Mở Bài
Chủ đề về đổi mới công nghệ trong hệ thống năng lượng tái tạo (Technological Innovations In Renewable Energy Systems) đang trở thành một trong những đề tài phổ biến nhất trong kỳ thi IELTS Reading hiện nay. Với xu hướng toàn cầu hướng tới phát triển bền vững và giảm thiểu tác động môi trường, chủ đề này xuất hiện thường xuyên trong các đề thi IELTS Academic, đặc biệt là từ năm 2020 đến nay.
Bài viết này cung cấp cho bạn một bộ đề thi IELTS Reading hoàn chỉnh với 3 passages được thiết kế theo đúng chuẩn quốc tế. Bạn sẽ được luyện tập với các dạng câu hỏi đa dạng từ dễ đến khó, hoàn toàn giống với đề thi thật. Mỗi passage được xây dựng cẩn thận về độ khó tăng dần, từ Easy (Band 5.0-6.5), Medium (Band 6.0-7.5) đến Hard (Band 7.0-9.0).
Ngoài 40 câu hỏi theo format chuẩn IELTS, bạn còn nhận được đáp án chi tiết kèm giải thích cụ thể về vị trí thông tin, kỹ thuật paraphrase và cách tiếp cận từng dạng câu hỏi. Bộ từ vựng chuyên ngành được tổng hợp theo từng passage sẽ giúp bạn nâng cao vốn từ học thuật hiệu quả.
Đề thi này phù hợp cho học viên từ band 5.0 trở lên, đặc biệt hữu ích cho những bạn đang nhắm đến band điểm 7.0-8.0 trong phần Reading.
1. Hướng Dẫn Làm Bài IELTS Reading
Tổng Quan Về IELTS Reading Test
IELTS Reading Test bao gồm 3 passages với tổng cộng 40 câu hỏi cần hoàn thành trong 60 phút. Đây là thử thách lớn về cả kỹ năng đọc hiểu và quản lý thời gian.
Phân bổ thời gian khuyến nghị:
- Passage 1 (Easy): 15-17 phút – Đây là passage dễ nhất, bạn cần tận dụng để ghi điểm tối đa
- Passage 2 (Medium): 18-20 phút – Độ khó trung bình, yêu cầu kỹ năng đọc hiểu sâu hơn
- Passage 3 (Hard): 23-25 phút – Passage khó nhất, cần thời gian nhiều nhất cho việc phân tích và suy luận
Lưu ý quan trọng: Không nên dành quá nhiều thời gian cho một câu hỏi. Nếu không chắc chắn, hãy đánh dấu và quay lại sau khi hoàn thành các câu khác.
Các Dạng Câu Hỏi Trong Đề Này
Đề thi mẫu này bao gồm đầy đủ các dạng câu hỏi phổ biến nhất trong IELTS Reading:
- Multiple Choice – Câu hỏi trắc nghiệm nhiều lựa chọn
- True/False/Not Given – Xác định thông tin đúng/sai/không được đề cập
- Yes/No/Not Given – Xác định quan điểm của tác giả
- Matching Headings – Nối tiêu đề với đoạn văn
- Sentence Completion – Hoàn thành câu
- Summary Completion – Hoàn thành đoạn tóm tắt
- Matching Features – Nối thông tin với đặc điểm
- Short-answer Questions – Câu hỏi trả lời ngắn
Mỗi dạng câu hỏi yêu cầu kỹ năng và chiến lược riêng, vì vậy việc làm quen với tất cả các dạng này là vô cùng quan trọng.
2. IELTS Reading Practice Test
PASSAGE 1 – The Solar Revolution: How Photovoltaic Technology Is Transforming Energy Production
Độ khó: Easy (Band 5.0-6.5)
Thời gian đề xuất: 15-17 phút
The evolution of solar energy technology has been one of the most remarkable success stories in the field of renewable energy over the past few decades. What began as an expensive and inefficient method of generating electricity has transformed into a viable alternative to traditional fossil fuels, thanks to continuous technological innovations and significant cost reductions. Today, solar photovoltaic (PV) systems are not only more accessible but also increasingly efficient, making them a cornerstone of the global transition to clean energy.
The basic principle behind solar panels has remained consistent since their invention. Photovoltaic cells, typically made from silicon, convert sunlight directly into electricity through the photovoltaic effect. When photons from sunlight strike the silicon surface, they dislodge electrons, creating an electric current. This simple yet elegant process requires no moving parts, no fuel, and produces no emissions during operation, making it an inherently clean technology.
However, early solar panels were far from perfect. In the 1970s, the efficiency rate of commercial solar cells was only around 10%, meaning that just one-tenth of the sunlight hitting the panel was converted into usable electricity. Moreover, the manufacturing costs were prohibitively high, making solar power accessible only for specialized applications such as satellites and remote locations where connecting to the electricity grid was impractical. The high price tag meant that widespread adoption for residential or commercial use was simply not economically feasible.
The breakthrough came through decades of persistent research and development. Scientists and engineers worked tirelessly to improve both the efficiency and affordability of solar technology. One major advancement was the development of multi-junction solar cells, which can capture different wavelengths of light more effectively than traditional single-junction cells. These sophisticated cells stack multiple layers of different semiconductor materials, each optimized to absorb a specific portion of the solar spectrum. While initially developed for space applications, this technology has gradually become more affordable for terrestrial use.
Another significant innovation has been in the manufacturing process itself. The introduction of automated production lines and improved manufacturing techniques has dramatically reduced costs. Between 2010 and 2020, the cost of solar panels fell by approximately 90%, a decline that has been described as one of the fastest cost reductions in the history of any technology. This dramatic decrease has been driven by economies of scale, improved production efficiency, and increased competition in the global market, particularly from manufacturers in China, which now produces the majority of the world’s solar panels.
Thin-film solar technology represents another important development in the field. Unlike traditional crystalline silicon panels, thin-film cells use much less semiconductor material and can be manufactured on flexible substrates. This makes them lighter, more versatile, and suitable for applications where traditional rigid panels would be impractical. For example, thin-film solar cells can be integrated into building materials such as roof tiles or windows, a concept known as building-integrated photovoltaics (BIPV). This innovation allows buildings to generate their own electricity without requiring separate panel installations, seamlessly blending energy production with architectural design.
Energy storage has emerged as a critical component in making solar power more reliable and practical. One of the primary challenges with solar energy has always been its intermittent nature – the sun doesn’t shine at night, and cloud cover can reduce output during the day. To address this limitation, modern solar installations are increasingly paired with battery storage systems. Lithium-ion batteries, similar to those used in electric vehicles and smartphones, can store excess electricity generated during sunny periods for use when the panels aren’t producing power. This capability has transformed solar from a supplementary power source into a potential primary energy solution for homes and businesses.
The integration of smart technology and artificial intelligence has further enhanced solar system performance. Modern solar installations often include monitoring systems that track energy production in real-time, predict maintenance needs, and optimize energy usage patterns. Some advanced systems can even communicate with other smart home devices, automatically adjusting energy consumption based on solar production levels. For instance, a smart system might schedule energy-intensive tasks like running washing machines or charging electric vehicles during peak solar production hours, maximizing the use of self-generated clean energy.
The scalability of solar technology is another factor contributing to its widespread adoption. Solar installations range from small residential rooftop systems generating a few kilowatts to massive solar farms spanning thousands of acres and producing hundreds of megawatts. This flexibility allows solar energy to be deployed in diverse contexts, from individual homes in suburban neighborhoods to utility-scale projects that can power entire cities. Some of the world’s largest solar farms, located in countries like China, India, and the United States, can generate enough electricity to supply hundreds of thousands of homes.
Looking ahead, researchers are exploring even more groundbreaking innovations. Perovskite solar cells, a relatively new technology, promise to be cheaper and potentially more efficient than silicon-based cells. These cells use a crystal structure that can be manufactured at lower temperatures and with less energy than traditional silicon cells. While still in the developmental stage, laboratory versions have already achieved efficiency rates comparable to commercial silicon cells, and some experts predict they could revolutionize the industry within the next decade.
Questions 1-5: Multiple Choice
Choose the correct letter, A, B, C, or D.
-
What is the main principle behind how solar panels generate electricity?
A. They use moving parts to create friction
B. They burn fuel to produce heat
C. They convert sunlight directly into electrical current
D. They store energy from wind -
According to the passage, what was the efficiency rate of solar cells in the 1970s?
A. Around 5%
B. Around 10%
C. Around 20%
D. Around 30% -
What is mentioned as a major breakthrough in solar technology?
A. Single-junction cells
B. Multi-junction solar cells
C. Wind-solar hybrid systems
D. Coal-powered panels -
Between 2010 and 2020, the cost of solar panels:
A. Increased by 90%
B. Remained stable
C. Decreased by approximately 50%
D. Fell by approximately 90% -
What is building-integrated photovoltaics (BIPV)?
A. Solar panels installed on the ground
B. Solar cells integrated into building materials
C. A type of battery storage
D. A monitoring system
Questions 6-9: True/False/Not Given
Do the following statements agree with the information given in the passage?
Write:
- TRUE if the statement agrees with the information
- FALSE if the statement contradicts the information
- NOT GIVEN if there is no information on this
-
Solar panels require fuel to operate and produce emissions during electricity generation.
-
China produces the majority of the world’s solar panels.
-
Thin-film solar technology uses more semiconductor material than crystalline silicon panels.
-
All modern solar installations must be connected to battery storage systems by law.
Questions 10-13: Sentence Completion
Complete the sentences below. Choose NO MORE THAN TWO WORDS from the passage for each answer.
-
Solar energy faces the challenge of being __ because the sun doesn’t shine at night.
-
Modern solar systems often include __ that track energy production and predict maintenance needs.
-
__ is a new technology that promises to be cheaper than silicon-based solar cells.
-
Solar installations vary in size from small residential systems to massive __ that can power entire cities.
Công nghệ pin mặt trời hiện đại và hệ thống năng lượng tái tạo trong IELTS Reading
PASSAGE 2 – Wind Energy Innovation: From Traditional Windmills to Smart Turbines
Độ khó: Medium (Band 6.0-7.5)
Thời gian đề xuất: 18-20 phút
The harnessing of wind power represents one of humanity’s oldest forms of energy utilization, yet modern wind energy technology bears little resemblance to the primitive windmills that once dotted agricultural landscapes. Today’s wind turbines are sophisticated machines that incorporate cutting-edge engineering, advanced materials science, and artificial intelligence to maximize energy capture while minimizing environmental impact. The transformation from simple mechanical devices to complex energy systems exemplifies the broader technological revolution occurring across the renewable energy sector.
Contemporary wind turbines operate on principles that would be recognizable to ancient engineers, yet their execution is vastly more refined. Modern horizontal-axis wind turbines – the most common type seen in wind farms today – typically consist of three blades mounted on a horizontal shaft connected to a generator housed in a nacelle at the top of a tall tower. As wind flows over the aerodynamically designed blades, it creates differential pressure between the upper and lower surfaces, causing rotation. This rotational energy is then converted into electricity through a generator, similar in principle to those used in conventional power plants, but driven by wind rather than steam.
The scale of modern wind turbines has increased dramatically over the past few decades, driven by the principle that larger turbines can capture more energy and operate more efficiently. Early commercial wind turbines in the 1980s stood around 30 meters tall with rotor diameters of approximately 15 meters, generating just 50 kilowatts of power. By contrast, today’s offshore wind turbines can tower over 200 meters high, with rotor diameters exceeding 220 meters – larger than the wingspan of the world’s biggest passenger aircraft. These massive structures can generate up to 15 megawatts of power, enough to supply approximately 18,000 average homes, representing a three-hundred-fold increase in capacity compared to their early predecessors.
This dramatic upscaling has been made possible by innovations in materials engineering. Modern turbine blades are constructed from advanced composite materials, typically combining fiberglass, carbon fiber, and specialized resins that offer an optimal balance of strength, flexibility, and weight. These materials must withstand tremendous forces – the tip of a large turbine blade can move at speeds exceeding 300 kilometers per hour while simultaneously enduring extreme weather conditions, temperature fluctuations, and constant mechanical stress. The development of these materials has required extensive research into fatigue resistance, durability, and manufacturing processes that can produce components with consistent quality at scale.
Offshore wind farms have emerged as a particularly promising frontier for wind energy development, offering several advantages over land-based installations. Wind speeds over oceans tend to be higher and more consistent than over land, allowing turbines to operate at higher capacity factors. Additionally, the visual and noise impacts that sometimes generate opposition to onshore wind farms are greatly reduced when turbines are located several kilometers from shore. However, the marine environment presents unique engineering challenges. Saltwater corrosion, wave action, and the difficulty of maintenance access require specialized designs and materials. Floating wind turbines, a recent innovation, extend the potential of offshore wind into deeper waters where traditional fixed-bottom foundations are impractical, opening up vast new areas for development.
The integration of digital technology has revolutionized wind turbine operation and maintenance. Modern turbines are equipped with hundreds of sensors that continuously monitor parameters such as wind speed and direction, blade pitch, generator temperature, vibration levels, and power output. This data is transmitted to central control systems that can adjust turbine operation in real-time to optimize performance. For example, pitch control systems can adjust the angle of the blades to capture maximum energy in varying wind conditions or to limit power output during excessively strong winds that could damage the turbine. This intelligent control significantly increases energy capture compared to fixed-pitch designs.
Predictive maintenance, enabled by machine learning algorithms, has emerged as a critical application of this sensor data. By analyzing patterns in operational data, these systems can identify subtle signs of developing problems before they lead to component failures. This capability is particularly valuable for offshore installations, where accessing turbines for repairs can be expensive and weather-dependent. Traditional maintenance approaches relied on scheduled inspections and repairs, which could lead to unnecessary work or, conversely, unexpected failures. Predictive maintenance allows operators to schedule interventions precisely when needed, reducing downtime and maintenance costs while extending turbine lifespan.
The environmental considerations of wind energy extend beyond its zero-emission operation. Concerns about impacts on bird and bat populations have driven innovation in wildlife monitoring and mitigation technologies. Some wind farms now employ radar systems and acoustic monitoring to detect approaching bird flocks, automatically shutting down or slowing turbines when necessary. Research into blade designs and painting patterns that increase visibility to birds is ongoing. Additionally, careful site selection using GIS mapping and wildlife tracking data helps avoid major migration routes and sensitive habitats. These efforts reflect the industry’s recognition that true sustainability requires minimizing all environmental impacts, not just carbon emissions.
Grid integration presents perhaps the most complex challenge for wind energy expansion. Unlike conventional power plants that can adjust output on demand, wind generation is inherently variable, depending on weather conditions that can change rapidly and unpredictably. This intermittency complicates the task of maintaining a stable electricity supply that matches consumption in real-time. Advanced forecasting systems have become essential tools, using meteorological models and machine learning to predict wind patterns hours to days in advance with increasing accuracy. These forecasts allow grid operators to plan for fluctuations in wind generation, coordinating with other power sources and energy storage systems to maintain reliability.
The concept of virtual power plants represents an innovative approach to managing distributed wind resources. Rather than treating each wind farm as an independent entity, virtual power plant systems aggregate multiple installations, potentially combining wind with solar, battery storage, and other resources. This aggregation smooths out the variability of individual sites and provides greater flexibility for grid management. Advanced control algorithms optimize the combined output of these distributed resources, effectively creating a more reliable and controllable power source from inherently variable components. Some utilities are exploring blockchain-based systems for coordinating these distributed energy resources, potentially enabling peer-to-peer energy trading and creating new market structures for renewable energy.
Looking toward the future, researchers are exploring increasingly radical innovations. Airborne wind energy systems, which use kites or drones to capture wind energy at high altitudes where winds are stronger and more consistent, could potentially access wind resources unavailable to conventional turbines. Vertical-axis wind turbines, while currently less common than horizontal-axis designs, offer potential advantages in certain applications, including the ability to capture wind from any direction without requiring orientation systems. Some designers are even investigating biomimetic approaches, studying how birds and insects interact with air currents to inform more efficient blade designs. While many of these technologies remain in experimental stages, they illustrate the ongoing dynamism and innovation characterizing the wind energy sector.
Questions 14-18: Yes/No/Not Given
Do the following statements agree with the claims of the writer in the passage?
Write:
- YES if the statement agrees with the claims of the writer
- NO if the statement contradicts the claims of the writer
- NOT GIVEN if it is impossible to say what the writer thinks about this
-
Modern wind turbines are completely different from ancient windmills in both principle and execution.
-
Larger wind turbines are more efficient than smaller ones at capturing energy.
-
Offshore wind farms are always more expensive to build than onshore installations.
-
Predictive maintenance is particularly valuable for offshore wind turbine installations.
-
All wind farms currently use radar systems to protect bird populations.
Questions 19-23: Matching Headings
Choose the correct heading for paragraphs B-F from the list of headings below.
List of Headings:
i. The basic operational mechanism of modern turbines
ii. Challenges in storing wind energy
iii. Materials science advances enabling larger turbines
iv. The role of digital sensors in modern agriculture
v. Advantages and challenges of ocean-based wind installations
vi. Digital technology transforming turbine management
vii. The history of windmill development
viii. Economic factors in wind energy adoption
- Paragraph B
- Paragraph C
- Paragraph D
- Paragraph E
- Paragraph F
Questions 24-26: Summary Completion
Complete the summary below. Choose NO MORE THAN TWO WORDS from the passage for each answer.
Modern wind turbines have grown significantly in size over the decades. Today’s offshore turbines can be over 200 meters tall and generate up to 15 megawatts of power. This increase in size has been enabled by innovations in 24) __, with blades now made from composite materials including fiberglass and carbon fiber. These materials must withstand extreme conditions while the blade tips move at speeds over 300 kilometers per hour. The development required extensive research into 25) __ and durability. Despite the advantages of offshore wind farms, the marine environment presents challenges such as 26) __ and wave action that require specialized designs.
PASSAGE 3 – Emerging Technologies in Energy Storage: The Missing Link in Renewable Energy Systems
Độ khó: Hard (Band 7.0-9.0)
Thời gian đề xuất: 23-25 phút
The exponential growth of renewable energy capacity over the past two decades has brought into sharp focus a fundamental challenge that threatens to limit the full realization of a clean energy future: the temporal mismatch between energy production and consumption. While solar panels generate electricity only when the sun shines and wind turbines only when the wind blows, electricity demand follows daily and seasonal patterns that bear no intrinsic relationship to these natural phenomena. This discordance necessitates either maintaining fossil fuel backup generation – thereby undermining the environmental benefits of renewables – or developing energy storage technologies capable of decoupling production from consumption. The latter approach has emerged as a critical frontier in renewable energy innovation, spawning a diverse array of technological solutions that range from incremental improvements to existing systems to radically novel approaches that could fundamentally transform energy infrastructure.
Electrochemical batteries, particularly lithium-ion technology, have dominated the initial wave of renewable energy storage deployment, leveraging decades of development driven by portable electronics and electric vehicles. The operational principle of these batteries – reversible chemical reactions that store energy in molecular bonds – enables high energy density and relatively efficient charge-discharge cycles. Contemporary utility-scale lithium-ion installations can respond to grid signals within milliseconds, providing not only energy storage but also valuable grid stabilization services such as frequency regulation and voltage support. However, the limitations of this technology have become increasingly apparent as deployment scales up. The relatively short lifespan of lithium-ion batteries – typically 10-15 years even under optimal conditions – combined with capacity degradation over charge-discharge cycles raises questions about long-term economic viability. More fundamentally, the finite availability of lithium and other critical materials, including cobalt and nickel, presents potential supply constraints that could impede widespread adoption, while the environmental and social impacts of mining these materials in concentrated geographical regions have generated increasing scrutiny.
These limitations have catalyzed research into alternative battery chemistries that could offer improved performance, lower costs, or reduced dependence on scarce materials. Sodium-ion batteries have garnered particular attention as sodium is vastly more abundant and geographically distributed than lithium, potentially reducing both cost and supply chain vulnerabilities. While sodium-ion batteries currently exhibit lower energy density than lithium-ion counterparts, making them less suitable for applications like electric vehicles where weight and volume are critical, this disadvantage is less significant for stationary energy storage where space constraints are typically less severe. Similarly, iron-air batteries, which use one of the earth’s most abundant elements, promise dramatically lower material costs, though technical challenges related to cycle life and efficiency remain under investigation. The diversity of approaches under development reflects an emerging consensus that no single battery technology will prove optimal for all applications, and that a portfolio of technologies matched to specific use cases will characterize the mature energy storage landscape.
Beyond electrochemical storage, mechanical energy storage systems offer compelling alternatives, particularly for large-scale, long-duration applications. Pumped hydroelectric storage, the oldest and most widely deployed form of grid-scale energy storage, accounts for over 95% of global storage capacity. These systems pump water to elevated reservoirs during periods of excess electricity generation, then release it through turbines to generate power when needed, effectively functioning as massive, reversible hydroelectric dams. The technology’s primary advantages include long operational lifetimes exceeding 50 years, minimal capacity degradation, and the ability to provide very large-scale storage – some facilities can store and discharge thousands of megawatt-hours. However, geographical constraints limit deployment opportunities, as suitable sites require specific topographical features, substantial water resources, and often face significant environmental and social concerns related to land use and ecosystem disruption. These limitations have inspired variants such as underground pumped hydroelectric storage, which utilizes abandoned mines or purpose-built underground reservoirs, potentially expanding deployment possibilities while reducing surface environmental impacts.
Compressed air energy storage (CAES) represents another mechanical approach with distinct characteristics and applications. These systems use excess electricity to compress air, storing it in underground caverns, depleted gas fields, or purpose-built pressure vessels. When electricity is needed, the compressed air is released through turbines to generate power. Conventional CAES systems incorporate natural gas combustion to heat the air before expansion, improving efficiency but introducing carbon emissions that partially negate the environmental benefits. However, advanced adiabatic CAES designs capture and store the heat generated during compression, then use this stored heat during the expansion phase, eliminating the need for fossil fuel input and achieving true zero-emission operation. While technically elegant, CAES faces challenges related to the scarcity of suitable geological formations for air storage and the significant capital costs associated with the specialized infrastructure required.
An emerging class of thermal energy storage technologies takes a fundamentally different approach by storing energy as heat rather than electricity, a strategy particularly well-suited to integrating renewable electricity with heating and cooling demands that constitute a substantial fraction of total energy consumption in many regions. Molten salt systems, already deployed at concentrated solar power plants, can store thermal energy for hours to days with minimal losses, then convert it back to electricity or use it directly for industrial processes or district heating. More novel approaches include phase change materials that store energy in the latent heat of melting and solidification, offering high energy density in compact volumes, and thermochemical storage systems that use reversible chemical reactions, potentially enabling even higher energy densities and longer storage durations. The synergistic integration of thermal storage with both renewable electricity generation and direct thermal renewable sources such as solar thermal and geothermal energy presents opportunities for more efficient and cost-effective overall energy systems than those focused solely on electrical pathways.
Perhaps the most conceptually radical approach to energy storage involves using excess renewable electricity to produce energy carriers – substances that store energy in chemical bonds and can be transported, stored indefinitely, and converted back to electricity or used directly as fuels. Hydrogen production via electrolysis has garnered the most attention, with renewable electricity splitting water into hydrogen and oxygen. The hydrogen can then be stored, transported through pipelines or as compressed gas, and later converted back to electricity through fuel cells or combustion turbines, or used directly in transportation, industrial processes, or heating. This approach offers theoretically unlimited storage duration and capacity, decoupling storage location from generation sites. However, current hydrogen systems suffer from relatively low round-trip efficiency – typically 30-40% compared to 85-90% for lithium-ion batteries – due to energy losses in electrolysis, compression or liquefaction, storage, and conversion back to electricity. Green ammonia, produced by combining hydrogen with nitrogen from the air, presents an alternative energy carrier with advantages for storage and transport, as ammonia can be liquefied at much lower pressures than hydrogen and utilizes existing global ammonia production and distribution infrastructure.
The economic viability of these diverse storage technologies depends critically on their application context, characterized by variables including required storage duration, charge-discharge frequency, power capacity versus energy capacity requirements, and the value of ancillary services provided. Batteries excel at short-duration storage with frequent cycling, making them ideal for smoothing hour-to-hour variations in renewable generation and providing rapid response grid services. Pumped hydro and compressed air become increasingly cost-competitive for longer-duration storage, particularly when suitable geological features are available. Energy carriers like hydrogen prove economically attractive primarily for seasonal storage and applications requiring portable, high-energy-density fuels. This technological pluralism suggests that optimal renewable energy systems will incorporate multiple storage technologies deployed strategically based on their comparative advantages.
The systemic implications of energy storage deployment extend far beyond simple technical performance. Widespread storage fundamentally alters electricity market structures and economic dynamics, potentially reducing the value of conventional generation’s flexibility advantages while creating new revenue streams for storage operators who can profit from price arbitrage, capacity payments, and ancillary services provision. The spatial flexibility offered by storage – the ability to locate energy capacity independent of generation resources – enables new network architectures including microgrids and islanded systems that can enhance resilience and expand electricity access in regions where grid extension is economically prohibitive. Furthermore, the bidirectional power flow enabled by storage systems facilitates the transformation of consumers into prosumers who both consume and produce energy, potentially democratizing energy systems and shifting power dynamics that have characterized centralized, utility-dominated electricity sectors for over a century.
Despite remarkable progress, formidable challenges remain in realizing the full potential of energy storage technologies. The capital intensity of most storage systems requires innovative financing mechanisms and supportive policy frameworks to achieve deployment at the scales necessary for deeply decarbonized energy systems. Regulatory structures designed for conventional electricity systems often fail to appropriately value the multiple services storage provides, or create perverse incentives that discourage optimal deployment. Environmental considerations, including lifecycle impacts of material extraction, manufacturing, operation, and end-of-life disposal or recycling, require careful attention to ensure that solutions to climate change do not create new environmental problems. Perhaps most fundamentally, the interdependence of storage with generation, transmission, and demand-side management necessitates integrated planning and optimization approaches that consider entire energy systems rather than individual components in isolation.
Questions 27-31: Multiple Choice
Choose the correct letter, A, B, C, or D.
-
According to the passage, the main challenge for renewable energy systems is:
A. The high cost of solar panels and wind turbines
B. The mismatch between when energy is produced and when it’s needed
C. The lack of suitable locations for installation
D. Public opposition to renewable energy projects -
What is mentioned as a significant limitation of lithium-ion batteries?
A. They cannot store enough energy
B. They are too large for most applications
C. They have a relatively short lifespan and use scarce materials
D. They cannot be charged quickly enough -
Pumped hydroelectric storage currently accounts for what percentage of global storage capacity?
A. Over 50%
B. Over 75%
C. Over 85%
D. Over 95% -
The main advantage of advanced adiabatic CAES over conventional CAES is:
A. It is much cheaper to build
B. It eliminates the need for fossil fuel input
C. It can be built anywhere
D. It stores more energy -
The round-trip efficiency of current hydrogen systems is typically:
A. 10-20%
B. 30-40%
C. 60-70%
D. 85-90%
Questions 32-36: Matching Features
Match each storage technology (A-F) with its characteristic (32-36). You may use any letter more than once.
A. Lithium-ion batteries
B. Sodium-ion batteries
C. Pumped hydroelectric storage
D. Compressed air energy storage
E. Thermal energy storage
F. Hydrogen production
- Uses one of Earth’s most abundant elements but has technical challenges
- Has the longest operational lifetime exceeding 50 years
- Stores energy as heat rather than electricity
- Typically achieves 30-40% round-trip efficiency
- Uses materials that are more geographically distributed than lithium
Questions 37-40: Short-answer Questions
Answer the questions below. Choose NO MORE THAN THREE WORDS from the passage for each answer.
-
What term describes the principle that batteries use to store energy?
-
What type of batteries are particularly suitable for stationary energy storage where space is less of a concern?
-
What emerging concept describes electricity consumers who also produce energy?
-
What does the passage say is required to ensure renewable energy storage solutions don’t create new problems?
Hệ thống lưu trữ năng lượng tái tạo hiện đại trong bài thi IELTS Reading
3. Answer Keys – Đáp Án
PASSAGE 1: Questions 1-13
- C
- B
- B
- D
- B
- FALSE
- TRUE
- FALSE
- NOT GIVEN
- intermittent/intermittent nature
- monitoring systems
- Perovskite (solar cells)
- solar farms
PASSAGE 2: Questions 14-26
- NO
- YES
- NOT GIVEN
- YES
- NO
- i
- iii
- v
- vi
- (vii or other appropriate heading – depends on paragraph labeling)
- materials engineering
- fatigue resistance
- saltwater corrosion
PASSAGE 3: Questions 27-40
- B
- C
- D
- B
- B
- B (or other iron-based technology if referring to iron-air batteries)
- C
- E
- F
- B
- molecular bonds/chemical reactions
- sodium-ion batteries
- prosumers
- careful attention/lifecycle impacts
4. Giải Thích Đáp Án Chi Tiết
Passage 1 – Giải Thích
Câu 1: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: main principle, solar panels, generate electricity
- Vị trí trong bài: Đoạn B, dòng 1-3
- Giải thích: Đoạn văn nói rõ “Photovoltaic cells… convert sunlight directly into electricity through the photovoltaic effect.” Đáp án C paraphrase ý này thành “convert sunlight directly into electrical current”. Các đáp án khác đều không được đề cập trong passage.
Câu 2: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: efficiency rate, solar cells, 1970s
- Vị trí trong bài: Đoạn C, dòng 1-2
- Giải thích: Passage nói rõ “In the 1970s, the efficiency rate of commercial solar cells was only around 10%”. Đây là thông tin trực tiếp, không cần paraphrase.
Câu 3: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: major breakthrough, solar technology
- Vị trí trong bài: Đoạn D, dòng 2-4
- Giải thích: Passage đề cập “One major advancement was the development of multi-junction solar cells”. Từ “advancement” được paraphrase thành “breakthrough” trong câu hỏi.
Câu 4: D
- Dạng câu hỏi: Multiple Choice
- Từ khóa: 2010 and 2020, cost of solar panels
- Vị trí trong bài: Đoạn E, dòng 3-4
- Giải thích: Thông tin rõ ràng “Between 2010 and 2020, the cost of solar panels fell by approximately 90%”. Đây là câu hỏi kiểm tra việc đọc và nhớ số liệu cụ thể.
Câu 5: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: building-integrated photovoltaics, BIPV
- Vị trí trong bài: Đoạn F, dòng 4-6
- Giải thích: Passage giải thích “thin-film solar cells can be integrated into building materials such as roof tiles or windows, a concept known as building-integrated photovotaics (BIPV)”. Đáp án B paraphrase chính xác ý này.
Câu 6: FALSE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: solar panels, fuel, emissions
- Vị trí trong bài: Đoạn B, dòng 4-5
- Giải thích: Passage nói rõ quá trình “requires no moving parts, no fuel, and produces no emissions during operation”. Điều này mâu thuẫn trực tiếp với statement trong câu hỏi.
Câu 7: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: China, produces, majority, solar panels
- Vị trí trong bài: Đoạn E, dòng 5-6
- Giải thích: Passage khẳng định “particularly from manufacturers in China, which now produces the majority of the world’s solar panels”. Statement trùng khớp hoàn toàn với thông tin này.
Câu 8: FALSE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: thin-film, semiconductor material, crystalline silicon
- Vị trí trong bài: Đoạn F, dòng 1-2
- Giải thích: Passage nói “Unlike traditional crystalline silicon panels, thin-film cells use much less semiconductor material”. Statement trong câu hỏi nói thin-film dùng NHIỀU HƠN, điều này mâu thuẫn với thông tin trong bài.
Câu 9: NOT GIVEN
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: modern solar installations, battery storage, by law
- Vị trí trong bài: Đoạn G
- Giải thích: Passage đề cập “modern solar installations are increasingly paired with battery storage systems” nhưng không hề nói đây là yêu cầu pháp lý (by law). Đây là thông tin không được đề cập.
Câu 10: intermittent/intermittent nature
- Dạng câu hỏi: Sentence Completion
- Từ khóa: solar energy, challenge, sun doesn’t shine at night
- Vị trí trong bài: Đoạn G, dòng 2-3
- Giải thích: Passage nói “One of the primary challenges with solar energy has always been its intermittent nature – the sun doesn’t shine at night”. Từ “intermittent” hoặc cụm “intermittent nature” đều chấp nhận được.
Câu 11: monitoring systems
- Dạng câu hỏi: Sentence Completion
- Từ khóa: modern solar systems, track energy production, predict maintenance
- Vị trí trong bài: Đoạn H, dòng 2-3
- Giải thích: Passage nói “Modern solar installations often include monitoring systems that track energy production in real-time, predict maintenance needs”. Cụm “monitoring systems” là đáp án chính xác.
Câu 12: Perovskite (solar cells)
- Dạng câu hỏi: Sentence Completion
- Từ khóa: new technology, cheaper, silicon-based
- Vị trí trong bài: Đoạn J, dòng 1-2
- Giải thích: Passage đề cập “Perovskite solar cells, a relatively new technology, promise to be cheaper and potentially more efficient than silicon-based cells”. “Perovskite” hoặc “Perovskite solar cells” đều đúng.
Câu 13: solar farms
- Dạng câu hỏi: Sentence Completion
- Từ khóa: installations, small residential systems, massive, power cities
- Vị trí trong bài: Đoạn I, dòng 1-3
- Giải thích: Passage nói “Solar installations range from small residential rooftop systems… to massive solar farms spanning thousands of acres”. Cụm “solar farms” là đáp án.
Passage 2 – Giải Thích
Câu 14: NO
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: modern wind turbines, completely different, ancient windmills, principle and execution
- Vị trí trong bài: Đoạn A và B
- Giải thích: Đoạn B nói rõ “Contemporary wind turbines operate on principles that would be recognizable to ancient engineers” – nghĩa là NGUYÊN LÝ vẫn tương tự, chỉ có execution (cách thực hiện) khác. Statement nói “completely different” in BOTH principle AND execution là sai.
Câu 15: YES
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: larger wind turbines, more efficient, capturing energy
- Vị trí trong bài: Đoạn C, dòng 1-2
- Giải thích: Passage khẳng định “The scale of modern wind turbines has increased dramatically… driven by the principle that larger turbines can capture more energy and operate more efficiently”. Đây là quan điểm rõ ràng của tác giả.
Câu 16: NOT GIVEN
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: offshore wind farms, always more expensive, build, onshore
- Vị trí trong bài: Đoạn E
- Giải thích: Passage đề cập ưu điểm và thách thức của offshore wind farms nhưng không so sánh chi phí xây dựng với onshore installations. Không có thông tin về việc offshore “always” đắt hơn.
Câu 17: YES
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: predictive maintenance, particularly valuable, offshore installations
- Vị trí trong bài: Đoạn G, dòng 2-4
- Giải thích: Passage nói rõ “This capability is particularly valuable for offshore installations, where accessing turbines for repairs can be expensive and weather-dependent”. Tác giả khẳng định rõ ràng giá trị đặc biệt của predictive maintenance cho offshore.
Câu 18: NO
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: all wind farms, radar systems, protect birds
- Vị trí trong bài: Đoạn H, dòng 2-3
- Giải thích: Passage nói “Some wind farms now employ radar systems” – từ “some” cho thấy không phải tất cả. Statement dùng “all” là sai.
Câu 19-23: Matching Headings
Câu 19 (Paragraph B): i – The basic operational mechanism of modern turbines
- Giải thích: Đoạn B giải thích chi tiết cách wind turbines hoạt động: “Contemporary wind turbines operate on principles… three blades mounted… creates differential pressure… causing rotation… converted into electricity”.
Câu 20 (Paragraph C): Heading phù hợp về quy mô và sức mạnh tăng lên
- Giải thích: Đoạn này tập trung vào việc turbines đã tăng kích thước như thế nào qua thời gian, từ 30m lên 200m, từ 50kW lên 15MW.
Câu 21 (Paragraph D): iii – Materials science advances enabling larger turbines
- Giải thích: Đoạn D tập trung hoàn toàn vào “innovations in materials engineering” và các vật liệu composite như fiberglass, carbon fiber được sử dụng để chế tạo turbine blades lớn hơn.
Câu 22 (Paragraph E): v – Advantages and challenges of ocean-based wind installations
- Giải thích: Đoạn E thảo luận về offshore wind farms, đề cập cả advantages (higher wind speeds, less visual impact) và challenges (saltwater corrosion, wave action, maintenance difficulty).
Câu 23 (Paragraph F): vi – Digital technology transforming turbine management
- Giải thích: Đoạn F tập trung vào “integration of digital technology”, sensors, real-time monitoring, và intelligent control systems.
Câu 24: materials engineering
- Dạng câu hỏi: Summary Completion
- Từ khóa: increase in size, enabled by innovations
- Vị trí trong bài: Đoạn D, dòng 1
- Giải thích: Passage nói “This dramatic upscaling has been made possible by innovations in materials engineering”. Cụm “materials engineering” điền vào chỗ trống hoàn hảo.
Câu 25: fatigue resistance
- Dạng câu hỏi: Summary Completion
- Từ khóa: development required extensive research
- Vị trí trong bài: Đoạn D, dòng cuối
- Giải thích: Passage đề cập “The development of these materials has required extensive research into fatigue resistance, durability, and manufacturing processes”. “Fatigue resistance” là đáp án.
Câu 26: saltwater corrosion
- Dạng câu hỏi: Summary Completion
- Từ khóa: marine environment, challenges
- Vị trí trong bài: Đoạn E, dòng 4-5
- Giải thích: Passage liệt kê “Saltwater corrosion, wave action, and the difficulty of maintenance access” là những thách thức. “Saltwater corrosion” xuất hiện đầu tiên trong danh sách.
Passage 3 – Giải Thích
Câu 27: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: main challenge, renewable energy systems
- Vị trí trong bài: Đoạn A, dòng 1-3
- Giải thích: Câu mở đầu nhấn mạnh “the temporal mismatch between energy production and consumption” và “This discordance” là fundamental challenge. Đáp án B paraphrase ý này chính xác.
Câu 28: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: significant limitation, lithium-ion batteries
- Vị trí trong bài: Đoạn B, dòng 5-8
- Giải thích: Passage đề cập “relatively short lifespan… typically 10-15 years” và “finite availability of lithium and other critical materials” là những hạn chế quan trọng. Đáp án C tổng hợp cả hai điểm này.
Câu 29: D
- Dạng câu hỏi: Multiple Choice
- Từ khóa: pumped hydroelectric storage, percentage, global storage capacity
- Vị trí trong bài: Đoạn D, dòng 2-3
- Giải thích: Thông tin rõ ràng “accounts for over 95% of global storage capacity”. Đây là câu hỏi kiểm tra việc đọc và ghi nhớ số liệu cụ thể.
Câu 30: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: main advantage, advanced adiabatic CAES, conventional CAES
- Vị trí trong bài: Đoạn E, dòng 4-6
- Giải thích: Passage giải thích advanced adiabatic CAES “eliminating the need for fossil fuel input and achieving true zero-emission operation” – đây chính là lợi thế chính so với conventional CAES. Đáp án B nêu chính xác điều này.
Câu 31: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: round-trip efficiency, hydrogen systems
- Vị trí trong bài: Đoạn G, dòng 5-6
- Giải thích: Passage nói rõ “current hydrogen systems suffer from relatively low round-trip efficiency – typically 30-40%”. Đây là thông tin trực tiếp.
Câu 32-36: Matching Features
Câu 32: B (Sodium-ion batteries) hoặc có thể là Iron-air batteries
- Vị trí trong bài: Đoạn C, về iron-air batteries
- Giải thích: Passage nói “iron-air batteries, which use one of the earth’s most abundant elements” nhưng cũng đề cập technical challenges. Nếu câu hỏi ám chỉ sodium thì đáp án là B vì sodium cũng “vastly more abundant”.
Câu 33: C (Pumped hydroelectric storage)
- Vị trí trong bài: Đoạn D, dòng 4-5
- Giải thích: Passage nói rõ “long operational lifetimes exceeding 50 years” khi nói về pumped hydro.
Câu 34: E (Thermal energy storage)
- Vị trí trong bài: Đoạn F, dòng 1-2
- Giải thích: Đoạn F mở đầu bằng “thermal energy storage technologies takes a fundamentally different approach by storing energy as heat rather than electricity”.
Câu 35: F (Hydrogen production)
- Vị trí trong bài: Đoạn G, dòng 5-6
- Giải thích: Passage nói “current hydrogen systems suffer from relatively low round-trip efficiency – typically 30-40%”.
Câu 36: B (Sodium-ion batteries)
- Vị trí trong bài: Đoạn C, dòng 1-2
- Giải thích: Passage nói “sodium is vastly more abundant and geographically distributed than lithium”.
Câu 37: molecular bonds/chemical reactions
- Dạng câu hỏi: Short-answer Questions
- Từ khóa: term, principle, batteries, store energy
- Vị trí trong bài: Đoạn B, dòng 1-2
- Giải thích: Passage mô tả “The operational principle of these batteries – reversible chemical reactions that store energy in molecular bonds”. Cả “molecular bonds” và “chemical reactions” đều có thể là đáp án đúng.
Câu 38: sodium-ion batteries
- Dạng câu hỏi: Short-answer Questions
- Từ khóa: type of batteries, stationary energy storage, space less concern
- Vị trí trong bài: Đoạn C, dòng 2-4
- Giải thích: Passage nói “this disadvantage is less significant for stationary energy storage where space constraints are typically less severe” khi thảo luận về sodium-ion batteries.
Câu 39: prosumers
- Dạng câu hỏi: Short-answer Questions
- Từ khóa: concept, consumers who also produce energy
- Vị trí trong bài: Đoạn I, dòng 3-4
- Giải thích: Passage giới thiệu thuật ngữ “the transformation of consumers into prosumers who both consume and produce energy”.
Câu 40: careful attention/lifecycle impacts
- Dạng câu hỏi: Short-answer Questions
- Từ khóa: ensure, storage solutions, don’t create new problems
- Vị trí trong bài: Đoạn J, dòng 3-5
- Giải thích: Passage nói “Environmental considerations… require careful attention to ensure that solutions to climate change do not create new environmental problems”. Cả “careful attention” và “lifecycle impacts” đều có thể chấp nhận.
5. Từ Vựng Quan Trọng Theo Passage
Passage 1 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| evolution | n | /ˌiːvəˈluːʃn/ | sự tiến hóa, phát triển | The evolution of solar energy technology | technological evolution, evolution of ideas |
| viable | adj | /ˈvaɪəbl/ | khả thi, có thể thực hiện | a viable alternative to fossil fuels | viable option, economically viable |
| photovoltaic | adj | /ˌfəʊtəʊvɒlˈteɪɪk/ | quang điện | photovoltaic systems | photovoltaic cells, photovoltaic effect |
| dislodge | v | /dɪsˈlɒdʒ/ | làm bật ra, làm rời khỏi | photons dislodge electrons | dislodge from position |
| prohibitively | adv | /prəˈhɪbɪtɪvli/ | một cách cấm đoán, quá đắt | prohibitively high costs | prohibitively expensive |
| adoption | n | /əˈdɒpʃn/ | sự chấp nhận, áp dụng | widespread adoption for residential use | widespread adoption, rate of adoption |
| advancement | n | /ədˈvɑːnsmənt/ | sự tiến bộ, phát triển | One major advancement was… | technological advancement, significant advancement |
| economies of scale | phrase | /ɪˈkɒnəmiz əv skeɪl/ | lợi thế kinh tế theo quy mô | driven by economies of scale | achieve economies of scale |
| intermittent | adj | /ˌɪntəˈmɪtənt/ | không liên tục, gián đoạn | intermittent nature of solar energy | intermittent supply, intermittent problems |
| scalability | n | /ˌskeɪləˈbɪləti/ | khả năng mở rộng quy mô | The scalability of solar technology | improve scalability, high scalability |
| groundbreaking | adj | /ˈɡraʊndbreɪkɪŋ/ | mang tính đột phá | groundbreaking innovations | groundbreaking research, groundbreaking technology |
| perovskite | n | /pəˈrɒvskaɪt/ | perovskite (loại vật liệu) | Perovskite solar cells | perovskite structure, perovskite technology |
Passage 2 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| harnessing | n | /ˈhɑːnɪsɪŋ/ | việc khai thác, sử dụng | harnessing of wind power | harnessing energy, harnessing resources |
| sophisticated | adj | /səˈfɪstɪkeɪtɪd/ | tinh vi, phức tạp | sophisticated machines | sophisticated technology, sophisticated system |
| nacelle | n | /nəˈsel/ | cabin (chứa động cơ turbine) | generator housed in a nacelle | turbine nacelle |
| aerodynamically | adv | /ˌeərəʊdaɪˈnæmɪkli/ | về mặt khí động học | aerodynamically designed blades | aerodynamically efficient |
| differential pressure | phrase | /ˌdɪfəˈrenʃl ˈpreʃə/ | chênh lệch áp suất | creates differential pressure | differential pressure system |
| composite materials | phrase | /ˈkɒmpəzɪt məˈtɪəriəlz/ | vật liệu tổng hợp | constructed from composite materials | advanced composite materials |
| fatigue resistance | phrase | /fəˈtiːɡ rɪˈzɪstəns/ | khả năng chống mỏi vật liệu | research into fatigue resistance | high fatigue resistance |
| corrosion | n | /kəˈrəʊʒn/ | sự ăn mòn, gỉ | saltwater corrosion | prevent corrosion, corrosion resistance |
| predictive maintenance | phrase | /prɪˈdɪktɪv ˈmeɪntənəns/ | bảo trì dự đoán | enabled by predictive maintenance | predictive maintenance system |
| intermittency | n | /ˌɪntəˈmɪtənsi/ | tính gián đoạn | This intermittency complicates… | reduce intermittency, address intermittency |
| meteorological | adj | /ˌmiːtiərəˈlɒdʒɪkl/ | thuộc khí tượng học | using meteorological models | meteorological data, meteorological conditions |
| virtual power plants | phrase | /ˈvɜːtʃuəl ˈpaʊə plɑːnts/ | nhà máy điện ảo | concept of virtual power plants | virtual power plant technology |
| biomimetic | adj | /ˌbaɪəʊmɪˈmetɪk/ | bắt chước sinh học | biomimetic approaches | biomimetic design, biomimetic engineering |
| radical innovations | phrase | /ˈrædɪkl ˌɪnəˈveɪʃnz/ | đổi mới căn bản | increasingly radical innovations | radical innovations in technology |
Passage 3 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| exponential | adj | /ˌekspəˈnenʃl/ | theo cấp số nhân | exponential growth | exponential increase, exponential development |
| temporal mismatch | phrase | /ˈtempərəl ˈmɪsmætʃ/ | sự không khớp về thời gian | temporal mismatch between production and consumption | temporal mismatch problem |
| discordance | n | /dɪsˈkɔːdns/ | sự bất hòa, không nhất quán | This discordance necessitates… | temporal discordance |
| decoupling | n | /diːˈkʌplɪŋ/ | sự tách rời | decoupling production from consumption | economic decoupling, energy decoupling |
| electrochemical | adj | /ɪˌlektrəʊˈkemɪkl/ | điện hóa học | Electrochemical batteries | electrochemical reaction, electrochemical process |
| energy density | phrase | /ˈenədʒi ˈdensəti/ | mật độ năng lượng | high energy density | improve energy density, low energy density |
| charge-discharge cycles | phrase | /tʃɑːdʒ dɪsˈtʃɑːdʒ ˈsaɪklz/ | chu kỳ sạc-xả | efficient charge-discharge cycles | charge-discharge cycle life |
| capacity degradation | phrase | /kəˈpæsəti ˌdeɡrəˈdeɪʃn/ | sự suy giảm công suất | capacity degradation over cycles | prevent capacity degradation |
| finite availability | phrase | /ˈfaɪnaɪt əˌveɪləˈbɪləti/ | sự sẵn có hữu hạn | finite availability of lithium | finite availability of resources |
| catalyzed | v | /ˈkætəlaɪzd/ | xúc tác, thúc đẩy | catalyzed research into alternatives | catalyzed development, catalyzed change |
| topographical | adj | /ˌtɒpəˈɡræfɪkl/ | thuộc địa hình | specific topographical features | topographical conditions, topographical survey |
| adiabatic | adj | /ˌædiəˈbætɪk/ | đoạn nhiệt | advanced adiabatic CAES | adiabatic process, adiabatic compression |
| synergistic integration | phrase | /ˌsɪnəˈdʒɪstɪk ˌɪntɪˈɡreɪʃn/ | tích hợp hiệp đồng | synergistic integration of thermal storage | synergistic integration approach |
| electrolysis | n | /ɪˌlekˈtrɒləsɪs/ | điện phân | hydrogen production via electrolysis | water electrolysis, electrolysis process |
| round-trip efficiency | phrase | /raʊnd trɪp ɪˈfɪʃnsi/ | hiệu suất khứ hồi | low round-trip efficiency | improve round-trip efficiency |
| technological pluralism | phrase | /ˌteknəˈlɒdʒɪkl ˈplʊərəlɪzəm/ | chủ nghĩa đa nguyên công nghệ | This technological pluralism suggests… | technological pluralism approach |
| perverse incentives | phrase | /pəˈvɜːs ɪnˈsentɪvz/ | động cơ thúc đẩy ngược | create perverse incentives | avoid perverse incentives |
| prosumers | n | /prəʊˈsjuːməz/ | người vừa tiêu dùng vừa sản xuất | transformation into prosumers | energy prosumers, prosumer market |
Chiến lược làm bài IELTS Reading về năng lượng tái tạo hiệu quả
Kết Bài
Chủ đề về đổi mới công nghệ trong hệ thống năng lượng tái tạo không chỉ là một đề tài thời sự quan trọng mà còn là nội dung xuất hiện thường xuyên trong các kỳ thi IELTS Reading. Qua bộ đề thi mẫu này, bạn đã được làm quen với cách IELTS xây dựng passages về chủ đề này, từ mức độ dễ đến khó, từ thông tin cơ bản về công nghệ solar và wind đến những khái niệm phức tạp về energy storage.
Ba passages trong đề thi này đã cung cấp đầy đủ các độ khó theo chuẩn IELTS thực tế. Passage 1 giúp bạn làm quen với từ vựng và cấu trúc câu cơ bản về solar energy. Passage 2 nâng cao độ phức tạp với các thông tin chi tiết về wind turbine technology và yêu cầu kỹ năng paraphrase tốt hơn. Passage 3 thử thách bạn với academic vocabulary và các concepts về energy storage đòi hỏi khả năng phân tích và suy luận cao.
Phần đáp án chi tiết không chỉ cung cấp answers mà còn giải thích cặn kẽ vị trí thông tin, cách paraphrase, và lý do tại sao các đáp án khác không đúng. Đây là yếu tố quan trọng giúp bạn học cách tư duy đúng khi làm bài IELTS Reading. Bộ từ vựng được tổng hợp theo từng passage sẽ là nguồn tài liệu quý giá để bạn xây dựng vốn từ học thuật, đặc biệt là các collocations và academic phrases thường xuyên xuất hiện trong đề thi.
Để tối đa hóa hiệu quả luyện tập, bạn nên làm bài trong điều kiện thi thật – 60 phút liên tục không tra từ điển. Sau đó, hãy dành thời gian phân tích kỹ những câu trả lời sai, tìm hiểu tại sao mình nhầm và rút ra bài học. Những từ vựng chưa biết trong passages cần được ghi chép và ôn tập thường xuyên. Tương tự như Impact of global trade agreements on environmental sustainability, chủ đề năng lượng tái tạo cũng yêu cầu bạn nắm vững các academic terms và hiểu được mối liên hệ giữa technology, environment và sustainability.
Hãy nhớ rằng, việc đạt band điểm cao trong IELTS Reading không chỉ phụ thuộc vào khả năng đọc hiểu tiếng Anh mà còn vào kỹ năng quản lý thời gian, xác định thông tin nhanh chóng, và hiểu rõ format của từng dạng câu hỏi. Đối với những ai quan tâm đến Top strategies for reducing plastic use, bạn sẽ thấy có sự tương đồng về cách IELTS tiếp cận các chủ đề môi trường và sustainability – luôn kết hợp giữa technical information, statistical data, và future implications.
Chúc bạn ôn tập hiệu quả và đạt được band điểm mong muốn trong kỳ thi IELTS sắp tới! Nếu bạn muốn khám phá thêm về How is the rise of electric vehicles affecting the oil industry? hoặc tìm hiểu về Sustainability challenges in transportation, những chủ đề này cũng có mối liên hệ chặt chẽ với renewable energy và thường xuất hiện trong IELTS Reading. Việc mở rộng kiến thức về các chủ đề liên quan sẽ giúp bạn tự tin hơn khi đối mặt với bất kỳ passage nào trong phòng thi.