IELTS Reading: Technological Solutions to Energy Storage – Đề Thi Mẫu Có Đáp Án Chi Tiết

Trong bối cảnh năng lượng tái tạo đang phát triển mạnh mẽ trên toàn cầu, Technological Solutions To Energy Storage (các giải pháp công nghệ lưu trữ năng lượng) đã trở thành chủ đề nóng trong các kỳ thi IELTS Reading gần đây. Chủ đề này thường xuyên xuất hiện trong các đề thi IELTS Academic Reading, đặc biệt ở các passage có độ khó trung bình đến cao, do tính chất khoa học và tầm quan trọng của nó đối với tương lai năng lượng toàn cầu.

Bài viết này cung cấp một bộ đề thi IELTS Reading hoàn chỉnh với 3 passages tăng dần độ khó (Easy → Medium → Hard), bao gồm 40 câu hỏi với đa dạng các dạng bài giống thi thật 100%. Bạn sẽ được luyện tập với các dạng câu hỏi phổ biến như Multiple Choice, True/False/Not Given, Yes/No/Not Given, Matching Headings, Summary Completion và nhiều dạng khác. Mỗi câu hỏi đều có đáp án chi tiết kèm giải thích giúp bạn hiểu rõ cách paraphrase và xác định thông tin chính xác.

Ngoài ra, bạn sẽ học được từ vựng học thuật quan trọng liên quan đến công nghệ năng lượng, các kỹ thuật làm bài hiệu quả và cách quản lý thời gian tối ưu. Đề thi này phù hợp cho học viên từ band 5.0 trở lên, giúp bạn làm quen với văn phong học thuật và rèn luyện kỹ năng đọc hiểu ở mức độ cao.

Hướng Dẫn Làm Bài IELTS Reading

Tổng Quan Về IELTS Reading Test

IELTS Academic Reading là bài thi kéo dài 60 phút với 3 passages và tổng cộng 40 câu hỏi. Mỗi passage có độ dài khoảng 700-1000 từ và độ khó tăng dần. Điểm số được tính dựa trên số câu trả lời đúng, không bị trừ điểm khi sai.

Phân bổ thời gian khuyến nghị:

  • Passage 1: 15-17 phút (độ khó thấp nhất, cần làm nhanh để dành thời gian cho passage 3)
  • Passage 2: 18-20 phút (độ khó trung bình, cần cân bằng tốc độ và độ chính xác)
  • Passage 3: 23-25 phút (độ khó cao nhất, cần thời gian suy luận nhiều hơn)

Lưu ý quan trọng: Bạn cần tự chuyển đáp án vào answer sheet trong thời gian 60 phút. Không có thêm thời gian để chuyển đáp án như phần Listening.

Các Dạng Câu Hỏi Trong Đề Này

Đề thi mẫu này bao gồm đầy đủ các dạng câu hỏi phổ biến nhất trong IELTS Reading:

  1. Multiple Choice – Câu hỏi trắc nghiệm nhiều lựa chọn
  2. True/False/Not Given – Xác định tính đúng sai hoặc không có thông tin
  3. Yes/No/Not Given – Xác định quan điểm tác giả
  4. Matching Headings – Nối tiêu đề với đoạn văn
  5. Summary Completion – Hoàn thành đoạn tóm tắt
  6. Matching Features – Nối thông tin với đặc điểm
  7. Short-answer Questions – Câu hỏi trả lời ngắn

Các công nghệ lưu trữ năng lượng hiện đại trong IELTS ReadingCác công nghệ lưu trữ năng lượng hiện đại trong IELTS Reading

IELTS Reading Practice Test

PASSAGE 1 – The Evolution of Battery Technology

Độ khó: Easy (Band 5.0-6.5)

Thời gian đề xuất: 15-17 phút

Energy storage has become one of the most critical challenges facing modern society as we transition from fossil fuels to renewable energy sources. The sun doesn’t always shine, and the wind doesn’t always blow, which means that the energy generated from solar panels and wind turbines needs to be stored for use during periods when these natural resources are unavailable. This fundamental problem has driven scientists and engineers to develop increasingly sophisticated battery technologies that can store large amounts of energy efficiently and cost-effectively.

The history of battery technology dates back to 1800, when Italian physicist Alessandro Volta invented the first true battery, known as the voltaic pile. This groundbreaking device consisted of alternating discs of zinc and copper separated by cardboard soaked in salt water. While primitive by today’s standards, Volta’s invention demonstrated the basic principle that would underpin all future batteries: the conversion of chemical energy into electrical energy through controlled reactions. Throughout the 19th century, various improvements were made to battery design, but these early batteries were bulky, inefficient, and had limited practical applications beyond laboratory experiments and telegraph systems.

The 20th century witnessed remarkable advances in battery technology, driven primarily by the demands of portable consumer electronics and, later, electric vehicles. The development of alkaline batteries in the 1950s provided a more reliable and longer-lasting power source for everyday devices like flashlights and radios. However, these batteries were still non-rechargeable, limiting their usefulness for applications requiring repeated use. The breakthrough came with rechargeable battery chemistry, particularly nickel-cadmium (NiCd) batteries in the 1960s and nickel-metal hydride (NiMH) batteries in the 1980s. These technologies allowed users to recharge their batteries hundreds of times, dramatically reducing waste and cost. For a deeper understanding of how renewable technologies are changing industries, consider exploring how renewable energy is influencing global oil markets.

The real revolution in energy storage, however, began with the commercialization of lithium-ion batteries in the early 1990s. Developed through decades of research by scientists including John Goodenough, Stanley Whittingham, and Akira Yoshino (who shared the 2019 Nobel Prize in Chemistry for their work), lithium-ion batteries offered a quantum leap in performance. Compared to previous technologies, they provided much higher energy density – meaning they could store more energy in a smaller, lighter package. They also demonstrated excellent charge retention, losing only a small percentage of their charge when not in use, and could withstand thousands of charge-discharge cycles without significant degradation.

Today, lithium-ion batteries power everything from smartphones and laptops to electric cars and even entire communities through grid-scale storage systems. The battery pack in a modern electric vehicle like a Tesla Model 3 can store approximately 75 kilowatt-hours of energy – enough to power an average home for several days. Moreover, the cost of lithium-ion batteries has fallen dramatically, dropping by nearly 90% since 2010 according to Bloomberg NEF data. This cost reduction has been crucial in making electric vehicles economically competitive with traditional gasoline-powered cars and has enabled the deployment of battery storage systems that help balance electricity grids powered by intermittent renewable energy.

Despite their success, current lithium-ion technology faces several important limitations. The extraction of lithium and cobalt, key materials used in these batteries, raises environmental and ethical concerns. Mining operations can damage ecosystems, and cobalt mining in particular has been associated with poor labor practices in some countries. Additionally, while lithium-ion batteries have become much safer over the years, they can still pose fire risks if damaged or improperly manufactured. The search for alternative battery chemistries continues, with promising research into sodium-ion batteries, which use abundant and inexpensive sodium instead of lithium, and solid-state batteries, which replace the liquid electrolyte with a solid material, potentially offering greater energy density and improved safety.

Looking ahead, the future of battery technology appears bright. Researchers are exploring numerous innovative approaches, including lithium-sulfur batteries that could theoretically store five times more energy than current lithium-ion cells, and flow batteries that store energy in liquid electrolytes held in external tanks, allowing for easy scalability. As these technologies mature and costs continue to fall, energy storage will play an increasingly vital role in creating a sustainable energy future. The ability to store renewable energy efficiently will determine how quickly society can move away from fossil fuels and toward a clean energy economy that mitigates climate change while meeting growing global energy demands.

Questions 1-13

Questions 1-5: Multiple Choice

Choose the correct letter, A, B, C, or D.

1. According to the passage, what is the main reason energy storage is important?

  • A) Fossil fuels are becoming too expensive
  • B) Renewable energy sources are not always available
  • C) Modern society uses too much energy
  • D) Solar panels and wind turbines are inefficient

2. Alessandro Volta’s invention was significant because it:

  • A) Was the first battery to use lithium
  • B) Could power electric vehicles
  • C) Demonstrated how to convert chemical energy to electrical energy
  • D) Was small and portable

3. What was a major limitation of alkaline batteries developed in the 1950s?

  • A) They were too expensive for most consumers
  • B) They could not be recharged
  • C) They were too heavy to carry
  • D) They did not last very long

4. According to the passage, lithium-ion battery costs since 2010 have:

  • A) Increased significantly
  • B) Remained stable
  • C) Decreased by approximately 90%
  • D) Fluctuated unpredictably

5. The passage suggests that solid-state batteries are being developed primarily to:

  • A) Reduce manufacturing costs
  • B) Increase energy density and safety
  • C) Use more abundant materials
  • D) Make batteries lighter

Questions 6-9: True/False/Not Given

Do the following statements agree with the information given in the passage? Write:

  • TRUE if the statement agrees with the information
  • FALSE if the statement contradicts the information
  • NOT GIVEN if there is no information on this

6. Volta’s voltaic pile used alternating discs of zinc and copper.

7. Nickel-metal hydride batteries were developed before nickel-cadmium batteries.

8. John Goodenough, Stanley Whittingham, and Akira Yoshino received the Nobel Prize in 2019.

9. Tesla Model 3 batteries can store more energy than any other electric vehicle.

Questions 10-13: Sentence Completion

Complete the sentences below. Choose NO MORE THAN TWO WORDS from the passage for each answer.

10. Early batteries in the 19th century were mainly used for laboratory work and __ systems.

11. Lithium-ion batteries demonstrate excellent __, losing only a small amount of charge when idle.

12. The extraction of materials for lithium-ion batteries raises __ concerns.

13. Flow batteries store energy in __ held in external tanks.


PASSAGE 2 – Grid-Scale Energy Storage Systems

Độ khó: Medium (Band 6.0-7.5)

Thời gian đề xuất: 18-20 phút

As the global energy landscape undergoes a profound transformation, the role of grid-scale energy storage has evolved from a niche technology into an indispensable component of modern electricity infrastructure. The integration of intermittent renewable energy sources such as wind and solar power into electrical grids presents unique challenges that traditional power generation systems, designed around baseload power plants, were never built to address. These challenges have catalyzed the development of diverse storage technologies, each with distinct advantages and trade-offs that make them suitable for different applications within the energy ecosystem.

Pumped hydroelectric storage (PHS) remains the dominant form of grid-scale energy storage worldwide, accounting for over 95% of all utility-scale storage capacity. The principle behind PHS is elegantly simple: during periods of low electricity demand or high renewable generation, excess electricity is used to pump water from a lower reservoir to an upper reservoir. When demand increases or renewable generation decreases, the water is released back down through turbines, generating electricity much like a conventional hydroelectric dam. The round-trip efficiency of modern PHS systems typically ranges from 70% to 85%, meaning that for every 100 units of electricity used to pump water uphill, 70 to 85 units can be recovered when the water flows back down. This technology has proven remarkably durable, with some facilities operating for over 50 years with minimal degradation. The challenge facing climate systems worldwide can be better understood through the effects of climate change on global food security.

However, PHS faces significant geographical constraints. Suitable locations require substantial elevation differences and available water resources, typically found in mountainous regions. Environmental concerns about ecosystem disruption and water usage have also slowed the development of new PHS facilities in many countries. Moreover, the construction of PHS systems requires enormous capital investment and can take a decade or more from initial planning to operation. These limitations have spurred interest in alternative storage technologies that can be deployed more flexibly and rapidly.

Compressed Air Energy Storage (CAES) offers another mechanical approach to energy storage. In CAES systems, electricity is used to compress air and store it in underground caverns, depleted natural gas fields, or specially constructed vessels. When electricity is needed, the compressed air is released, heated, and expanded through turbines to generate power. Currently, only two large-scale CAES facilities are operational worldwide – one in Huntorf, Germany, built in 1978, and another in McIntosh, Alabama, completed in 1991. Traditional CAES systems require natural gas to heat the compressed air before expansion, which reduces their environmental benefits. However, advanced adiabatic CAES (AA-CAES) systems under development aim to capture and store the heat generated during compression, eliminating the need for fossil fuel inputs and significantly improving overall efficiency.

The emergence of battery energy storage systems (BESS) has transformed the grid storage landscape over the past decade. Unlike PHS and CAES, which require specific geological features, battery systems can be installed virtually anywhere there is a connection to the electrical grid. The most common grid-scale battery installations use lithium-ion technology, the same basic chemistry that powers portable electronics and electric vehicles, though with different cell configurations optimized for stationary applications. These systems excel at providing rapid response services, capable of transitioning from full charging to full discharging in milliseconds – a critical capability for maintaining grid stability as the share of variable renewable energy increases.

Major battery storage projects have been deployed worldwide, demonstrating the technology’s versatility. Australia’s Hornsdale Power Reserve, a 150 megawatt lithium-ion battery system installed in South Australia in 2017, has become a showcase for grid-scale storage. The facility has successfully provided frequency regulation services, helping to stabilize the grid during sudden changes in supply or demand, and has responded to major outages faster than traditional power plants could. Economic analyses have shown that the facility has saved consumers millions of dollars by reducing the need for expensive peaker plants – power stations that only operate during periods of peak demand.

Despite these successes, battery storage faces challenges related to duration and cost. Current lithium-ion systems are most economically viable for applications requiring storage of 4 hours or less. For longer duration storage – the kind needed to address multi-day weather patterns when solar and wind generation may be consistently low – other technologies may prove more suitable. Flow batteries, which store energy in liquid electrolytes held in external tanks, offer potential advantages for longer duration applications. By simply increasing the size of the storage tanks, the energy capacity can be expanded without adding more power conversion equipment, providing greater scalability than conventional batteries where energy and power are coupled in the same unit.

Thermal energy storage represents another promising approach, particularly for applications involving heating and cooling. These systems store energy by heating or cooling a storage medium such as molten salt, phase-change materials, or chilled water. Concentrated solar power plants frequently incorporate molten salt storage, allowing them to continue generating electricity for several hours after sunset. While thermal storage cannot efficiently convert back to electricity for all applications, it can effectively shift energy demand for heating and cooling – which represents a substantial portion of total energy use in many regions – to times when renewable generation is abundant.

The future energy grid will likely employ a portfolio approach to storage, with different technologies serving complementary roles. Short-duration battery systems will provide rapid response and stability services, while longer-duration technologies like pumped hydro, advanced CAES, or emerging solutions like hydrogen storage will handle multi-hour to seasonal storage needs. This diversity of storage options, combined with continued cost reductions and performance improvements, will be essential for achieving a fully decarbonized electricity system that can reliably meet society’s energy needs while mitigating the worst effects of climate change. The transformation of agricultural practices through technology, as seen in how green technologies are influencing global agriculture, demonstrates similar patterns of technological adaptation.

Questions 14-26

Questions 14-18: Yes/No/Not Given

Do the following statements agree with the views of the writer in the passage? Write:

  • YES if the statement agrees with the views of the writer
  • NO if the statement contradicts the views of the writer
  • NOT GIVEN if it is impossible to say what the writer thinks about this

14. Traditional baseload power plants were designed to accommodate intermittent renewable energy sources.

15. Pumped hydroelectric storage is currently the most widely used form of grid-scale energy storage.

16. Environmental concerns have completely stopped the development of new PHS facilities.

17. Battery energy storage systems can be installed in more locations than pumped hydro systems.

18. Flow batteries are currently cheaper than lithium-ion batteries for all applications.

Questions 19-23: Matching Headings

Choose the correct heading for paragraphs C-G from the list of headings below.

List of Headings:

  • i. The dominance and limitations of water-based storage
  • ii. A showcase project demonstrating battery capabilities
  • iii. The future of nuclear energy storage
  • iv. Mechanical storage using compressed air
  • v. The rapid rise of battery installations
  • vi. Diverse storage solutions for different needs
  • vii. Heat-based energy storage applications
  • viii. Duration challenges facing battery technology

19. Paragraph C
20. Paragraph D
21. Paragraph E
22. Paragraph F
23. Paragraph G

Questions 24-26: Summary Completion

Complete the summary below. Choose NO MORE THAN TWO WORDS from the passage for each answer.

Australia’s Hornsdale Power Reserve has proven the effectiveness of grid-scale battery storage. The facility provides 24. __ services that help maintain grid stability. It has also demonstrated faster response times than traditional power plants during major outages. Economic studies indicate the facility has reduced costs by decreasing reliance on 25. __ that only operate during high-demand periods. However, current lithium-ion systems work best for storage of 26. __ or less, making other technologies necessary for longer duration needs.


PASSAGE 3 – Advanced Materials and Future Storage Technologies

Độ khó: Hard (Band 7.0-9.0)

Thời gian đề xuất: 23-25 phút

The electrochemical landscape of energy storage is undergoing a fundamental paradigm shift as researchers push beyond the theoretical and practical limitations of conventional lithium-ion battery architectures. While incremental improvements to existing technologies continue to yield modest gains in energy density and cycle life, the scientific community has increasingly turned its attention to radical departures from established paradigms – explorations that promise to revolutionize not merely the performance metrics of storage devices, but the very conceptual frameworks through which we approach the challenge of storing electrochemical energy at scale.

At the forefront of this research renaissance are solid-state batteries, which replace the liquid organic electrolytes used in conventional lithium-ion cells with solid ionic conductors. This seemingly straightforward substitution carries profound implications across multiple dimensions of battery performance and safety. Solid electrolytes eliminate the flammability concerns inherent in liquid electrolytes, which have been implicated in numerous well-publicized battery fires. More significantly, solid electrolytes enable the use of lithium metal anodes – the “holy grail” of battery design – which offer nearly ten times the theoretical capacity of the graphite anodes used in current lithium-ion batteries. The volumetric energy density achievable with solid-state lithium metal batteries could exceed 500 watt-hours per liter, compared to approximately 250 watt-hours per liter for state-of-the-art liquid electrolyte cells.

However, the path from laboratory demonstrations to commercial viability remains fraught with formidable technical challenges. Interfacial resistance between solid electrolyte and electrode materials has proven particularly vexing, as even microscopic gaps or chemical incompatibilities at these interfaces can dramatically impede ion transport. The mechanical properties of solid electrolytes present another conundrum: materials must be sufficiently rigid to suppress dendrite formation (needle-like lithium structures that can cause short circuits), yet compliant enough to maintain intimate contact with electrodes as they expand and contract during charge-discharge cycles. Various classes of solid electrolytes are being investigated – including oxide ceramics, sulfide compounds, and polymer electrolytes – each presenting distinct advantages and limitations that continue to stimulate vigorous academic and industrial research efforts.

Lithium-sulfur batteries represent another promising avenue of investigation, offering theoretical energy densities exceeding 2,500 watt-hours per kilogram – nearly five times that of conventional lithium-ion cells. This extraordinary potential stems from the electrochemical reaction between lithium and sulfur, both lightweight elements capable of storing multiple electrons per atom. Moreover, sulfur is abundantly available and environmentally benign, addressing sustainability concerns associated with cobalt and other materials used in current batteries. Despite these attractive attributes, lithium-sulfur technology has been plagued by fundamental problems that have thus far precluded commercialization. The primary issue involves polysulfide dissolution: during battery operation, intermediate sulfur compounds dissolve into the electrolyte and migrate to the anode, where they undergo unwanted reactions that result in rapid capacity fade and poor coulombic efficiency.

Researchers have pursued numerous strategies to mitigate polysulfide dissolution, including sophisticated cathode architectures that physically confine sulfur, electrolyte additives that modify the solubility of polysulfides, and protective coatings on the anode surface. Some approaches have shown promise in laboratory settings, with certain configurations demonstrating stable cycling for hundreds of charge-discharge cycles. Nevertheless, achieving the thousands of cycles required for practical applications while maintaining high energy density remains an elusive goal. The kinetic limitations of sulfur reactions also pose challenges, as sulfur’s poor electrical conductivity necessitates elaborate nanostructured cathode designs that can reduce the practical energy density below theoretical values.

Beyond lithium-based chemistries, researchers are exploring alternative battery technologies based on more abundant elements. Sodium-ion batteries have attracted considerable attention as sodium shares many chemical properties with lithium but is far more plentiful and geographically distributed. Early sodium-ion research was largely abandoned in the 1980s as lithium-ion technology advanced, but recent years have witnessed a resurgence of interest driven by concerns about lithium availability and cost. Modern sodium-ion batteries achieve energy densities approaching 150 watt-hours per kilogram – lower than lithium-ion but potentially sufficient for stationary storage applications where weight is less critical. Several companies have announced plans to commercialize sodium-ion batteries within the next few years, though questions remain about their long-term cycling stability and low-temperature performance.

Multivalent-ion batteries, utilizing ions such as magnesium, calcium, or aluminum that can transfer multiple electrons per ion, offer another pathway to high energy densities. The theoretical advantages are compelling: magnesium-ion batteries could potentially match or exceed the energy density of lithium-ion systems while using safer, more abundant materials. However, the reality has proven more complex. The strong interactions between multivalent ions and host electrode materials create large energy barriers for ion insertion and extraction, resulting in sluggish kinetics and poor power performance. Identifying suitable electrode materials and electrolytes that can accommodate multivalent ions has proven extraordinarily challenging, and substantial fundamental research will be required before these systems can approach practical viability.

Redox flow batteries occupy a distinct niche in the energy storage landscape, offering potentially unlimited energy capacity through the use of external storage tanks for liquid electrolytes containing electroactive species. Unlike conventional batteries where energy and power capabilities are intrinsically coupled, flow batteries decouple these parameters: power is determined by the size of the electrochemical stack, while energy capacity depends only on electrolyte volume. This architectural flexibility makes flow batteries particularly attractive for long-duration grid storage, where the ability to store energy for 8-12 hours or longer becomes crucial for integrating high penetrations of renewable energy. The implications of renewable adoption extend beyond storage, as explored in what are the implications of renewable energy on global trade?.

The most mature flow battery technology, vanadium redox flow batteries (VRFBs), uses vanadium ions in different oxidation states as the active materials in both half-cells. The use of the same element in both electrolytes provides an important advantage: if electrolytes mix through membrane crossover, no permanent damage occurs, unlike in systems using different chemistries for each electrolyte. However, vanadium’s relatively high cost and limited global supply have motivated research into alternative flow battery chemistries, including organic molecules, zinc-bromine, and iron-chromium systems. Some emerging organic flow batteries use quinones and other molecules that can be synthesized from renewable feedstocks, offering the tantalizing prospect of truly sustainable energy storage.

The trajectory of energy storage technology development reflects a fundamental tension between evolutionary improvements to mature technologies and revolutionary advances that could obsolete existing approaches. While solid-state batteries, lithium-sulfur systems, and other advanced technologies hold tremendous promise, the continued rapid improvement of conventional lithium-ion batteries – which have seen energy density increase by approximately 5-7% annually while costs have fallen by a similar percentage – creates a “moving target” for competing technologies. New approaches must not only demonstrate superior performance in the laboratory but must do so by a sufficient margin to justify the enormous investments required to develop manufacturing infrastructure and supply chains. Moreover, as the examples of blockchain applications show in blockchain for enhancing global health data privacy, technological advancement often requires both technical innovation and systemic integration.

As the urgency of climate mitigation intensifies and the scale of required energy storage grows from megawatt-hours to gigawatt-hours and beyond, a diverse portfolio of storage technologies will almost certainly be required. Different applications demand different performance attributes: electric vehicles prioritize energy density and fast charging, grid stabilization requires rapid response times, and seasonal storage calls for very low costs and long duration. Rather than seeking a single solution, the energy storage landscape of the future will likely comprise multiple technologies, each optimized for specific applications within a complex, interconnected energy system. The continued convergence of materials science, electrochemistry, and engineering will determine how rapidly this future materializes and how effectively humanity can harness renewable energy to meet its needs while preserving the planet for future generations.

Questions 27-40

Questions 27-31: Multiple Choice

Choose the correct letter, A, B, C, or D.

27. According to the passage, solid-state batteries primarily aim to replace:

  • A) Graphite anodes with lithium metal
  • B) Solid electrolytes with liquid ones
  • C) Liquid electrolytes with solid ionic conductors
  • D) Conventional batteries with flow batteries

28. The main challenge facing solid-state battery development is:

  • A) The high cost of solid materials
  • B) Interfacial resistance and mechanical properties
  • C) Lack of research funding
  • D) Consumer acceptance

29. What is the primary problem preventing commercialization of lithium-sulfur batteries?

  • A) Sulfur is too expensive
  • B) The batteries are too heavy
  • C) Polysulfide dissolution causes capacity fade
  • D) Lithium is not compatible with sulfur

30. Sodium-ion batteries are being reconsidered because:

  • A) They offer higher energy density than lithium-ion
  • B) Sodium is more abundant and widely distributed
  • C) They perform better in cold temperatures
  • D) They are easier to manufacture

31. Redox flow batteries differ from conventional batteries in that they:

  • A) Use solid electrodes instead of liquid
  • B) Cannot be recharged
  • C) Decouple energy capacity from power output
  • D) Are smaller and more portable

Questions 32-36: Matching Features

Match each battery technology (32-36) with the correct characteristic (A-H). You may use any letter more than once.

Battery Technologies:
32. Solid-state batteries
33. Lithium-sulfur batteries
34. Sodium-ion batteries
35. Multivalent-ion batteries
36. Vanadium redox flow batteries

Characteristics:

  • A) Use the same element in both half-cells
  • B) Could achieve theoretical energy density of 2,500 Wh/kg
  • C) Experience problems with polysulfide dissolution
  • D) Enable use of lithium metal anodes
  • E) Suitable for stationary storage where weight is less critical
  • F) Transfer multiple electrons per ion
  • G) Have poor low-temperature performance
  • H) Eliminate flammability concerns

Questions 37-40: Short-answer Questions

Answer the questions below. Choose NO MORE THAN THREE WORDS from the passage for each answer.

37. What type of structures can form in batteries and cause short circuits if solid electrolytes are not rigid enough?

38. What is the approximate annual rate at which lithium-ion battery energy density has been increasing?

39. What type of applications does the passage say require very low costs and long duration storage?

40. What three disciplines does the passage mention will determine the future of energy storage technology?


Answer Keys – Đáp Án

PASSAGE 1: Questions 1-13

  1. B
  2. C
  3. B
  4. C
  5. B
  6. TRUE
  7. FALSE
  8. TRUE
  9. NOT GIVEN
  10. telegraph
  11. charge retention
  12. environmental and ethical
  13. liquid electrolytes

PASSAGE 2: Questions 14-26

  1. NO
  2. YES
  3. NO
  4. YES
  5. NOT GIVEN
  6. i
  7. iv
  8. v
  9. viii
  10. vii
  11. frequency regulation
  12. peaker plants
  13. 4 hours

PASSAGE 3: Questions 27-40

  1. C
  2. B
  3. C
  4. B
  5. C
  6. D, H
  7. B, C
  8. E
  9. F
  10. A
  11. dendrite formation / needle-like structures / lithium structures
  12. 5-7% / approximately 5-7%
  13. seasonal storage
  14. materials science, electrochemistry, engineering

Giải Thích Đáp Án Chi Tiết

Passage 1 – Giải Thích

Câu 1: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: main reason, energy storage, important
  • Vị trí trong bài: Đoạn A, dòng 1-4
  • Giải thích: Đoạn văn nêu rõ “The sun doesn’t always shine, and the wind doesn’t always blow, which means that the energy generated from solar panels and wind turbines needs to be stored”. Đây là paraphrase của đáp án B “Renewable energy sources are not always available”. Các đáp án khác không được đề cập như lý do chính.

Câu 2: C

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: Alessandro Volta’s invention, significant
  • Vị trí trong bài: Đoạn B, dòng 3-6
  • Giải thích: Bài văn chỉ rõ “This groundbreaking device… demonstrated the basic principle that would underpin all future batteries: the conversion of chemical energy into electrical energy”. Đây chính xác là đáp án C.

Câu 6: TRUE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: Volta’s voltaic pile, alternating discs, zinc, copper
  • Vị trí trong bài: Đoạn B, dòng 2-3
  • Giải thích: Thông tin khớp hoàn toàn: “consisted of alternating discs of zinc and copper separated by cardboard soaked in salt water”.

Câu 7: FALSE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: Nickel-metal hydride, nickel-cadmium, developed before
  • Vị trí trong bài: Đoạn C, dòng 5-7
  • Giải thích: Bài văn nói “nickel-cadmium (NiCd) batteries in the 1960s and nickel-metal hydride (NiMH) batteries in the 1980s”, chứng tỏ NiCd ra đời trước NiMH, ngược với câu phát biểu.

Câu 10: telegraph

  • Dạng câu hỏi: Sentence Completion
  • Từ khóa: Early batteries, 19th century, laboratory work
  • Vị trí trong bài: Đoạn B, dòng cuối
  • Giải thích: “limited practical applications beyond laboratory experiments and telegraph systems” – đáp án là “telegraph”.

Câu 13: liquid electrolytes

  • Dạng câu hỏi: Sentence Completion
  • Từ khóa: Flow batteries, store energy, external tanks
  • Vị trí trong bài: Đoạn G, dòng 2-3
  • Giải thích: “flow batteries that store energy in liquid electrolytes held in external tanks” – cụm “liquid electrolytes” là đáp án chính xác.

Passage 2 – Giải Thích

Câu 14: NO

  • Dạng câu hỏi: Yes/No/Not Given
  • Từ khóa: Traditional baseload power plants, designed, accommodate, intermittent renewable
  • Vị trí trong bài: Đoạn A, dòng 2-4
  • Giải thích: Bài viết nói rằng traditional power generation systems “were never built to address” những thách thức từ nguồn năng lượng tái tạo gián đoạn, hoàn toàn trái ngược với câu phát biểu.

Câu 15: YES

  • Dạng câu hỏi: Yes/No/Not Given
  • Từ khóa: Pumped hydroelectric storage, most widely used, grid-scale
  • Vị trí trong bài: Đoạn B, dòng 1-2
  • Giải thích: “Pumped hydroelectric storage (PHS) remains the dominant form of grid-scale energy storage worldwide, accounting for over 95% of all utility-scale storage capacity” – khẳng định rõ ràng PHS là dạng lưu trữ phổ biến nhất.

Câu 19: i (The dominance and limitations of water-based storage)

  • Dạng câu hỏi: Matching Headings
  • Vị trí: Đoạn C
  • Giải thích: Đoạn C nói về những hạn chế của PHS (geographical constraints, environmental concerns, capital investment) sau khi đoạn B đã nói về sự thống trị của nó. Tiêu đề phù hợp nhất là “The dominance and limitations of water-based storage”.

Câu 20: iv (Mechanical storage using compressed air)

  • Dạng câu hỏi: Matching Headings
  • Vị trí: Đoạn D
  • Giải thích: Toàn bộ đoạn D thảo luận về Compressed Air Energy Storage (CAES), một dạng lưu trữ cơ học sử dụng không khí nén.

Câu 24: frequency regulation

  • Dạng câu hỏi: Summary Completion
  • Từ khóa: Hornsdale Power Reserve, services, grid stability
  • Vị trí trong bài: Đoạn F, dòng 3-4
  • Giải thích: “The facility has successfully provided frequency regulation services, helping to stabilize the grid” – đáp án là “frequency regulation”.

Câu 26: 4 hours

  • Dạng câu hỏi: Summary Completion
  • Từ khóa: lithium-ion systems, storage, economically viable
  • Vị trí trong bài: Đoạn G, dòng 1-2
  • Giải thích: “Current lithium-ion systems are most economically viable for applications requiring storage of 4 hours or less” – đáp án rõ ràng là “4 hours”.

Passage 3 – Giải Thích

Câu 27: C

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: solid-state batteries, primarily aim, replace
  • Vị trí trong bài: Đoạn B, dòng 1-2
  • Giải thích: “solid-state batteries, which replace the liquid organic electrolytes used in conventional lithium-ion cells with solid ionic conductors” – đáp án C chính xác mô tả mục đích chính.

Câu 28: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: main challenge, solid-state battery development
  • Vị trí trong bài: Đoạn C, dòng 1-4
  • Giải thích: Đoạn C nêu rõ “Interfacial resistance between solid electrolyte and electrode materials has proven particularly vexing” và “The mechanical properties of solid electrolytes present another conundrum” – đáp án B tổng hợp cả hai thách thức chính này.

Câu 29: C

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: primary problem, preventing commercialization, lithium-sulfur
  • Vị trí trong bài: Đoạn D, dòng 5-8
  • Giải thích: “The primary issue involves polysulfide dissolution: during battery operation, intermediate sulfur compounds dissolve into the electrolyte… result in rapid capacity fade” – đáp án C paraphrase chính xác thông tin này.

Câu 32: D, H

  • Dạng câu hỏi: Matching Features
  • Vị trí trong bài: Đoạn B
  • Giải thích: Solid-state batteries “enable the use of lithium metal anodes” (D) và “Solid electrolytes eliminate the flammability concerns” (H).

Câu 33: B, C

  • Dạng câu hỏi: Matching Features
  • Vị trí trong bài: Đoạn D
  • Giải thích: Lithium-sulfur batteries có “theoretical energy densities exceeding 2,500 watt-hours per kilogram” (B) và gặp vấn đề “polysulfide dissolution” (C).

Câu 37: dendrite formation / needle-like structures

  • Dạng câu hỏi: Short-answer Questions
  • Từ khóa: structures, cause short circuits, solid electrolytes
  • Vị trí trong bài: Đoạn C, dòng 5-6
  • Giải thích: “materials must be sufficiently rigid to suppress dendrite formation (needle-like lithium structures that can cause short circuits)” – đáp án có thể là “dendrite formation” hoặc “needle-like structures”.

Câu 40: materials science, electrochemistry, engineering

  • Dạng câu hỏi: Short-answer Questions
  • Từ khóa: three disciplines, determine future, energy storage
  • Vị trí trong bài: Đoạn K, dòng cuối
  • Giải thích: “The continued convergence of materials science, electrochemistry, and engineering will determine how rapidly this future materializes” – ba lĩnh vực được liệt kê rõ ràng.

Từ Vựng Quan Trọng Theo Passage

Passage 1 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
critical adj /ˈkrɪtɪkəl/ quan trọng, cốt yếu critical challenges facing modern society critical issue, critical role
fossil fuels n /ˈfɒsl fjuːəlz/ nhiên liệu hóa thạch transition from fossil fuels to renewable energy burn fossil fuels, rely on fossil fuels
sophisticated adj /səˈfɪstɪkeɪtɪd/ tinh vi, phức tạp sophisticated battery technologies sophisticated technology, sophisticated system
voltaic pile n /vɒlˈteɪɪk paɪl/ pin Volta invented the first true battery, known as the voltaic pile construct a voltaic pile
energy density n /ˈenədʒi ˈdensəti/ mật độ năng lượng much higher energy density high energy density, increase energy density
charge retention n /tʃɑːdʒ rɪˈtenʃn/ khả năng giữ điện excellent charge retention improve charge retention
degradation n /ˌdeɡrəˈdeɪʃn/ sự suy giảm, thoái hóa without significant degradation capacity degradation, battery degradation
grid-scale adj /ɡrɪd skeɪl/ quy mô lưới điện grid-scale storage systems grid-scale battery, grid-scale project
quantum leap n /ˈkwɒntəm liːp/ bước nhảy vọt offered a quantum leap in performance make a quantum leap, represent a quantum leap
intermittent adj /ˌɪntəˈmɪtənt/ gián đoạn, không liên tục intermittent renewable energy intermittent supply, intermittent generation
flow batteries n /fləʊ ˈbætəriz/ pin dòng chảy flow batteries that store energy develop flow batteries
climate change n /ˈklaɪmət tʃeɪndʒ/ biến đổi khí hậu mitigates climate change address climate change, combat climate change

Passage 2 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
profound adj /prəˈfaʊnd/ sâu sắc, to lớn profound transformation profound impact, profound change
indispensable adj /ˌɪndɪˈspensəbl/ không thể thiếu indispensable component of modern infrastructure indispensable tool, indispensable role
intermittent adj /ˌɪntəˈmɪtənt/ gián đoạn intermittent renewable energy sources intermittent power, intermittent supply
baseload adj/n /ˈbeɪsləʊd/ tải cơ sở baseload power plants baseload generation, baseload capacity
trade-offs n /treɪd ɒfs/ sự đánh đổi, cân bằng lợi ích distinct advantages and trade-offs involve trade-offs, balance trade-offs
round-trip efficiency n /raʊnd trɪp ɪˈfɪʃnsi/ hiệu suất khứ hồi round-trip efficiency of modern PHS systems improve round-trip efficiency
geographical constraints n /ˌdʒiːəˈɡræfɪkl kənˈstreɪnts/ hạn chế về địa lý faces significant geographical constraints overcome geographical constraints
capital investment n /ˈkæpɪtl ɪnˈvestmənt/ đầu tư vốn enormous capital investment require capital investment, attract capital investment
frequency regulation n /ˈfriːkwənsi ˌreɡjuˈleɪʃn/ điều chỉnh tần số provided frequency regulation services offer frequency regulation
peaker plants n /ˈpiːkə plɑːnts/ nhà máy điện cao điểm reducing the need for expensive peaker plants operate peaker plants
economically viable adj /ˌiːkəˈnɒmɪkli ˈvaɪəbl/ khả thi về kinh tế most economically viable for applications become economically viable
scalability n /ˌskeɪləˈbɪləti/ khả năng mở rộng quy mô providing greater scalability improve scalability, offer scalability
molten salt n /ˈməʊltən sɔːlt/ muối nóng chảy incorporate molten salt storage use molten salt, store in molten salt
portfolio approach n /pɔːtˈfəʊliəʊ əˈprəʊtʃ/ cách tiếp cận danh mục employ a portfolio approach to storage adopt a portfolio approach
decarbonized adj /diːˈkɑːbənaɪzd/ giảm carbon fully decarbonized electricity system achieve decarbonized energy

Passage 3 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
electrochemical adj /ɪˌlektrəʊˈkemɪkl/ điện hóa electrochemical landscape of energy storage electrochemical reaction, electrochemical cell
paradigm shift n /ˈpærədaɪm ʃɪft/ sự thay đổi mô hình/tư duy cơ bản undergoing a fundamental paradigm shift represent a paradigm shift, trigger a paradigm shift
radical departures n /ˈrædɪkl dɪˈpɑːtʃəz/ sự thay đổi triệt để radical departures from established paradigms mark radical departures
forefront n /ˈfɔːfrʌnt/ đầu tiên, hàng đầu at the forefront of this research renaissance be at the forefront, place at the forefront
solid ionic conductors n /ˈsɒlɪd aɪˈɒnɪk kənˈdʌktəz/ chất dẫn ion rắn replace liquid electrolytes with solid ionic conductors develop solid ionic conductors
theoretical capacity n /ˌθɪəˈretɪkl kəˈpæsəti/ dung lượng lý thuyết offer nearly ten times the theoretical capacity achieve theoretical capacity
volumetric energy density n /ˌvɒljuˈmetrɪk ˈenədʒi ˈdensəti/ mật độ năng lượng theo thể tích volumetric energy density achievable increase volumetric energy density
interfacial resistance n /ˌɪntəˈfeɪʃl rɪˈzɪstəns/ điện trở bề mặt tiếp xúc Interfacial resistance between solid electrolyte and electrode reduce interfacial resistance, overcome interfacial resistance
dendrite formation n /ˈdendraɪt fɔːˈmeɪʃn/ sự hình thành cấu trúc hình cây suppress dendrite formation prevent dendrite formation
polysulfide dissolution n /ˌpɒliˈsʌlfaɪd ˌdɪsəˈluːʃn/ sự hòa tan polysulfide primary issue involves polysulfide dissolution reduce polysulfide dissolution
capacity fade n /kəˈpæsəti feɪd/ sự suy giảm dung lượng result in rapid capacity fade minimize capacity fade, experience capacity fade
coulombic efficiency n /kuːˈlɒmbɪk ɪˈfɪʃnsi/ hiệu suất coulomb poor coulombic efficiency improve coulombic efficiency, measure coulombic efficiency
cathode architectures n /ˈkæθəʊd ˈɑːkɪtektʃəz/ cấu trúc catốt sophisticated cathode architectures design cathode architectures, develop cathode architectures
multivalent-ion adj /ˌmʌltiˈveɪlənt ˈaɪən/ ion đa hóa trị multivalent-ion batteries multivalent-ion chemistry, multivalent-ion system
redox flow adj /ˈriːdɒks fləʊ/ oxy hóa khử dòng chảy redox flow batteries redox flow system, redox flow technology
electroactive species n /ɪˌlektrəʊˈæktɪv ˈspiːʃiːz/ các chất hoạt tính điện hóa liquid electrolytes containing electroactive species dissolve electroactive species
decouple v /diːˈkʌpl/ tách rời flow batteries decouple these parameters decouple energy from power
membrane crossover n /ˈmembreɪn ˈkrɒsəʊvə/ sự thấm qua màng if electrolytes mix through membrane crossover prevent membrane crossover, reduce membrane crossover
climate mitigation n /ˈklaɪmət ˌmɪtɪˈɡeɪʃn/ giảm thiểu khí hậu urgency of climate mitigation intensifies support climate mitigation, achieve climate mitigation

Kết Bài

Chủ đề technological solutions to energy storage không chỉ là một nội dung quan trọng trong các kỳ thi IELTS Reading mà còn phản ánh những thách thức và giải pháp thực tế mà nhân loại đang đối mặt trong quá trình chuyển đổi sang năng lượng bền vững. Qua bộ đề thi mẫu này, bạn đã được trải nghiệm đầy đủ cấu trúc của một bài thi IELTS Reading thực tế với 3 passages tăng dần độ khó, từ giới thiệu cơ bản về lịch sử pin (Easy), đến các hệ thống lưu trữ quy mô lưới điện (Medium), và cuối cùng là các vật liệu tiên tiến với công nghệ tương lai (Hard).

40 câu hỏi trong đề thi đã bao phủ tất cả các dạng câu hỏi phổ biến trong IELTS Reading: Multiple Choice, True/False/Not Given, Yes/No/Not Given, Matching Headings, Summary Completion, Matching Features và Short-answer Questions. Mỗi dạng câu hỏi đòi hỏi những kỹ năng đọc hiểu khác nhau – từ việc xác định thông tin chi tiết, phân biệt quan điểm tác giả, đến khả năng paraphrase và suy luận logic.

Phần đáp án chi tiết không chỉ cung cấp câu trả lời đúng mà còn giải thích tại sao đó là đáp án, vị trí thông tin xuất hiện trong bài, và cách câu hỏi được paraphrase từ nội dung gốc. Đây là phần vô cùng quan trọng giúp bạn tự đánh giá chính xác năng lực của mình và hiểu được cách thức xây dựng câu hỏi trong IELTS.

Từ vựng học thuật được tổng hợp theo từng passage sẽ giúp bạn làm giàu vốn từ vựng, đặc biệt trong lĩnh vực khoa học và công nghệ – một trong những chủ đề thường xuyên xuất hiện trong IELTS Reading. Hãy ghi nhớ không chỉ nghĩa của từ mà còn cả cách sử dụng và các collocations đi kèm.

Để đạt band điểm cao trong IELTS Reading, bạn cần luyện tập thường xuyên với các đề thi chất lượng như thế này, phân tích kỹ càng đáp án, và không ngừng mở rộng vốn từ vựng học thuật. Hãy áp dụng các kỹ thuật skimming (đọc lướt) và scanning (quét thông tin) một cách linh hoạt, quản lý thời gian hiệu quả, và luôn đọc kỹ instructions để tránh mất điểm không đáng có. Chúc bạn đạt kết quả cao trong kỳ thi IELTS sắp tới!

Previous Article

IELTS Reading: Public Speaking Apps for Student Presentations - Đề thi mẫu có đáp án chi tiết

Next Article

Cách Sử Dụng "At Worst / Pessimistic Minimum" Trong IELTS - Công Thức & Ví Dụ Band 8.0

Write a Comment

Leave a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Đăng ký nhận thông tin bài mẫu

Để lại địa chỉ email của bạn, chúng tôi sẽ thông báo tới bạn khi có bài mẫu mới được biên tập và xuất bản thành công.
Chúng tôi cam kết không spam email ✨