efficiency and optimization, the actual implementation of these systems can introduce new forms of complexity and vulnerability. The interdependencies created by networked systems mean that failures can cascade across multiple domains. A cybersecurity breach affecting a city’s smart grid might simultaneously impact transportation systems, building management, and public safety communications. Furthermore, the reliance on complex technological infrastructure creates new dependencies on specialized expertise and proprietary technologies, potentially reducing cities’ autonomy and adaptive capacity in the long term.
Nevertheless, some cities have begun to articulate alternative visions of smart urbanism that prioritize civic engagement, equity, and democratic governance alongside technological innovation. Barcelona’s “technological sovereignty” initiative, for example, has emphasized open-source software, municipal data ownership, and citizen participation in the design and governance of smart city systems. The city has developed digital platforms that enable residents to propose and vote on municipal projects, integrating bottom-up participation with data-driven governance. This approach recognizes that the “smartness” of a city should be measured not merely by the sophistication of its technology but by its capacity to enhance collective well-being, democratic participation, and social justice.
As urban populations continue to grow and cities grapple with challenges ranging from climate change to social inequality, the trajectory of smart urbanism will have far-reaching consequences. The key question is not whether cities will incorporate digital technologies – this is already inevitable – but rather how these technologies will be governed, whose interests they will serve, and whether they will contribute to more equitable and democratic urban futures or entrench existing power asymmetries and social divisions. Addressing this question requires moving beyond technocratic enthusiasm to engage critically with the political, ethical, and social dimensions of technological change in urban environments.
Questions 27-40
Questions 27-31: Multiple Choice
Choose the correct letter, A, B, C, or D.
-
According to the passage, the concept of smart cities represents
A. a simple technological improvement
B. a fundamental change in urban governance
C. a temporary trend in city planning
D. an expensive but unnecessary development -
The urban dashboard concept is based on
A. traditional governance methods
B. cybernetic thinking and feedback loops
C. random data collection
D. historical urban planning models -
Critics of predictive policing algorithms argue that they
A. are too expensive to implement
B. don’t use enough data
C. perpetuate existing biases
D. are technically too complicated -
The term “black boxes” in the passage refers to
A. physical storage devices
B. security systems
C. opaque algorithmic systems
D. data collection sensors -
The Sidewalk Labs project in Toronto was abandoned due to concerns about
A. construction costs
B. data governance and privacy
C. technical feasibility
D. weather conditions
Questions 32-36: Matching Features
Match each characteristic with the correct city or initiative. Write the correct letter, A-F.
A. Rio de Janeiro
B. Barcelona
C. Toronto
D. American cities (general)
E. Affluent neighborhoods
F. Marginalized communities
-
Has implemented predictive policing algorithms
-
Operates a centralized Operations Center consolidating data from multiple agencies
-
Developed a “technological sovereignty” initiative with open-source focus
-
Often receive cutting-edge smart infrastructure first
-
Had a controversial smart city project that was ultimately cancelled
Questions 37-40: Short-answer Questions
Answer the questions below. Choose NO MORE THAN THREE WORDS from the passage for each answer.
-
What type of partnerships often provide the technology for smart city systems?
-
What term describes the uneven distribution of technology access in cities?
-
What type of software does Barcelona’s initiative emphasize?
-
According to the passage, by what should a city’s “smartness” be measured beyond technology?
3. Answer Keys – Đáp Án
PASSAGE 1: Questions 1-13
- B
- C
- C
- C
- D
- FALSE
- TRUE
- NOT GIVEN
- FALSE
- embedded sensors
- dedicated parking zones / parking zones
- central system
- personal mobility data / mobility data
PASSAGE 2: Questions 14-26
- YES
- NOT GIVEN
- NO
- NOT GIVEN
- NO
- A
- B
- D
- E
- granular data
- Energy storage technologies / Battery systems
- building management systems / BMS
- artificial intelligence / machine learning
PASSAGE 3: Questions 27-40
- B
- B
- C
- C
- B
- D
- A
- B
- E
- C
- public-private partnerships
- digital divide
- open-source software
- collective well-being / democratic participation / social justice
4. Giải Thích Đáp Án Chi Tiết
Passage 1 – Giải Thích
Câu 1: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: adaptive traffic signals, advantage, traditional
- Vị trí trong bài: Đoạn 2, dòng 2-4
- Giải thích: Bài đọc nêu rõ “However, adaptive traffic signals now adjust their timing based on the number of vehicles waiting at intersections” so với “Traditional traffic lights operated on fixed timers, regardless of actual traffic conditions”. Đây là sự paraphrase của đáp án B – they adjust timing based on actual traffic conditions.
Câu 2: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: Singapore, public transport, predict arrival times
- Vị trí trong bài: Đoạn 3, dòng 4-5
- Giải thích: Bài viết chỉ rõ “Singapore’s public transport system… provides passengers with accurate arrival predictions within one minute of the actual time”. Đáp án C là chính xác.
Câu 6: FALSE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: traditional traffic lights, timing, traffic volume
- Vị trí trong bài: Đoạn 2, dòng 1-2
- Giải thích: Bài đọc nói rằng “Traditional traffic lights operated on fixed timers, regardless of actual traffic conditions”, điều này trái ngược với câu hỏi nên đáp án là FALSE.
Câu 7: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: Los Angeles, travel time, 12%
- Vị trí trong bài: Đoạn 2, dòng 5-6
- Giải thích: Bài viết nêu chính xác “In Los Angeles, the implementation of such systems has reduced travel time by approximately 12% during peak hours”. Đáp án là TRUE.
Câu 10: embedded sensors
- Dạng câu hỏi: Sentence Completion
- Từ khóa: adaptive traffic signals, road, cameras
- Vị trí trong bài: Đoạn 2, dòng 6-8
- Giải thích: Câu gốc trong bài: “These signals use embedded sensors in the road surface and cameras mounted on poles to detect vehicle presence”. Cần điền “embedded sensors”.
Câu 13: personal mobility data / mobility data
- Dạng câu hỏi: Sentence Completion
- Từ khóa: concern, travel patterns, used
- Vị trí trong bài: Đoạn 6, dòng 3-5
- Giải thích: Bài viết đề cập “Some citizens worry about constant surveillance and how their personal mobility data might be used”. Đáp án là “personal mobility data” hoặc rút gọn “mobility data”.
Passage 2 – Giải Thích
Câu 14: YES
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: smart grids, fundamental change, traditional distribution
- Vị trí trong bài: Đoạn 1, dòng 2-4
- Giải thích: Tác giả mô tả “This paradigm shift” khi nói về sự thay đổi từ “centralized power generation and unidirectional distribution” sang smart grid systems. Từ “paradigm shift” thể hiện quan điểm của tác giả về sự thay đổi căn bản.
Câu 15: NOT GIVEN
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: smart meters, expensive, homeowners
- Vị trí trong bài: Không có thông tin
- Giải thích: Bài đọc đề cập đến chi phí đầu tư ban đầu cho thành phố nhưng không nói cụ thể về chi phí lắp đặt smart meter cho từng hộ gia đình.
Câu 16: NO
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: renewable energy, more reliable, traditional sources
- Vị trí trong bài: Đoạn 3, dòng 4-5
- Giải thích: Bài viết nêu rõ “renewable energy generation can be intermittent and weather-dependent”, ngụ ý chúng không ổn định hơn nguồn truyền thống. Quan điểm này trái với câu hỏi.
Câu 19: A (Amsterdam)
- Dạng câu hỏi: Matching Information
- Từ khóa: residential energy reduction, 15-20%, smart meter
- Vị trí trong bài: Đoạn 2, dòng 8-10
- Giải thích: “Cities like Amsterdam have achieved remarkable results, with residential areas reducing energy consumption by 15-20% after smart meter installation”.
Câu 23: granular data
- Dạng câu hỏi: Summary Completion
- Từ khóa: smart meters, information, consumption
- Vị trí trong bài: Đoạn 2, dòng 2-3
- Giải thích: Bài viết nêu “Smart meters… provide granular data on energy consumption patterns”. Cần điền “granular data”.
Câu 26: artificial intelligence / machine learning
- Dạng câu hỏi: Summary Completion
- Từ khóa: future, identify patterns, manage automatically
- Vị trí trong bài: Đoạn 8, dòng 1-2
- Giải thích: Đoạn cuối đề cập “artificial intelligence and machine learning” có khả năng “identify complex patterns… and automatically implement optimization strategies”.
Passage 3 – Giải Thích
Câu 27: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: smart cities, represents
- Vị trí trong bài: Đoạn 1, dòng 1-3
- Giải thích: Câu đầu tiên nêu rõ smart cities “embodies a fundamental reconceptualization of urban governance”, tương đương với đáp án B – a fundamental change in urban governance.
Câu 28: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: urban dashboard, based on
- Vị trí trong bài: Đoạn 2, dòng 1-2
- Giải thích: Bài viết nêu “The theoretical underpinnings of smart urbanism draw heavily from cybernetic thinking” và sau đó giới thiệu urban dashboard như một ví dụ của tư duy này.
Câu 29: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: critics, predictive policing algorithms
- Vị trí trong bài: Đoạn 3, dòng 5-8
- Giải thích: Bài viết nêu rõ “research has demonstrated that they often perpetuate and even amplify existing biases in law enforcement”. Đây chính là đáp án C.
Câu 32: D (American cities)
- Dạng câu hỏi: Matching Features
- Từ khóa: predictive policing algorithms
- Vị trí trong bài: Đoạn 3, dòng 4-5
- Giải thích: “The implementation of predictive policing algorithms in several American cities illustrates this concern”.
Câu 37: public-private partnerships
- Dạng câu hỏi: Short-answer Questions
- Từ khóa: partnerships, provide technology
- Vị trí trong bài: Đoạn 5, dòng 2-3
- Giải thích: Bài viết nêu “The sensors, platforms, and analytics capabilities… are often provided by private technology corporations through public-private partnerships”.
Câu 40: collective well-being / democratic participation / social justice
- Dạng câu hỏi: Short-answer Questions
- Từ khóa: smartness, measured, beyond technology
- Vị trí trong bài: Đoạn 8, dòng 6-8
- Giải thích: Câu cuối đoạn 8 nêu “the ‘smartness’ of a city should be measured not merely by the sophistication of its technology but by its capacity to enhance collective well-being, democratic participation, and social justice”. Có thể chọn một trong ba đáp án.
5. Từ Vựng Quan Trọng Theo Passage
Passage 1 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| integration | n | /ˌɪntɪˈɡreɪʃn/ | sự tích hợp, hội nhập | The integration of smart technologies into urban transportation systems | system integration, data integration |
| revolutionized | v | /ˌrevəˈluːʃənaɪzd/ | cách mạng hóa, thay đổi hoàn toàn | has revolutionized the way people move around cities | revolutionize the industry |
| intelligent transportation systems | n phrase | /ɪnˈtelɪdʒənt ˌtrænspɔːˈteɪʃn ˈsɪstəmz/ | hệ thống giao thông thông minh | implementing intelligent transportation systems (ITS) | ITS implementation |
| informed decisions | n phrase | /ɪnˈfɔːmd dɪˈsɪʒnz/ | quyết định có cơ sở | enabling city authorities to make informed decisions | make informed decisions |
| adaptive traffic signals | n phrase | /əˈdæptɪv ˈtræfɪk ˈsɪɡnəlz/ | đèn giao thông thích ứng | adaptive traffic signals now adjust their timing | adaptive system |
| embedded sensors | n phrase | /ɪmˈbedɪd ˈsensəz/ | cảm biến nhúng | use embedded sensors in the road surface | sensor technology |
| real-time tracking | n phrase | /ˈriːəl taɪm ˈtrækɪŋ/ | theo dõi thời gian thực | real-time tracking systems for passengers | real-time data |
| ride-sharing services | n phrase | /raɪd ˈʃeərɪŋ ˈsɜːvɪsɪz/ | dịch vụ đi chung xe | The rise of ride-sharing services | ride-sharing platform |
| dedicated parking zones | n phrase | /ˈdedɪkeɪtɪd ˈpɑːkɪŋ zəʊnz/ | khu vực đỗ xe chuyên dụng | established dedicated parking zones | designated area |
| infrastructure investment | n phrase | /ˈɪnfrəstrʌktʃə ɪnˈvestmənt/ | đầu tư cơ sở hạ tầng | The initial infrastructure investment can be substantial | infrastructure development |
| data privacy concerns | n phrase | /ˈdeɪtə ˈpraɪvəsi kənˈsɜːnz/ | mối quan ngại về quyền riêng tư dữ liệu | Data privacy concerns also arise | privacy protection |
| environmental impact | n phrase | /ɪnˌvaɪrənˈmentl ˈɪmpækt/ | tác động môi trường | The environmental impact is particularly significant | environmental assessment |
Passage 2 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| transformation | n | /ˌtrænsfəˈmeɪʃn/ | sự chuyển đổi | The transformation of urban areas into smart cities | digital transformation |
| sophisticated technologies | n phrase | /səˈfɪstɪkeɪtɪd tekˈnɒlədʒiz/ | công nghệ tinh vi | implementing sophisticated technologies | advanced technology |
| centralized power generation | n phrase | /ˈsentrəlaɪzd ˈpaʊə ˌdʒenəˈreɪʃn/ | sản xuất điện tập trung | relied on centralized power generation | power plant |
| distributed energy resources | n phrase | /dɪˈstrɪbjuːtɪd ˈenədʒi rɪˈsɔːsɪz/ | nguồn năng lượng phân tán | employ distributed energy resources (DERs) | renewable energy |
| paradigm shift | n phrase | /ˈpærədaɪm ʃɪft/ | sự thay đổi mô hình | This paradigm shift is driven by dual imperatives | fundamental change |
| smart grid | n phrase | /smɑːt ɡrɪd/ | lưới điện thông minh | At the heart lies the smart grid | grid infrastructure |
| granular data | n phrase | /ˈɡrænjələ ˈdeɪtə/ | dữ liệu chi tiết | provide granular data on consumption patterns | detailed information |
| real-time monitoring | n phrase | /ˈriːəl taɪm ˈmɒnɪtərɪŋ/ | giám sát thời gian thực | This real-time monitoring allows utilities | continuous monitoring |
| intermittent | adj | /ˌɪntəˈmɪtənt/ | không liên tục, ngắt quãng | renewable energy generation can be intermittent | intermittent supply |
| grid-scale installations | n phrase | /ɡrɪd skeɪl ˌɪnstəˈleɪʃnz/ | cơ sở lưới điện quy mô lớn | large grid-scale installations | large-scale system |
| building management systems | n phrase | /ˈbɪldɪŋ ˈmænɪdʒmənt ˈsɪstəmz/ | hệ thống quản lý tòa nhà | Buildings equipped with BMS | BMS technology |
| cybersecurity risks | n phrase | /ˈsaɪbəsɪˌkjʊərəti rɪsks/ | rủi ro an ninh mạng | The cybersecurity risks are substantial | security threats |
| return on investment | n phrase | /rɪˈtɜːn ɒn ɪnˈvestmənt/ | lợi tức đầu tư | the return on investment may take years | ROI calculation |
| artificial intelligence | n phrase | /ˌɑːtɪˈfɪʃl ɪnˈtelɪdʒəns/ | trí tuệ nhân tạo | artificial intelligence and machine learning | AI technology |
| autonomously manage | v phrase | /ɔːˈtɒnəməsli ˈmænɪdʒ/ | quản lý tự động | systems that can autonomously manage neighborhoods | automatic control |
Passage 3 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| emergence | n | /ɪˈmɜːdʒəns/ | sự xuất hiện, nổi lên | The emergence of smart cities | emergence of technology |
| dominant paradigm | n phrase | /ˈdɒmɪnənt ˈpærədaɪm/ | mô hình thống trị | as a dominant paradigm in urban development | prevailing model |
| reconceptualization | n | /ˌriːkənˌseptʃuəlaɪˈzeɪʃn/ | sự tái khái niệm hóa | a fundamental reconceptualization of urban governance | rethinking concepts |
| interweaves | v | /ˌɪntəˈwiːvz/ | đan xen, kết hợp chặt chẽ | interweaves digital technologies into civic life | integrate closely |
| algorithmic decision-making | n phrase | /ˌælɡəˈrɪðmɪk dɪˈsɪʒn ˈmeɪkɪŋ/ | ra quyết định thuật toán | algorithmic decision-making into municipal administration | automated decisions |
| technocratic narratives | n phrase | /ˌteknəˈkrætɪk ˈnærətɪvz/ | tường thuật kỹ trị | technocratic narratives propagated by vendors | technical discourse |
| cybernetic thinking | n phrase | /ˌsaɪbəˈnetɪk ˈθɪŋkɪŋ/ | tư duy điều khiển học | draws from cybernetic thinking | systems thinking |
| urban dashboard | n phrase | /ˈɜːbən ˈdæʃbɔːd/ | bảng điều khiển đô thị | the concept of the urban dashboard | control center |
| aggregates | v | /ˈæɡrɪɡeɪts/ | tổng hợp, tập hợp | aggregates real-time data from sensors | collect data |
| perpetuate | v | /pəˈpetʃueɪt/ | duy trì, làm lâu dài | perpetuate existing biases | maintain systems |
| discriminatory | adj | /dɪˈskrɪmɪnətri/ | mang tính phân biệt đối xử | patterns of discriminatory policing | discriminatory practices |
| epistemic opacity | n phrase | /ˌepɪˈstemɪk əʊˈpæsəti/ | tính không rõ ràng về nhận thức | This epistemic opacity becomes problematic | lack of transparency |
| asymmetries | n | /eɪˈsɪmətriz/ | sự bất đối xứng | create asymmetries in data access | power imbalance |
| jurisdictions | n | /ˌdʒʊərɪsˈdɪkʃnz/ | quyền tài phán, khu vực quản lý | within their own jurisdictions | legal authority |
| exacerbating | v | /ɪɡˈzæsəbeɪtɪŋ/ | làm trầm trọng thêm | exacerbating social marginalization | worsen situation |
| cascade | v | /kæˈskeɪd/ | lan tỏa, dây chuyền | failures can cascade across domains | spread rapidly |
| technological sovereignty | n phrase | /ˌteknəˈlɒdʒɪkl ˈsɒvrənti/ | chủ quyền công nghệ | Barcelona’s technological sovereignty initiative | digital independence |
| entrench | v | /ɪnˈtrentʃ/ | củng cố, ăn sâu | entrench existing power asymmetries | establish firmly |
Kết Bài
Chủ đề về tác động của công nghệ thông minh đến đời sống đô thị không chỉ là một xu hướng tạm thời mà đã trở thành một phần không thể thiếu trong các đề thi IELTS Reading hiện đại. Qua bộ đề thi mẫu này, bạn đã được trải nghiệm đầy đủ ba passages với độ khó tăng dần, từ các vấn đề cơ bản về giao thông thông minh, đến quản lý năng lượng phức tạp, và cuối cùng là những chiều kích xã hội-kỹ thuật sâu sắc của quản trị đô thị.
Ba passages đã cung cấp tổng cộng 40 câu hỏi với đầy đủ 7 dạng bài phổ biến nhất trong IELTS Reading, giúp bạn làm quen với format thi thật và rèn luyện khả năng chuyển đổi giữa các dạng câu hỏi khác nhau. Đáp án chi tiết kèm theo giải thích cụ thể về vị trí thông tin và kỹ thuật paraphrase sẽ giúp bạn hiểu rõ tại sao một đáp án đúng và học cách xác định thông tin chính xác trong bài đọc.
Phần từ vựng được phân loại theo từng passage không chỉ giúp bạn mở rộng vốn từ học thuật mà còn hiểu cách sử dụng các collocations và cụm từ chuyên ngành trong ngữ cảnh thực tế. Những từ vựng này sẽ xuất hiện thường xuyên không chỉ trong IELTS Reading mà còn trong các phần Writing và Speaking khi thảo luận về công nghệ và phát triển đô thị.
Hãy nhớ rằng, việc luyện tập thường xuyên với các đề thi chất lượng cao như thế này sẽ giúp bạn cải thiện đáng kể band điểm Reading. Tương tự như Smart cities and data privacy, chủ đề công nghệ đô thị đòi hỏi khả năng phân tích và hiểu sâu các vấn đề xã hội phức tạp. Đối với những ai quan tâm đến các công nghệ bền vững khác, bạn có thể tìm hiểu thêm về The role of renewable energy in rural electrification để mở rộng kiến thức và từ vựng liên quan.
Khi luyện tập, hãy luôn chú ý đến việc quản lý thời gian – 60 phút cho 40 câu hỏi có nghĩa là bạn chỉ có trung bình 1.5 phút cho mỗi câu, bao gồm cả thời gian đọc. Việc hiểu rõ các vấn đề như Challenges in managing global water resources cũng có mối liên hệ chặt chẽ với quản lý đô thị thông minh, vì nước là một tài nguyên quan trọng cần được giám sát và phân phối hiệu quả trong các thành phố hiện đại.
Một khía cạnh thú vị khác của công nghệ thông minh là ứng dụng trong y tế, được minh họa qua How is the growth of telemedicine affecting healthcare access in rural areas?, cho thấy cách công nghệ có thể thu hẹp khoảng cách tiếp cận dịch vụ. Ngoài ra, The rise of green energy technologies cũng đóng vai trò then chốt trong việc xây dựng các thành phố thông minh bền vững, tạo nên một hệ sinh thái đô thị toàn diện.
Chúc bạn đạt được band điểm cao trong kỳ thi IELTS sắp tới! Hãy tiếp tục luyện tập đều đặn và áp dụng những kỹ thuật làm bài đã học được từ bộ đề này vào thực tế.