IELTS Reading: The Future of Quantum Computing – Đề Thi Mẫu Có Đáp Án Chi Tiết

Quantum computing (điện toán lượng tử) đang nổi lên như một trong những công nghệ đột phá quan trọng nhất của thế kỷ 21. Chủ đề này ngày càng xuất hiện thường xuyên trong các đề thi IELTS Reading thực tế, đặc biệt ở Passage 2 và 3, do tính chất học thuật và khả năng kiểm tra kỹ năng đọc hiểu ở mức độ cao. Theo thống kê từ Cambridge IELTS và British Council, các bài đọc về công nghệ tiên tiến, khoa học máy tính và tương lai số hóa chiếm khoảng 15-20% tổng số đề thi.

Bài viết này cung cấp một bộ đề thi IELTS Reading hoàn chỉnh với 3 passages được thiết kế theo đúng chuẩn Cambridge IELTS, tăng dần độ khó từ Band 5.0 đến 9.0. Bạn sẽ được luyện tập với 40 câu hỏi đa dạng bao gồm True/False/Not Given, Multiple Choice, Matching Headings, Summary Completion và nhiều dạng khác. Mỗi câu hỏi đều có đáp án chi tiết kèm giải thích, giúp bạn hiểu rõ phương pháp paraphrase và định vị thông tin. Ngoài ra, bộ từ vựng chuyên ngành được tổng hợp kỹ lưỡng sẽ giúp bạn nâng cao vốn từ học thuật.

Đề thi này phù hợp cho học viên từ band 5.0 trở lên, đặc biệt hữu ích cho những ai đang nhắm đến band 7.0-8.0 và cần làm quen với chủ đề công nghệ phức tạp.

Hướng Dẫn Làm Bài IELTS Reading

Tổng Quan Về IELTS Reading Test

IELTS Reading Test kéo dài 60 phút với 3 passages và tổng cộng 40 câu hỏi. Độ khó tăng dần từ Passage 1 đến Passage 3. Không có thời gian thêm để chuyển đáp án, vì vậy bạn cần quản lý thời gian chặt chẽ.

Phân bổ thời gian khuyến nghị:

  • Passage 1: 15-17 phút (13 câu hỏi) – Độ khó: Easy
  • Passage 2: 18-20 phút (13 câu hỏi) – Độ khó: Medium
  • Passage 3: 23-25 phút (14 câu hỏi) – Độ khó: Hard

Mỗi câu trả lời đúng được 1 điểm, không trừ điểm cho câu sai. Điểm thô (raw score) sẽ được quy đổi thành band score từ 1-9.

Các Dạng Câu Hỏi Trong Đề Này

Đề thi mẫu này bao gồm 7 dạng câu hỏi phổ biến nhất trong IELTS Reading:

  1. True/False/Not Given – Kiểm tra khả năng so sánh thông tin
  2. Multiple Choice – Đánh giá hiểu biết chi tiết và tổng quan
  3. Sentence Completion – Yêu cầu paraphrase và định vị chính xác
  4. Yes/No/Not Given – Kiểm tra khả năng nhận diện quan điểm tác giả
  5. Matching Headings – Đánh giá kỹ năng nắm bắt ý chính
  6. Summary Completion – Tổng hợp thông tin từ nhiều nguồn
  7. Matching Features – Kết nối thông tin phức tạp

Đề thi IELTS Reading chủ đề The Future of Quantum Computing với 3 passages tăng dần độ khóĐề thi IELTS Reading chủ đề The Future of Quantum Computing với 3 passages tăng dần độ khó

IELTS Reading Practice Test

PASSAGE 1 – The Dawn of Quantum Computing

Độ khó: Easy (Band 5.0-6.5)

Thời gian đề xuất: 15-17 phút

Quantum computing represents a revolutionary approach to information processing that differs fundamentally from the classical computers we use today. While traditional computers use bits that exist as either 0 or 1, quantum computers employ quantum bits, or qubits, which can exist in multiple states simultaneously. This phenomenon, known as superposition, allows quantum computers to process vast amounts of information at speeds unimaginable with conventional technology.

The concept of quantum computing was first proposed in the early 1980s by physicist Richard Feynman, who suggested that quantum systems could be used to simulate other quantum systems more efficiently than classical computers. However, it wasn’t until the 1990s that researchers began to develop practical algorithms that could take advantage of quantum mechanical properties. Today, major technology companies and research institutions worldwide are investing billions of dollars in quantum computing research, recognizing its potential to solve problems that are currently impossible for even the most powerful supercomputers.

One of the most promising applications of quantum computing lies in the field of cryptography. Current encryption methods, which protect everything from online banking to government communications, rely on the difficulty of factoring large numbers—a task that would take classical computers thousands of years to complete. However, a sufficiently powerful quantum computer could crack these codes in a matter of hours using an algorithm developed by mathematician Peter Shor in 1994. This capability has led to an urgent race to develop quantum-resistant encryption methods before quantum computers become widely available.

Drug discovery is another area where quantum computing shows enormous promise. The process of developing new medications currently takes over a decade and costs billions of dollars, partly because scientists must test millions of molecular combinations to find effective treatments. Quantum computers could simulate molecular interactions at the quantum level, allowing researchers to predict which drug compounds will be effective before conducting expensive laboratory tests. Some experts believe this technology could reduce drug development time from ten years to just a few months, potentially saving millions of lives.

Despite these exciting possibilities, quantum computing faces significant technical challenges. Qubits are extremely fragile and can be disrupted by even the slightest environmental interference, a problem known as quantum decoherence. To maintain the quantum states necessary for computation, quantum computers must be kept at temperatures close to absolute zero—colder than outer space. Additionally, the error rates in current quantum computers are still too high for most practical applications, requiring researchers to develop sophisticated error correction techniques.

The timeline for when quantum computers will become practical tools remains uncertain. Some optimistic predictions suggest that within the next decade, we will see quantum computers capable of solving real-world problems that are beyond the reach of classical computers. However, more conservative estimates place this milestone 20 to 30 years in the future. What is certain is that the quantum computing revolution, when it arrives, will transform industries ranging from finance and logistics to artificial intelligence and climate modeling, ushering in a new era of computational capability.

Questions 1-6

Do the following statements agree with the information given in Passage 1?

Write:

  • TRUE if the statement agrees with the information
  • FALSE if the statement contradicts the information
  • NOT GIVEN if there is no information on this
  1. Classical computers and quantum computers use the same basic unit of information processing.
  2. Richard Feynman was the first person to suggest using quantum systems for computational purposes.
  3. Peter Shor developed an encryption method that cannot be broken by quantum computers.
  4. Quantum computing could significantly reduce the time needed to develop new medicines.
  5. Quantum computers must operate in conditions colder than outer space.
  6. All experts agree that practical quantum computers will be available within ten years.

Questions 7-10

Complete the sentences below.

Choose NO MORE THAN TWO WORDS from the passage for each answer.

  1. The ability of qubits to exist in multiple states at once is called __.
  2. Current encryption methods are based on the difficulty of __ large numbers.
  3. The problem of qubits being easily disrupted by external factors is known as __.
  4. Quantum computing is expected to transform various industries including finance, logistics, and __.

Questions 11-13

Choose the correct letter, A, B, C or D.

  1. According to the passage, what is the main advantage of quantum computers over classical computers?
  • A) They are cheaper to build
  • B) They can process information much faster
  • C) They use less electricity
  • D) They are easier to program
  1. The development of quantum-resistant encryption is described as:
  • A) An unnecessary precaution
  • B) A completed project
  • C) An urgent priority
  • D) An impossible task
  1. What does the passage suggest about The Future Of Quantum Computing?
  • A) It will definitely be available within 10 years
  • B) It will never overcome current technical challenges
  • C) The exact timeline is uncertain but the impact will be significant
  • D) It will only be useful for cryptography applications

PASSAGE 2 – Quantum Computing’s Technical Frontiers

Độ khó: Medium (Band 6.0-7.5)

Thời gian đề xuất: 18-20 phút

The development of practical quantum computers requires overcoming a series of formidable technical obstacles that have challenged physicists and engineers for decades. Unlike classical computers, which have benefited from decades of incremental improvements following Moore’s Law, quantum computers operate according to principles that are fundamentally different and far more temperamental. Understanding these challenges—and the innovative solutions being developed to address them—is crucial to appreciating both the current state and future potential of quantum computing technology.

At the heart of quantum computing’s technical challenges lies the issue of quantum coherence. For quantum computers to function, qubits must maintain their quantum superposition states long enough for calculations to be performed. However, these states are extraordinarily vulnerable to environmental interference. Even the slightest vibration, temperature fluctuation, or electromagnetic radiation can cause qubits to lose their quantum properties, a phenomenon called decoherence. Current quantum computers typically maintain coherence for only a few microseconds to milliseconds—barely enough time to perform meaningful calculations. Researchers are exploring various approaches to extend coherence times, including developing new qubit designs and implementing increasingly sophisticated isolation techniques.

The problem of quantum error correction presents another significant hurdle. Classical computers occasionally make errors, but these occur so rarely that simple error-checking methods suffice. Quantum computers, by contrast, face error rates that are orders of magnitude higher, with current systems experiencing errors in approximately 1% of operations. What makes this problem particularly challenging is that directly measuring a qubit to check for errors would destroy its quantum state. Consequently, researchers have developed ingenious quantum error correction codes that use multiple physical qubits to represent a single logical qubit, allowing errors to be detected and corrected without collapsing the quantum state. However, these methods require substantial computational overhead—some estimates suggest that thousands of physical qubits may be needed to create a single reliable logical qubit, significantly limiting the effective power of current quantum computers.

Several competing technologies are vying to become the dominant approach for building quantum computers, each with distinct advantages and limitations. Superconducting qubits, used by companies like IBM and Google, operate at temperatures near absolute zero and have achieved some of the field’s most impressive demonstrations, including Google’s controversial claim of “quantum supremacy” in 2019. Trapped ion systems, pursued by companies like IonQ, use individual atoms held in place by electromagnetic fields as qubits, offering longer coherence times but facing challenges in scaling to larger numbers of qubits. Topological qubits, the approach favored by Microsoft, promise greater inherent stability but remain largely theoretical. Meanwhile, photonic quantum computers, which use particles of light as qubits, could potentially operate at room temperature, though they face their own unique engineering challenges.

The concept of quantum advantage—the point at which quantum computers can solve practical problems faster than classical computers—remains somewhat elusive. While Google’s 2019 announcement of quantum supremacy generated significant excitement, critics pointed out that the task their quantum computer performed, while technically impressive, had no practical application. Tương tự như challenges of ensuring digital privacy, achieving meaningful quantum advantage requires not just raw computational power but also the development of algorithms specifically designed to exploit quantum properties for real-world problems. Researchers have identified several potential early applications where quantum advantage might be achievable, including optimization problems in logistics, molecular simulation for materials science, and certain machine learning tasks.

The path to large-scale, fault-tolerant quantum computers—systems capable of running arbitrary algorithms reliably—remains long and uncertain. Current quantum computers are in what researchers call the “Noisy Intermediate-Scale Quantum” (NISQ) era, characterized by systems with 50-100 qubits that still suffer from significant error rates. Transitioning to fault-tolerant quantum computing will likely require not just incremental improvements but fundamental breakthroughs in materials science, control systems, and error correction techniques. Some researchers estimate this transition could take another 10-20 years, while others believe it may require even longer. Nevertheless, the steady progress being made—both in hardware development and in understanding the theoretical foundations of quantum computation—suggests that the quantum computing revolution, while perhaps delayed, remains inevitable.

Questions 14-19

Passage 2 has six paragraphs, A-F.

Which paragraph contains the following information?

  1. A description of why checking for errors in quantum computers is more difficult than in classical computers
  2. Information about different companies pursuing various quantum computing technologies
  3. An explanation of why quantum states are easily disrupted
  4. A definition of the current stage of quantum computer development
  5. Discussion of a controversial achievement in quantum computing
  6. Mention of potential applications where quantum computers might first prove superior

Questions 20-23

Complete the summary using the list of words, A-K, below.

Quantum computers face numerous technical challenges. The issue of quantum 20 __ means that qubits can only maintain their special states for very short periods. Additionally, quantum computers experience much higher 21 __ compared to classical computers, with approximately 1% of operations failing. To address this, scientists have developed quantum error correction codes, but these require significant 22 __, sometimes needing thousands of physical qubits to create one reliable 23 __.

A) coherence
B) supremacy
C) logical qubit
D) error rates
E) decoherence
F) superposition
G) computational overhead
H) physical qubit
I) temperature
J) algorithm
K) isolation

Questions 24-26

Choose THREE letters, A-G.

Which THREE of the following are mentioned as different approaches to building quantum computers?

A) Superconducting qubits
B) Diamond-based qubits
C) Trapped ion systems
D) Silicon qubits
E) Topological qubits
F) Nuclear magnetic resonance
G) Photonic quantum computers


PASSAGE 3 – The Socioeconomic and Philosophical Implications of Quantum Computing

Độ khó: Hard (Band 7.0-9.0)

Thời gian đề xuất: 23-25 phút

The advent of quantum computing represents far more than a mere technological advancement; it constitutes a paradigm shift with profound implications for the socioeconomic fabric of global society and fundamental questions about the nature of computation, knowledge, and security. While much of the discourse surrounding quantum computing focuses on its technical capabilities and potential applications, a comprehensive understanding requires examining the broader ramifications that will reshape industries, geopolitical dynamics, and even philosophical conceptions of information processing. As we stand on the precipice of this quantum revolution, it becomes imperative to consider not only what quantum computers can do, but what their existence means for humanity’s future trajectory.

The cryptographic vulnerability introduced by quantum computing presents perhaps the most immediate and consequential challenge to existing societal infrastructure. The security architecture underpinning modern digital civilization—from financial transactions and medical records to state secrets and critical infrastructure control systems—relies almost entirely on asymmetric encryption algorithms whose security depends on the computational intractability of certain mathematical problems for classical computers. The realization of sufficiently powerful quantum computers would render this protection obsolete virtually overnight, creating what cryptographers ominously refer to as “Q-Day“—the moment when quantum computers can break current encryption standards. Một ví dụ chi tiết về social implications of data security cho thấy rằng this prospect has catalyzed intensive efforts to develop post-quantum cryptography (PQC), with the U.S. National Institute of Standards and Technology (NIST) conducting a multi-year process to standardize quantum-resistant algorithms. However, the transition to PQC faces formidable obstacles: the sheer scale of systems requiring updates, the unknown timeline for quantum computers achieving cryptanalytic capability, and the troubling possibility that adversaries are already engaging in “harvest now, decrypt later” strategies—collecting encrypted data today to decrypt once quantum computers become available.

The economic implications of quantum computing extend well beyond cybersecurity concerns, promising to create new industrial hierarchies while potentially exacerbating existing inequalities. Early access to quantum computational capabilities could provide decisive competitive advantages in fields ranging from pharmaceutical development and materials science to financial modeling and artificial intelligence. This has prompted concerns about a “quantum divide”—a scenario in which quantum computing access becomes concentrated among wealthy nations and major technology corporations, deepening global disparities in innovation capacity and economic power. The capital-intensive nature of quantum computing research, requiring specialized facilities, rare materials, and highly trained personnel, creates substantial barriers to entry that could limit participation to already-privileged actors. Conversely, proponents argue that quantum computing’s potential to accelerate scientific discovery and optimize resource allocation could generate broadly distributed benefits, potentially addressing challenges like climate change and disease that disproportionately affect developing nations. Để hiểu rõ hơn về the role of digital transformation in global trade, việc xem xét ảnh hưởng của quantum computing trong bối cảnh rộng hơn là cần thiết.

From a geopolitical perspective, quantum computing has emerged as a focal point of strategic competition among major powers, with potentially destabilizing implications for international security. Governments worldwide have identified quantum technologies as critical areas for investment and, in some cases, export controls and technology transfer restrictions. The United States, China, and the European Union have each announced multi-billion dollar quantum initiatives, while concerns about technological sovereignty have prompted efforts to develop indigenous quantum capabilities independent of foreign supply chains. The dual-use nature of quantum computing—valuable for both civilian applications and military purposes including cryptanalysis, stealth technology optimization, and weapons design—compounds these security considerations. Some analysts warn that the race for “quantum supremacy” could precipitate a new form of arms race, with attendant risks of miscalculation and conflict, while others suggest that the challenges of quantum technology development may prove so formidable that cooperative international frameworks become necessary for meaningful progress.

Tác động kinh tế và xã hội của công nghệ quantum computing đối với các quốc gia và doanh nghiệpTác động kinh tế và xã hội của công nghệ quantum computing đối với các quốc gia và doanh nghiệp

The philosophical dimensions of quantum computing raise fundamental questions about the nature of computation and its limits. The Church-Turing thesis, a cornerstone of computer science, asserts that any computation that can be carried out by any physical process can, in principle, be simulated by a Turing machine—the theoretical foundation of classical computing. Quantum computers challenge conventional interpretations of this thesis, performing operations that, while theoretically simulable by classical computers, require resources that render such simulation effectively impossible. This has led some theorists to propose an “extended Church-Turing thesis” that incorporates quantum mechanics, while others debate whether quantum computers represent a fundamentally new computational paradigm or merely an exceptionally powerful implementation of existing principles. Furthermore, certain interpretations of quantum mechanics suggest that quantum computers may exploit parallel computations across multiple universes—a notion that, while controversial and perhaps unfalsifiable, raises profound metaphysical questions about the nature of reality itself.

Looking toward the long-term future, some researchers envision quantum computing as merely the first step toward even more exotic computational paradigms. Theoretical proposals for hypercomputation—computation that transcends the Turing limit—remain largely speculative but suggest that quantum computing might open pathways to capabilities currently deemed impossible. More pragmatically, the development of quantum computers is driving progress in related fields including quantum sensing, quantum communication, and quantum simulation, collectively comprising the emerging domain of “quantum technologies” with applications extending far beyond computation itself. The quantum internet, still in early conceptual stages, could enable fundamentally secure communications and distributed quantum computing networks, further amplifying the technology’s transformative potential.

The trajectory of quantum computing development—and humanity’s capacity to navigate its consequences—will likely depend not solely on technical innovation but on the wisdom with which societies address the ethical, regulatory, and strategic challenges it presents. Establishing appropriate governance frameworks that balance innovation incentives with security concerns, ensuring equitable access to quantum computing’s benefits, and maintaining international stability amid technological competition represent challenges as complex as the quantum mechanics underlying the technology itself. As quantum computing transitions from laboratory curiosity to practical reality, the decisions made by policymakers, industry leaders, and researchers will profoundly shape not only the technology’s development but the future society it helps create.

Questions 27-31

Choose the correct letter, A, B, C or D.

  1. According to the passage, “Q-Day” refers to:
  • A) The day quantum computers were first invented
  • B) The point when quantum computers can break current encryption
  • C) The completion of post-quantum cryptography standards
  • D) The day quantum supremacy was first achieved
  1. The “harvest now, decrypt later” strategy involves:
  • A) Developing new encryption methods for future use
  • B) Collecting encrypted data to decrypt in the future
  • C) Storing quantum computer designs for later implementation
  • D) Preserving quantum states for extended periods
  1. The passage suggests that the “quantum divide” could:
  • A) Benefit developing nations primarily
  • B) Have no impact on global inequalities
  • C) Worsen existing economic disparities
  • D) Be easily prevented through regulation
  1. The Church-Turing thesis is described as:
  • A) A proven mathematical law
  • B) A fundamental assumption about computation
  • C) An outdated concept
  • D) A theory specific to quantum computing
  1. According to the passage, the future development of quantum computing depends primarily on:
  • A) Technical breakthroughs alone
  • B) Increased government funding
  • C) International cooperation
  • D) Both technical innovation and wise governance

Questions 32-36

Complete the summary below.

Choose NO MORE THAN TWO WORDS from the passage for each answer.

The development of quantum computing has significant implications beyond technology. In terms of security, current 32 __ algorithms could become obsolete, prompting the development of post-quantum cryptography. Economically, quantum computing may create new 33 __ and potentially worsen inequality through what is called the “quantum divide.” From a political standpoint, quantum computing has become a focus of 34 __ among major powers due to its dual-use nature. Philosophically, quantum computers challenge the 35 __, which concerns the fundamental nature of computation. Some researchers even envision future 36 __ that could exceed current computational limits.

Questions 37-40

Do the following statements agree with the claims of the writer in Passage 3?

Write:

  • YES if the statement agrees with the claims of the writer
  • NO if the statement contradicts the claims of the writer
  • NOT GIVEN if it is impossible to say what the writer thinks about this
  1. Post-quantum cryptography will completely solve all security concerns related to quantum computing.
  2. The capital requirements for quantum computing research may limit which countries and organizations can participate.
  3. International cooperation is impossible in quantum computing development due to security concerns.
  4. The quantum internet could provide communications that are fundamentally secure.

Answer Keys – Đáp Án

PASSAGE 1: Questions 1-13

  1. FALSE
  2. TRUE
  3. FALSE
  4. TRUE
  5. TRUE
  6. FALSE
  7. superposition
  8. factoring
  9. quantum decoherence / decoherence
  10. climate modeling / artificial intelligence
  11. B
  12. C
  13. C

PASSAGE 2: Questions 14-26

  1. Paragraph C (third paragraph)
  2. Paragraph D (fourth paragraph)
  3. Paragraph B (second paragraph)
  4. Paragraph F (sixth paragraph)
  5. Paragraph E (fifth paragraph)
  6. Paragraph E (fifth paragraph)
  7. A (coherence)
  8. D (error rates)
  9. G (computational overhead)
  10. C (logical qubit)
    24-26. A, C, E, G (any three of: superconducting qubits, trapped ion systems, topological qubits, photonic quantum computers)

PASSAGE 3: Questions 27-40

  1. B
  2. B
  3. C
  4. B
  5. D
  6. asymmetric encryption / encryption
  7. industrial hierarchies
  8. strategic competition
  9. Church-Turing thesis
  10. hypercomputation
  11. NOT GIVEN
  12. YES
  13. NO
  14. YES

Giải Thích Đáp Án Chi Tiết

Passage 1 – Giải Thích

Câu 1: FALSE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: classical computers, quantum computers, same basic unit
  • Vị trí trong bài: Đoạn 1, dòng 2-4
  • Giải thích: Câu hỏi nói hai loại máy tính dùng cùng đơn vị thông tin cơ bản. Passage nói rõ “While traditional computers use bits that exist as either 0 or 1, quantum computers employ quantum bits, or qubits” – hai loại hoàn toàn khác nhau. Đây là sự paraphrase của “same” vs “differ fundamentally.”

Câu 2: TRUE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: Richard Feynman, first person, suggest
  • Vị trí trong bài: Đoạn 2, dòng 1-3
  • Giải thích: Passage nói “The concept of quantum computing was first proposed in the early 1980s by physicist Richard Feynman” – khớp hoàn toàn với câu hỏi.

Câu 3: FALSE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: Peter Shor, encryption method, cannot be broken
  • Vị trí trong bài: Đoạn 3, dòng 4-6
  • Giải thích: Passage nói Peter Shor phát triển “an algorithm” (thuật toán để phá mã), không phải “encryption method” (phương pháp mã hóa). Câu hỏi hiểu ngược vai trò của Shor.

Câu 4: TRUE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: quantum computing, reduce time, develop new medicines
  • Vị trí trong bài: Đoạn 4, dòng 6-8
  • Giải thích: Passage nói rõ “reduce drug development time from ten years to just a few months” – paraphrase của “significantly reduce the time.”

Câu 7: superposition

  • Dạng câu hỏi: Sentence Completion
  • Từ khóa: qubits, exist in multiple states
  • Vị trí trong bài: Đoạn 1, dòng 3-4
  • Giải thích: Định nghĩa trực tiếp: “This phenomenon, known as superposition” – đề cập đến việc qubits tồn tại ở nhiều trạng thái cùng lúc.

Câu 11: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: main advantage, quantum computers
  • Vị trí trong bài: Đoạn 1, dòng 4-6
  • Giải thích: Passage nhấn mạnh “process vast amounts of information at speeds unimaginable with conventional technology” – đáp án B (process information much faster) là paraphrase chính xác. Các đáp án khác không được đề cập.

Chiến lược làm bài IELTS Reading hiệu quả cho chủ đề quantum computing và công nghệChiến lược làm bài IELTS Reading hiệu quả cho chủ đề quantum computing và công nghệ

Passage 2 – Giải Thích

Câu 14: Paragraph C (third paragraph)

  • Dạng câu hỏi: Matching Information
  • Từ khóa: checking for errors, more difficult
  • Vị trí trong bài: Đoạn 3, toàn bộ
  • Giải thích: Đoạn C giải thích chi tiết về quantum error correction và tại sao việc đo lường trực tiếp qubit để kiểm tra lỗi lại phá hủy quantum state – đây là lý do làm việc sửa lỗi khó khăn hơn.

Câu 18: Paragraph E (fifth paragraph)

  • Dạng câu hỏi: Matching Information
  • Từ khóa: controversial achievement
  • Vị trí trong bài: Đoạn 5, dòng 5-7
  • Giải thích: Google’s “quantum supremacy” claim được mô tả là “controversial” với việc critics chỉ ra task không có practical application.

Câu 20-23: A, D, G, C

  • Dạng câu hỏi: Summary Completion
  • Vị trí trong bài: Đoạn 2 và 3
  • Giải thích:
    • 20: “quantum coherence” (đoạn 2, câu đầu)
    • 21: “error rates” – “experiencing errors in approximately 1%” (đoạn 3)
    • 22: “computational overhead” – được đề cập trực tiếp (đoạn 3)
    • 23: “logical qubit” – đối lập với physical qubits (đoạn 3)

Câu 24-26: A, C, E, G

  • Dạng câu hỏi: Multiple Choice (chọn nhiều đáp án)
  • Vị trí trong bài: Đoạn 4, toàn bộ
  • Giải thích: Đoạn 4 liệt kê cụ thể bốn công nghệ: superconducting qubits (IBM, Google), trapped ion systems (IonQ), topological qubits (Microsoft), và photonic quantum computers. Chọn bất kỳ ba trong bốn đều đúng.

Passage 3 – Giải Thích

Câu 27: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: Q-Day, refers to
  • Vị trí trong bài: Đoạn 2, dòng 5-7
  • Giải thích: Định nghĩa rõ ràng: “Q-Day—the moment when quantum computers can break current encryption standards.” Đây là paraphrase trực tiếp.

Câu 29: C

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: quantum divide, impact
  • Vị trí trong bài: Đoạn 3, dòng 3-6
  • Giải thích: Passage nói “deepening global disparities” và “exacerbating existing inequalities” – tương đương với “worsen existing economic disparities” (đáp án C).

Câu 32: asymmetric encryption / encryption

  • Dạng câu hỏi: Summary Completion
  • Từ khóa: algorithms, obsolete
  • Vị trí trong bài: Đoạn 2, dòng 3-4
  • Giải thích: “asymmetric encryption algorithms” được đề cập là loại thuật toán sẽ trở nên lỗi thời khi quantum computers xuất hiện.

Câu 37: NOT GIVEN

  • Dạng câu hỏi: Yes/No/Not Given
  • Từ khóa: post-quantum cryptography, completely solve
  • Vị trí trong bài: Đoạn 2
  • Giải thích: Passage đề cập đến nỗ lực phát triển PQC và các thách thức trong việc chuyển đổi, nhưng không khẳng định rõ liệu nó có “hoàn toàn giải quyết tất cả” các vấn đề hay không. Không có thông tin đủ để xác định YES hay NO.

Câu 38: YES

  • Dạng câu hỏi: Yes/No/Not Given
  • Từ khóa: capital requirements, limit participation
  • Vị trí trong bài: Đoạn 3, dòng 6-9
  • Giải thích: Passage nói rõ “capital-intensive nature” và “substantial barriers to entry” có thể “limit participation to already-privileged actors” – khớp hoàn toàn với quan điểm tác giả.

Câu 40: YES

  • Dạng câu hỏi: Yes/No/Not Given
  • Từ khóa: quantum internet, fundamentally secure communications
  • Vị trí trong bài: Đoạn 6, dòng 4-6
  • Giải thích: Tác giả nói “could enable fundamentally secure communications” – đây là claim trực tiếp của writer về khả năng của quantum internet.

Từ Vựng Quan Trọng Theo Passage

Passage 1 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
revolutionary adj /ˌrevəˈluːʃənəri/ mang tính cách mạng revolutionary approach to information processing revolutionary technology, revolutionary change
superposition n /ˌsuːpərpəˈzɪʃən/ trạng thái chồng chất lượng tử qubits can exist in superposition quantum superposition, state of superposition
cryptography n /krɪpˈtɒɡrəfi/ mật mã học applications in cryptography modern cryptography, quantum cryptography
factoring n /ˈfæktərɪŋ/ phân tích thừa số difficulty of factoring large numbers prime factoring, integer factoring
decoherence n /diːkəʊˈhɪərəns/ sự mất kết hợp lượng tử problem of quantum decoherence quantum decoherence, environmental decoherence
fragile adj /ˈfrædʒaɪl/ dễ vỡ, mong manh qubits are extremely fragile fragile system, fragile state
absolute zero n /ˈæbsəluːt ˈzɪərəʊ/ độ không tuyệt đối temperatures close to absolute zero near absolute zero, approach absolute zero
simulate v /ˈsɪmjuleɪt/ mô phỏng simulate molecular interactions simulate conditions, simulate processes
transform v /trænsˈfɔːm/ biến đổi, chuyển đổi transform industries transform completely, radically transform
algorithm n /ˈælɡərɪðəm/ thuật toán develop practical algorithms encryption algorithm, search algorithm
crack codes v phrase /kræk kəʊdz/ phá mã quantum computers could crack these codes crack encryption, crack passwords
drug discovery n phrase /drʌɡ dɪsˈkʌvəri/ khám phá thuốc mới promising in drug discovery accelerate drug discovery, drug discovery process

Passage 2 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
formidable adj /fəˈmɪdəbəl/ đáng gờm, to lớn formidable technical obstacles formidable challenge, formidable opponent
temperamental adj /ˌtemprəˈmentəl/ thất thường, khó đoán principles that are temperamental temperamental behavior, temperamental system
coherence n /kəʊˈhɪərəns/ sự kết hợp issue of quantum coherence maintain coherence, coherence time
vulnerable adj /ˈvʌlnərəbəl/ dễ bị tổn thương vulnerable to environmental interference highly vulnerable, remain vulnerable
electromagnetic radiation n phrase /ɪˌlektrəʊmæɡˈnetɪk ˌreɪdiˈeɪʃən/ bức xạ điện từ affected by electromagnetic radiation exposure to electromagnetic radiation
quantum supremacy n phrase /ˈkwɒntəm suːˈpreməsi/ ưu thế lượng tử Google’s claim of quantum supremacy achieve quantum supremacy, demonstrate supremacy
computational overhead n phrase /ˌkɒmpjuˈteɪʃənəl ˈəʊvəhed/ chi phí tính toán require substantial computational overhead reduce overhead, minimize overhead
logical qubit n phrase /ˈlɒdʒɪkəl ˈkjuːbɪt/ qubit logic create a single logical qubit stable logical qubit, reliable logical qubit
trapped ion n phrase /træpt ˈaɪən/ ion bẫy trapped ion systems trapped ion technology, trapped ion qubits
optimization n /ˌɒptɪmaɪˈzeɪʃən/ tối ưu hóa optimization problems in logistics process optimization, resource optimization
elusive adj /ɪˈluːsɪv/ khó nắm bắt quantum advantage remains elusive elusive goal, prove elusive
fault-tolerant adj /fɔːlt ˈtɒlərənt/ chịu lỗi large-scale fault-tolerant computers fault-tolerant design, fault-tolerant system
breakthrough n /ˈbreɪkθruː/ đột phá fundamental breakthroughs needed major breakthrough, scientific breakthrough
isolation techniques n phrase /ˌaɪsəˈleɪʃən tekˈniːks/ kỹ thuật cách ly sophisticated isolation techniques advanced isolation techniques, improve isolation

Từ vựng chuyên ngành quantum computing cho IELTS Reading band cao với phiên âm và ví dụTừ vựng chuyên ngành quantum computing cho IELTS Reading band cao với phiên âm và ví dụ

Passage 3 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
paradigm shift n phrase /ˈpærədaɪm ʃɪft/ sự chuyển đổi mô hình constitutes a paradigm shift major paradigm shift, undergo paradigm shift
socioeconomic adj /ˌsəʊsiəʊˌiːkəˈnɒmɪk/ kinh tế xã hội socioeconomic fabric of society socioeconomic factors, socioeconomic impact
asymmetric encryption n phrase /ˌeɪsɪˈmetrɪk ɪnˈkrɪpʃən/ mã hóa bất đối xứng relies on asymmetric encryption use asymmetric encryption, asymmetric encryption algorithm
intractability n /ɪnˌtræktəˈbɪləti/ tính không giải được computational intractability mathematical intractability, prove intractability
post-quantum cryptography n phrase /pəʊst ˈkwɒntəm krɪpˈtɒɡrəfi/ mật mã hậu lượng tử develop post-quantum cryptography transition to post-quantum cryptography
industrial hierarchies n phrase /ɪnˈdʌstriəl ˈhaɪərɑːkiz/ hệ thống cấp bậc công nghiệp create new industrial hierarchies reshape industrial hierarchies, establish hierarchies
decisive competitive advantages n phrase /dɪˈsaɪsɪv kəmˈpetətɪv ədˈvɑːntɪdʒɪz/ lợi thế cạnh tranh quyết định provide decisive competitive advantages gain decisive advantages, maintain advantages
barriers to entry n phrase /ˈbæriəz tuː ˈentri/ rào cản gia nhập substantial barriers to entry high barriers to entry, reduce barriers
strategic competition n phrase /strəˈtiːdʒɪk ˌkɒmpəˈtɪʃən/ cạnh tranh chiến lược focal point of strategic competition intense strategic competition, engage in competition
dual-use nature n phrase /ˈdjuːəl juːs ˈneɪtʃə/ bản chất hai mục đích dual-use nature of quantum computing recognize dual-use nature, dual-use technology
cryptanalysis n /ˌkrɪptəˈnæləsɪs/ phân tích mật mã military purposes including cryptanalysis advanced cryptanalysis, cryptanalysis techniques
Church-Turing thesis n phrase /tʃɜːtʃ ˈtjʊərɪŋ ˈθiːsɪs/ luận đề Church-Turing challenges the Church-Turing thesis extended Church-Turing thesis, violate the thesis
metaphysical questions n phrase /ˌmetəˈfɪzɪkəl ˈkwestʃənz/ câu hỏi siêu hình profound metaphysical questions raise metaphysical questions, address questions
hypercomputation n /ˌhaɪpəkɒmpjuˈteɪʃən/ siêu tính toán theoretical proposals for hypercomputation achieve hypercomputation, hypercomputation capabilities
governance frameworks n phrase /ˈɡʌvənəns ˈfreɪmwɜːks/ khung quản trị establish governance frameworks appropriate governance frameworks, regulatory frameworks
equitable access n phrase /ˈekwɪtəbəl ˈækses/ tiếp cận công bằng ensuring equitable access promote equitable access, guarantee access
technological sovereignty n phrase /ˌteknəˈlɒdʒɪkəl ˈsɒvrənti/ chủ quyền công nghệ concerns about technological sovereignty maintain technological sovereignty, achieve sovereignty
harvest now decrypt later phrase /ˈhɑːvɪst naʊ diːˈkrɪpt ˈleɪtə/ thu thập ngay giải mã sau harvest now decrypt later strategies employ harvest now decrypt later, strategy of collecting data

Kết Bài

Chủ đề quantum computing không chỉ là một xu hướng công nghệ hiện đại mà còn phản ánh sự phát triển của khoa học máy tính và tác động sâu rộng đến xã hội toàn cầu. Như đã trình bày qua ba passages với độ khó tăng dần, bạn đã được tiếp cận với nhiều góc độ khác nhau: từ kiến thức cơ bản về nguyên lý hoạt động (Passage 1), các thách thức kỹ thuật và công nghệ (Passage 2), đến những hệ quả kinh tế, chính trị và triết học sâu sắc (Passage 3).

Bộ đề thi này cung cấp 40 câu hỏi đa dạng bao gồm 7 dạng khác nhau, giúp bạn làm quen với đầy đủ các định dạng xuất hiện trong IELTS Reading thực tế. Phần đáp án chi tiết không chỉ cho biết câu trả lời đúng mà còn giải thích vị trí cụ thể, kỹ thuật paraphraselý do tại sao đáp án khác sai, giúp bạn phát triển tư duy phản biện và kỹ năng phân tích cần thiết cho band điểm cao.

Bảng từ vựng tổng hợp hơn 40 từ và cụm từ chuyên ngành kèm phiên âm, nghĩa và collocations sẽ là tài liệu quý giá không chỉ cho chủ đề công nghệ mà còn cho nhiều chủ đề học thuật khác trong IELTS. Hãy chắc chắn ghi nhớ và vận dụng những từ này trong quá trình luyện tập.

Để đạt hiệu quả tốt nhất, bạn nên làm bài trong điều kiện thi thật (60 phút cho cả 3 passages), sau đó đối chiếu đáp án và đọc kỹ phần giải thích. Lặp lại quá trình này với các chủ đề khác nhau sẽ giúp bạn xây dựng nền tảng vững chắc cho kỳ thi IELTS Reading. Đối với những ai quan tâm đến các khía cạnh của công nghệ số, việc tìm hiểu thêm về impact of AI on digital marketingthe rise of energy-efficient data centers sẽ mở rộng kiến thức và vốn từ vựng của bạn.

Chúc bạn học tập hiệu quả và đạt band điểm mục tiêu trong kỳ thi IELTS sắp tới!

Previous Article

IELTS Speaking: Cách Trả Lời "Describe a time when you took part in a charity event" - Bài Mẫu Band 6-9

Next Article

IELTS Writing Task 2: Cách Thúc Đẩy Công Nghệ Xanh Trong Xây Dựng – Bài Mẫu Band 5-9 & Phân Tích Chi Tiết

Write a Comment

Leave a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Đăng ký nhận thông tin bài mẫu

Để lại địa chỉ email của bạn, chúng tôi sẽ thông báo tới bạn khi có bài mẫu mới được biên tập và xuất bản thành công.
Chúng tôi cam kết không spam email ✨