Mở Bài
Đa dạng sinh học trong hệ sinh thái là một chủ đề phổ biến trong kỳ thi IELTS Reading, xuất hiện thường xuyên với nhiều góc độ khác nhau như bảo tồn thiên nhiên, thay đổi khí hậu, và tác động của con người đến môi trường. Chủ đề này không chỉ kiểm tra khả năng đọc hiểu của bạn mà còn yêu cầu vốn từ vựng học thuật về môi trường và sinh thái.
Trong bài viết này, bạn sẽ được luyện tập với một đề thi IELTS Reading hoàn chỉnh gồm 3 passages theo đúng chuẩn thi thật. Passage 1 phù hợp với người mục tiêu band 5.0-6.5 với nội dung giới thiệu tổng quan về đa dạng sinh học. Passage 2 nâng độ khó lên band 6.0-7.5 với phân tích sâu hơn về vai trò của đa dạng sinh học. Passage 3 dành cho band 7.0-9.0 với góc nhìn học thuật về các thách thức bảo tồn.
Đề thi bao gồm đầy đủ 40 câu hỏi với 7 dạng câu hỏi khác nhau giống thi thật, đáp án chi tiết kèm giải thích cụ thể, và hệ thống từ vựng quan trọng được phân loại theo từng passage. Đây là tài liệu lý tưởng giúp bạn làm quen với format thi, rèn luyện kỹ năng quản lý thời gian, và nâng cao khả năng đọc hiểu văn bản học thuật.
1. Hướng Dẫn Làm Bài IELTS Reading
Tổng Quan Về IELTS Reading Test
IELTS Reading test kéo dài 60 phút với 3 passages và tổng cộng 40 câu hỏi. Mỗi câu trả lời đúng được tính 1 điểm, không bị trừ điểm khi sai. Độ khó tăng dần từ Passage 1 đến Passage 3, với độ dài mỗi passage từ 650-1000 từ.
Phân bổ thời gian khuyến nghị:
- Passage 1: 15-17 phút (dễ nhất, nên làm nhanh để dành thời gian cho các passage sau)
- Passage 2: 18-20 phút (độ khó trung bình, cần đọc kỹ hơn)
- Passage 3: 23-25 phút (khó nhất, yêu cầu phân tích sâu)
Lưu ý quan trọng: Hãy chuyển đáp án vào answer sheet trong 60 phút, không có thời gian bổ sung như phần Listening.
Các Dạng Câu Hỏi Trong Đề Này
Đề thi mẫu này bao gồm 7 dạng câu hỏi phổ biến nhất trong IELTS Reading:
- Multiple Choice – Chọn đáp án đúng trong số các lựa chọn
- True/False/Not Given – Xác định thông tin đúng, sai hay không được nhắc đến
- Matching Headings – Nối tiêu đề với đoạn văn phù hợp
- Sentence Completion – Hoàn thành câu với từ trong bài đọc
- Matching Information – Xác định đoạn văn chứa thông tin cụ thể
- Summary Completion – Điền từ vào tóm tắt đoạn văn
- Short-answer Questions – Trả lời câu hỏi ngắn dựa trên thông tin trong bài
2. IELTS Reading Practice Test
PASSAGE 1 – The Foundation of Life: Understanding Biodiversity
Độ khó: Easy (Band 5.0-6.5)
Thời gian đề xuất: 15-17 phút
Biodiversity, short for biological diversity, refers to the variety of life on Earth at all its levels, from genes to ecosystems. It encompasses the evolutionary, ecological, and cultural processes that sustain life. The term was first coined in 1985 and has since become a central concept in conservation biology and environmental science.
The Earth is home to an estimated 8.7 million species, though only about 1.2 million have been formally identified and described. These species range from microscopic bacteria to massive blue whales, from towering redwood trees to delicate orchids. Each species plays a unique role in its ecosystem, contributing to the overall functioning of the natural world. The loss of even a single species can have cascading effects throughout an ecosystem, affecting other organisms and the services that ecosystems provide to humans.
Biodiversity exists at three main levels. First, genetic diversity refers to the variation in genes within a particular species. This variation enables populations to adapt to changing environments and resist diseases. For example, different varieties of rice possess different genetic traits that make them suitable for various climates and resistant to different pests. Second, species diversity relates to the variety of species within a habitat or region. A tropical rainforest, for instance, contains thousands of different plant and animal species, while a desert has far fewer. Third, ecosystem diversity describes the variety of ecosystems in a given place, such as forests, grasslands, wetlands, and coral reefs.
The importance of biodiversity cannot be overstated. Ecosystems with high biodiversity are generally more resilient and better able to withstand environmental stresses such as drought, disease, or climate change. This is because diverse ecosystems have more species that can perform similar functions, creating a kind of biological insurance policy. If one species disappears, others can potentially fill its role, maintaining the ecosystem’s stability.
Biodiversity provides numerous benefits to human society, often called ecosystem services. These include provisioning services such as food, fresh water, wood, and medicinal resources. Many modern medicines, including aspirin and numerous cancer treatments, were originally derived from plants. Regulating services include climate regulation, flood control, and water purification. Forests, for example, absorb carbon dioxide and release oxygen, helping to regulate the global climate. Cultural services encompass the recreational, aesthetic, and spiritual benefits that people derive from nature. Finally, supporting services such as soil formation and nutrient cycling underpin all other ecosystem services.
Despite its importance, biodiversity is declining at an unprecedented rate. Scientists estimate that species are currently going extinct at rates 100 to 1,000 times higher than the natural background rate. The main drivers of biodiversity loss include habitat destruction, climate change, pollution, overexploitation of resources, and the introduction of invasive species. Deforestation, particularly in tropical regions, is especially damaging because these areas contain the majority of Earth’s terrestrial biodiversity.
Conservation efforts are crucial to protecting biodiversity. These include establishing protected areas such as national parks and wildlife reserves, implementing laws to prevent poaching and illegal logging, and promoting sustainable practices in agriculture and fishing. International agreements like the Convention on Biological Diversity aim to coordinate global efforts to preserve biodiversity. Additionally, ex-situ conservation methods, such as seed banks and zoos, help preserve species that are at risk in the wild.
Public awareness and education play a vital role in biodiversity conservation. When people understand the value of biodiversity and the threats it faces, they are more likely to support conservation initiatives and make environmentally conscious choices in their daily lives. Simple actions such as reducing consumption, choosing sustainable products, and supporting conservation organizations can collectively make a significant difference.
Questions 1-5: Multiple Choice
Choose the correct letter, A, B, C, or D.
-
According to the passage, biodiversity was first defined as a term in
A. the early 1900s
B. 1985
C. the 1970s
D. 2000 -
How many species have been formally identified on Earth?
A. 8.7 million
B. 1.2 million
C. 100,000
D. The exact number is unknown -
Genetic diversity helps populations to
A. grow larger in size
B. adapt to environmental changes
C. migrate to new areas
D. compete with other species -
According to the passage, ecosystems with high biodiversity are
A. more vulnerable to disease
B. less stable than simple ecosystems
C. more resilient to environmental stress
D. found only in tropical regions -
The passage states that species are going extinct at a rate that is
A. slower than in previous centuries
B. about the same as the natural rate
C. 100 to 1,000 times the natural rate
D. impossible to measure accurately
Questions 6-9: True/False/Not Given
Do the following statements agree with the information given in the passage?
Write:
- TRUE if the statement agrees with the information
- FALSE if the statement contradicts the information
- NOT GIVEN if there is no information on this
- A desert has more species diversity than a tropical rainforest.
- Aspirin was originally developed from plant sources.
- Tropical deforestation is particularly harmful to biodiversity.
- Seed banks are the most effective method of conservation.
Questions 10-13: Sentence Completion
Complete the sentences below.
Choose NO MORE THAN TWO WORDS from the passage for each answer.
-
The three main levels of biodiversity are genetic diversity, species diversity, and __ diversity.
-
Diverse ecosystems function as a kind of __ __ because multiple species can perform similar roles.
-
Services that include recreation and spiritual benefits are called __ services.
-
International coordination for biodiversity preservation is achieved through agreements such as the Convention on __ __.
Đa dạng sinh học phong phú trong hệ sinh thái rừng nhiệt đới với nhiều loài động thực vật
PASSAGE 2 – The Interconnected Web: How Biodiversity Sustains Ecosystems
Độ khó: Medium (Band 6.0-7.5)
Thời gian đề xuất: 18-20 phút
The relationship between biodiversity and ecosystem functioning has become a focal point of ecological research over the past three decades. Scientists have moved beyond simply cataloguing species to understanding the intricate mechanisms through which biodiversity influences ecosystem processes. This shift in perspective has revealed that biodiversity is not merely a passive outcome of environmental conditions, but an active driver of ecosystem health and stability.
A. The Redundancy Hypothesis
One of the most debated concepts in ecology is the redundancy hypothesis, which suggests that many species within an ecosystem perform functionally similar roles. According to this view, the loss of a few species would have minimal impact on ecosystem functioning because other species could compensate for their absence. However, recent research has challenged this oversimplified notion. While some degree of functional redundancy does exist, each species possesses unique traits and responds differently to environmental conditions. This response diversity means that species that appear redundant under normal conditions may become critical when ecosystems face stress or disturbance.
B. The Insurance Hypothesis
The insurance hypothesis builds upon the concept of response diversity. It proposes that biodiversity acts as an insurance policy against environmental fluctuations and disturbances. In diverse ecosystems, when conditions change, some species may decline while others thrive, maintaining overall ecosystem functioning. For instance, during a drought, drought-tolerant species that were previously less abundant may increase, compensating for the decline of more moisture-dependent species. This temporal complementarity ensures that ecosystem services remain relatively stable despite changing conditions.
C. Trophic Cascades and Keystone Species
Not all species contribute equally to ecosystem functioning. Keystone species have a disproportionate impact on their ecosystems relative to their abundance. The classic example is the sea otter in kelp forest ecosystems along the Pacific coast of North America. Sea otters prey on sea urchins, which feed on kelp. When sea otters were hunted to near extinction in the 18th and 19th centuries, sea urchin populations exploded, decimating kelp forests and transforming these productive ecosystems into barren urchin barrens. The reintroduction of sea otters led to the recovery of kelp forests, demonstrating the cascading effects that a single species can have throughout an ecosystem.
Such trophic cascades illustrate how changes at one level of the food web can reverberate throughout the entire ecosystem. Top predators often play crucial roles in regulating ecosystems by controlling populations of herbivores, which in turn affects plant communities. The removal of large predators can lead to mesopredator release, where medium-sized predators increase in abundance and negatively impact smaller prey species and plant communities.
D. Biodiversity and Ecosystem Productivity
Numerous experiments have demonstrated a positive correlation between biodiversity and ecosystem productivity. One landmark study, the Cedar Creek Ecosystem Science Reserve experiments in Minnesota, showed that plots with more plant species produced more biomass than plots with fewer species. This increased productivity results from several mechanisms. First, niche complementarity occurs when different species use resources in different ways, such as having roots at different soil depths or being active at different times of the year, allowing more efficient resource utilization. Second, the sampling effect suggests that diverse communities are more likely to contain highly productive species that dominate biomass production.
However, the relationship between biodiversity and productivity is context-dependent. In extremely harsh environments, such as high-altitude or high-latitude ecosystems, abiotic factors like temperature and precipitation may be more important determinants of productivity than biodiversity. Additionally, the type of diversity matters; functional diversity (the range of different ecological roles species play) often has a stronger influence on ecosystem processes than taxonomic diversity (simply the number of species).
E. Biodiversity and Ecosystem Stability
Stability is a multifaceted concept in ecology, encompassing resistance (the ability to withstand disturbance), resilience (the speed of recovery after disturbance), and temporal invariability (consistency of ecosystem properties over time). Research has shown that biodiversity generally enhances all three aspects of stability. Diverse ecosystems are better able to resist pest outbreaks, disease, and extreme weather events. They also recover more quickly from disturbances because they contain more species that can colonize disturbed areas and facilitate succession.
The portfolio effect, borrowed from economics, provides another explanation for the stability of diverse ecosystems. Just as a diverse investment portfolio reduces financial risk, a diverse species portfolio reduces ecological risk. Because different species respond differently to environmental fluctuations, their populations may increase or decrease asynchronously. When averaged across all species, ecosystem-level properties remain more stable than the populations of individual species.
F. Implications for Conservation and Management
Understanding the functional importance of biodiversity has profound implications for conservation strategies. Rather than focusing solely on protecting charismatic megafauna or species richness, conservation efforts should also prioritize maintaining functional diversity and key ecological interactions. Functional trait-based approaches to conservation identify which combinations of traits are necessary for ecosystem functioning and target species that possess those traits.
Additionally, recognizing that ecosystems are dynamic entities subject to ongoing change challenges the traditional conservation goal of maintaining ecosystems in a static pristine state. Modern conservation increasingly emphasizes adaptive management strategies that maintain ecosystem processes and evolutionary potential while acknowledging that the specific composition of communities will change over time in response to environmental conditions.
Questions 14-18: Matching Headings
The passage has six paragraphs, A-F.
Choose the correct heading for each paragraph from the list of headings below.
Write the correct number, i-ix.
List of Headings:
i. Economic principles applied to ecology
ii. The role of similar species in ecosystems
iii. Why all species are not equally important
iv. New approaches to protecting nature
v. The connection between diversity and production
vi. How biodiversity protects against uncertainty
vii. Various aspects of ecosystem constancy
viii. Examples of predator impacts on ecosystems
ix. The changing focus of ecological science
- Paragraph A
- Paragraph B
- Paragraph D
- Paragraph E
- Paragraph F
Questions 19-23: Yes/No/Not Given
Do the following statements agree with the claims of the writer in the passage?
Write:
- YES if the statement agrees with the claims of the writer
- NO if the statement contradicts the claims of the writer
- NOT GIVEN if it is impossible to say what the writer thinks about this
- All species that perform similar functions can be considered completely interchangeable.
- The loss of sea otters had a significant impact on kelp forest ecosystems.
- Plant biodiversity always increases ecosystem productivity regardless of environmental conditions.
- Diverse ecosystems are more likely to recover quickly after being disturbed.
- Traditional conservation methods are completely ineffective.
Questions 24-26: Summary Completion
Complete the summary below.
Choose NO MORE THAN TWO WORDS from the passage for each answer.
The relationship between biodiversity and ecosystem functioning is more complex than previously thought. While some researchers proposed that many species are functionally redundant, newer evidence shows that different species have unique (24) __ __ that become important under different conditions. The concept of (25) __ __ explains how ecosystems maintain stable functioning when some species decline and others increase in response to environmental changes. Furthermore, certain species called (26) __ __ have an especially large impact on their ecosystems compared to their population size.
PASSAGE 3 – Biodiversity in the Anthropocene: Challenges and Future Trajectories
Độ khó: Hard (Band 7.0-9.0)
Thời gian đề xuất: 23-25 phút
The current geological epoch has been characterized by some scientists as the Anthropocene, a period in which human activities have become the dominant influence on Earth’s climate and environment. This anthropogenic transformation of the planet has precipitated what many ecologists consider the sixth mass extinction event in Earth’s history, distinguished from previous extinctions by its anthropogenic causation and unprecedented rapidity. The implications of this biodiversity crisis extend far beyond the ethical and aesthetic dimensions of species loss, fundamentally threatening the ecosystem services upon which human civilization depends.
The taxonomy of threats to biodiversity is well-established, yet the interactions among these threats create synergistic effects that are more severe than the sum of individual impacts. Habitat fragmentation, for instance, not only reduces the total area of available habitat but also increases edge effects, exposes populations to greater demographic stochasticity, and impedes genetic flow between populations. These fragmented landscapes are simultaneously more susceptible to biological invasions and less resilient to climate change impacts. The compounding nature of these threats creates what conservation biologists term extinction vortices, where multiple negative factors interact to accelerate population decline toward extirpation.
Climate change represents a particularly insidious threat because it operates at spatiotemporal scales that exceed most species’ adaptive capacities. Phenological mismatches—asynchronies between the timing of critical life-history events and the availability of resources—are becoming increasingly common. For example, migratory birds that rely on innate photoperiodic cues to time their migrations may arrive at breeding grounds after the peak abundance of insect prey, which emerges in response to temperature rather than day length. Such temporal displacements can have cascading repercussions throughout food webs. Furthermore, range shifts in response to changing thermal regimes are constrained by factors such as dispersal limitations, habitat discontinuities, and biotic interactions, meaning that many species cannot move quickly enough to track their climatic envelopes.
The functional consequences of biodiversity loss are mediated by the non-random nature of extinctions. Extinction selectivity—the observation that certain types of species are more vulnerable to extinction than others—means that biodiversity loss often entails the preferential removal of species with particular traits. Large-bodied species, apex predators, species with limited ranges, and those with specialized ecological requirements are typically more extinction-prone. Because these species often fulfill unique functional roles, their loss can have disproportionate impacts on ecosystem functioning. This phenomenon, termed functional homogenization, describes how ecological communities become increasingly dominated by generalist species with similar traits, even if species richness per se does not decline dramatically.
Recent advances in ecological network theory have illuminated how biodiversity loss affects the architecture of ecological interactions. Ecosystems can be conceptualized as complex networks in which species are nodes and their interactions (predation, competition, mutualism) are edges. The stability and functioning of these networks depend not only on species richness but on properties such as connectance (the proportion of realized interactions among species), modularity (the degree to which the network is organized into distinct subgroups), and the distribution of interaction strengths. Species losses that disrupt keystone interactions or eliminate highly connected nodes can trigger structural reorganization of entire networks, potentially leading to regime shifts—abrupt transitions to alternative stable states from which recovery is difficult.
The implications of these findings for conservation are profound yet perplexing. Traditional conservation paradigms have emphasized preserving existing biodiversity through protected areas and ex-situ conservation facilities. However, the dynamism inherent in contemporary environmental change suggests that static preservation may be insufficient or even counterproductive. Some conservation biologists advocate for proactive interventions such as assisted migration—deliberately translocating species to areas outside their historical ranges where future climate conditions are predicted to be suitable. While potentially effective, such strategies entail considerable ecological risks, including the possibility that translocated species could become invasive or disrupt existing communities.
Novel ecosystems—communities of organisms that have no historical analog and emerge through combinations of native and non-native species responding to altered environmental conditions—present another challenge to traditional conservation thinking. These ecosystems, often dismissed as degraded or artificial, may nevertheless provide valuable ecosystem services and harbor significant biodiversity. The question of whether to accept, actively manage, or attempt to restore novel ecosystems remains contentious within the conservation community and depends partly on normative judgments about the relative value of historical fidelity versus functional integrity.
Technological innovations offer potential tools for biodiversity conservation, though their application raises ethical questions. Genetic rescue—the introduction of genetic material from other populations to increase genetic diversity—has successfully reversed inbreeding depression in some small populations. More controversially, emerging biotechnologies such as CRISPR gene editing could theoretically be used to increase species’ adaptive potential in response to climate change or even to resurrect extinct species through de-extinction programs. Critics caution that such technological optimism may distract from the more fundamental need to address the underlying drivers of biodiversity loss and may create unforeseen ecological consequences.
The socioeconomic dimensions of biodiversity conservation are equally complex. The economic valuation of ecosystem services has become a common strategy for demonstrating biodiversity’s importance to policymakers, yet assigning monetary values to nature raises philosophical concerns about commodifying the natural world. Moreover, biodiversity and ecosystem services are inequitably distributed, and conservation initiatives can have disparate impacts on different human communities. Fortress conservation approaches that exclude local people from protected areas have been widely criticized as both ethically problematic and practically ineffective. Contemporary conservation increasingly emphasizes community-based approaches that integrate biodiversity protection with local livelihoods and respect indigenous knowledge systems.
Ultimately, addressing the biodiversity crisis requires not merely technical solutions but a fundamental re-examination of humanity’s relationship with the natural world. The concept of planetary boundaries suggests that biodiversity loss, along with climate change and other environmental pressures, threatens to push Earth systems beyond safe operating spaces for human civilization. Whether society can achieve the transformative change necessary to reverse biodiversity decline remains an open question, contingent upon political will, economic restructuring, and cultural shifts toward more sustainable modes of living.
Bảo tồn đa dạng sinh học hiện đại kết hợp công nghệ và phương pháp truyền thống
Questions 27-31: Multiple Choice
Choose the correct letter, A, B, C, or D.
-
According to the passage, the Anthropocene is primarily characterized by
A. natural climate variations
B. human influence on Earth’s environment
C. the evolution of new species
D. volcanic activity -
The term “extinction vortices” refers to
A. natural patterns of species evolution
B. positive feedback loops that help species survive
C. multiple negative factors that accelerate extinction
D. protected areas designed to prevent extinction -
Phenological mismatches occur when
A. species evolve too quickly
B. the timing of life events and resource availability become unaligned
C. populations become too large
D. habitats are completely destroyed -
According to the passage, functional homogenization results in ecosystems
A. becoming more diverse
B. losing all their species
C. being dominated by generalist species with similar traits
D. evolving new functional roles -
The author’s attitude toward using technology like CRISPR for conservation is
A. entirely supportive
B. completely opposed
C. cautiously neutral, acknowledging both potential and risks
D. indifferent
Questions 32-36: Matching Information
Which paragraph contains the following information?
Write the correct letter, A-J.
NB: You may use any letter more than once.
- A description of how the spatial arrangement of habitats affects species survival
- Discussion of ethical concerns regarding putting monetary value on nature
- An explanation of how species respond to temperature changes
- Information about the structure of ecological relationships between species
- A reference to conservation methods that involve local communities
Questions 37-40: Short-answer Questions
Answer the questions below.
Choose NO MORE THAN THREE WORDS from the passage for each answer.
-
What type of species often have a disproportionate impact on ecosystems when they are lost?
-
What term describes ecosystems composed of species combinations that have never existed historically?
-
What technique involves moving species to new areas where climate conditions may be more suitable?
-
According to the passage, what concept suggests that environmental changes could push Earth beyond safe limits?
3. Answer Keys – Đáp Án
PASSAGE 1: Questions 1-13
- B
- B
- B
- C
- C
- FALSE
- TRUE
- TRUE
- NOT GIVEN
- ecosystem
- biological insurance (hoặc insurance policy)
- cultural
- Biological Diversity
PASSAGE 2: Questions 14-26
- ii
- vi
- v
- vii
- iv
- NO
- YES
- NO
- YES
- NOT GIVEN
- response diversity (hoặc unique traits)
- temporal complementarity
- keystone species
PASSAGE 3: Questions 27-40
- B
- C
- B
- C
- C
- Paragraph 2 (đoạn về habitat fragmentation)
- Paragraph 9 (đoạn về socioeconomic dimensions)
- Paragraph 3 (đoạn về climate change)
- Paragraph 5 (đoạn về ecological network theory)
- Paragraph 9 (đoạn về community-based approaches)
- large-bodied species (hoặc apex predators, hoặc specialized species)
- novel ecosystems
- assisted migration
- planetary boundaries
4. Giải Thích Đáp Án Chi Tiết
Passage 1 – Giải Thích
Câu 1: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: biodiversity, first defined, term
- Vị trí trong bài: Đoạn 1, câu 3: “The term was first coined in 1985”
- Giải thích: Câu hỏi hỏi về thời điểm thuật ngữ biodiversity được định nghĩa lần đầu. Bài đọc nói rõ “coined in 1985” (được đặt ra vào năm 1985), do đó đáp án B là chính xác.
Câu 3: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: genetic diversity, helps populations
- Vị trí trong bài: Đoạn 3, câu 3: “This variation enables populations to adapt to changing environments and resist diseases”
- Giải thích: Đa dạng di truyền giúp quần thể “adapt to changing environments” (thích nghi với môi trường thay đổi), khớp hoàn toàn với đáp án B.
Câu 6: FALSE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: desert, more species diversity, tropical rainforest
- Vị trí trong bài: Đoạn 3, câu 5-6: “A tropical rainforest…contains thousands of different plant and animal species, while a desert has far fewer”
- Giải thích: Bài đọc khẳng định rừng nhiệt đới có “thousands” (hàng nghìn) loài trong khi sa mạc có “far fewer” (ít hơn nhiều), hoàn toàn trái ngược với phát biểu.
Câu 7: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: aspirin, developed from plant sources
- Vị trí trong bài: Đoạn 5, câu 3: “Many modern medicines, including aspirin…were originally derived from plants”
- Giải thích: “Derived from plants” (có nguồn gốc từ thực vật) đồng nghĩa với “developed from plant sources”, do đó phát biểu đúng.
Câu 10: ecosystem
- Dạng câu hỏi: Sentence Completion
- Từ khóa: three main levels, genetic diversity, species diversity
- Vị trí trong bài: Đoạn 3, câu đầu tiên: “Biodiversity exists at three main levels”
- Giải thích: Ba cấp độ được liệt kê là genetic diversity, species diversity, và ecosystem diversity. Câu hỏi thiếu từ cuối cùng nên đáp án là “ecosystem”.
Câu 11: biological insurance (policy)
- Dạng câu hỏi: Sentence Completion
- Từ khóa: diverse ecosystems, similar functions
- Vị trí trong bài: Đoạn 4, câu 3: “creating a kind of biological insurance policy”
- Giải thích: Bài đọc sử dụng cụm metaphor “biological insurance policy” để mô tả cách hệ sinh thái đa dạng hoạt động.
Passage 2 – Giải Thích
Câu 14: ii
- Dạng câu hỏi: Matching Headings
- Heading: The role of similar species in ecosystems
- Vị trí: Paragraph A
- Giải thích: Đoạn A thảo luận về “redundancy hypothesis” – giả thuyết cho rằng nhiều loài đóng vai trò tương tự nhau (functionally similar roles). Heading ii nói về “similar species” khớp với nội dung này.
Câu 15: vi
- Dạng câu hỏi: Matching Headings
- Heading: How biodiversity protects against uncertainty
- Vị trí: Paragraph B
- Giải thích: Đoạn B giới thiệu “insurance hypothesis” – biodiversity như một bảo hiểm chống lại biến động môi trường (environmental fluctuations). Đây chính là cách đa dạng sinh học bảo vệ khỏi sự bất định.
Câu 19: NO
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: all species, similar functions, completely interchangeable
- Vị trí trong bài: Paragraph A: “each species possesses unique traits and responds differently to environmental conditions”
- Giải thích: Tác giả phản bác quan điểm này, nhấn mạnh mỗi loài có đặc điểm riêng và phản ứng khác nhau, do đó không thể hoán đổi hoàn toàn.
Câu 20: YES
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: sea otters, significant impact, kelp forest
- Vị trí trong bài: Paragraph C: “When sea otters were hunted to near extinction…sea urchin populations exploded, decimating kelp forests”
- Giải thích: Tác giả cho ví dụ rõ ràng về tác động lớn của việc mất rái cá biển đến hệ sinh thái rừng kelp.
Câu 24: response diversity (hoặc unique traits)
- Dạng câu hỏi: Summary Completion
- Từ khóa: different species, unique, important under different conditions
- Vị trí trong bài: Paragraph A: “This response diversity means that species…become critical when ecosystems face stress”
- Giải thích: Đoạn văn nhấn mạnh “response diversity” – sự đa dạng trong phản ứng của các loài khác nhau.
Passage 3 – Giải Thích
Câu 27: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: Anthropocene, primarily characterized
- Vị trí trong bài: Đoạn 1, câu 1: “The Anthropocene…in which human activities have become the dominant influence on Earth’s climate and environment”
- Giải thích: Anthropocene được định nghĩa là thời kỳ hoạt động của con người trở thành tác động chi phối đến môi trường Trái Đất.
Câu 28: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: extinction vortices, refers to
- Vị trí trong bài: Đoạn 2, câu cuối: “extinction vortices, where multiple negative factors interact to accelerate population decline”
- Giải thích: Thuật ngữ mô tả nhiều yếu tố tiêu cực tương tác để đẩy nhanh sự suy giảm quần thể.
Câu 29: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: phenological mismatches, occur when
- Vị trí trong bài: Đoạn 3, câu 2: “Phenological mismatches—asynchronies between the timing of critical life-history events and the availability of resources”
- Giải thích: Định nghĩa rõ ràng về sự không đồng bộ giữa thời điểm sự kiện sống và sự sẵn có của nguồn tài nguyên.
Câu 31: C
- Dạng câu hỏi: Multiple Choice – Thái độ tác giả
- Từ khóa: CRISPR, conservation, author’s attitude
- Vị trí trong bài: Đoạn 8: “could theoretically be used…Critics caution that such technological optimism may distract”
- Giải thích: Tác giả trình bày cả tiềm năng và những lo ngại, thể hiện thái độ thận trọng và trung lập.
Câu 32: Paragraph 2
- Dạng câu hỏi: Matching Information
- Thông tin tìm: spatial arrangement of habitats affects species survival
- Vị trí: Paragraph 2 thảo luận về “habitat fragmentation”, “fragmented landscapes”, “edge effects”
- Giải thích: Đoạn này mô tả cách sự phân mảnh không gian ảnh hưởng đến khả năng sống sót của loài.
Câu 37: large-bodied species (apex predators/specialized species)
- Dạng câu hỏi: Short-answer Questions
- Từ khóa: disproportionate impact, ecosystems, lost
- Vị trí trong bài: Đoạn 4: “Large-bodied species, apex predators, species with limited ranges…often fulfill unique functional roles, their loss can have disproportionate impacts”
- Giải thích: Bài liệt kê các loại loài có tác động không cân xứng, có thể chọn bất kỳ ví dụ nào trong giới hạn 3 từ.
Câu 39: assisted migration
- Dạng câu hỏi: Short-answer Questions
- Từ khóa: moving species, new areas, climate conditions, suitable
- Vị trí trong bài: Đoạn 6: “assisted migration—deliberately translocating species to areas outside their historical ranges where future climate conditions are predicted to be suitable”
- Giải thích: Định nghĩa chính xác khớp với mô tả trong câu hỏi.
5. Từ Vựng Quan Trọng Theo Passage
Passage 1 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| biodiversity | n | /ˌbaɪəʊdaɪˈvɜːsəti/ | đa dạng sinh học | Biodiversity encompasses evolutionary, ecological, and cultural processes | biodiversity conservation, biodiversity loss |
| evolutionary | adj | /ˌiːvəˈluːʃənri/ | thuộc về tiến hóa | evolutionary processes that sustain life | evolutionary biology, evolutionary adaptation |
| cascading effects | n phrase | /kæsˈkeɪdɪŋ ɪˈfekts/ | hiệu ứng dây chuyền | The loss of a species can have cascading effects | cascading impacts, cascading consequences |
| resilient | adj | /rɪˈzɪliənt/ | có khả năng phục hồi | Ecosystems with high biodiversity are more resilient | resilient ecosystems, resilient communities |
| provisioning services | n phrase | /prəˈvɪʒənɪŋ ˈsɜːvɪsɪz/ | dịch vụ cung cấp | Provisioning services include food and fresh water | ecosystem provisioning, provisioning functions |
| unprecedented | adj | /ʌnˈpresɪdentɪd/ | chưa từng có | Biodiversity is declining at an unprecedented rate | unprecedented rate, unprecedented crisis |
| habitat destruction | n phrase | /ˈhæbɪtæt dɪˈstrʌkʃən/ | phá hủy môi trường sống | Habitat destruction is a main driver of biodiversity loss | habitat loss, habitat degradation |
| overexploitation | n | /ˌəʊvərˌeksplɔɪˈteɪʃən/ | khai thác quá mức | Overexploitation of resources threatens species | overexploitation of fisheries, resource overexploitation |
| invasive species | n phrase | /ɪnˈveɪsɪv ˈspiːʃiːz/ | loài xâm lấn | Invasive species disrupt native ecosystems | invasive plant species, invasive animals |
| conservation efforts | n phrase | /ˌkɒnsəˈveɪʃən ˈefəts/ | nỗ lực bảo tồn | Conservation efforts include establishing protected areas | conservation initiatives, conservation programs |
| protected areas | n phrase | /prəˈtektɪd ˈeəriəz/ | khu vực được bảo vệ | National parks are examples of protected areas | marine protected areas, terrestrial protected areas |
| sustainable practices | n phrase | /səˈsteɪnəbl ˈpræktɪsɪz/ | thực hành bền vững | Sustainable practices in agriculture help preserve biodiversity | sustainable farming, sustainable development |
Passage 2 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| focal point | n phrase | /ˈfəʊkəl pɔɪnt/ | điểm trọng tâm | The relationship has become a focal point of research | focal point of attention, main focal point |
| intricate mechanisms | n phrase | /ˈɪntrɪkət ˈmekənɪzəmz/ | cơ chế phức tạp | Understanding intricate mechanisms of biodiversity | intricate details, intricate patterns |
| redundancy hypothesis | n phrase | /rɪˈdʌndənsi haɪˈpɒθəsɪs/ | giả thuyết dự phòng | The redundancy hypothesis suggests functional similarity | ecological redundancy, functional redundancy |
| compensate | v | /ˈkɒmpenseɪt/ | bù đắp | Other species could compensate for their absence | compensate for loss, compensate for decline |
| response diversity | n phrase | /rɪˈspɒns daɪˈvɜːsəti/ | đa dạng phản ứng | Response diversity means species respond differently | ecological response diversity |
| keystone species | n phrase | /ˈkiːstəʊn ˈspiːʃiːz/ | loài then chốt | Keystone species have disproportionate impacts | keystone predator, keystone role |
| decimating | v | /ˈdesɪmeɪtɪŋ/ | tàn phá nặng nề | Sea urchins decimating kelp forests | decimating populations, decimating habitats |
| trophic cascades | n phrase | /ˈtrɒfɪk kæsˈkeɪdz/ | tầng dinh dưỡng liên hoàn | Trophic cascades illustrate food web changes | trophic interactions, trophic levels |
| niche complementarity | n phrase | /niːʃ ˌkɒmplɪmenˈtærəti/ | bổ sung ổ sinh thái | Niche complementarity allows efficient resource use | ecological niche, niche differentiation |
| temporal invariability | n phrase | /ˈtempərəl ɪnˌveəriəˈbɪləti/ | tính không thay đổi theo thời gian | Temporal invariability is consistency over time | temporal variation, temporal dynamics |
| colonize | v | /ˈkɒlənaɪz/ | định cư, chiếm lĩnh | Species that can colonize disturbed areas | colonize habitats, colonize new territories |
| asynchronously | adv | /eɪˈsɪŋkrənəsli/ | không đồng bộ | Populations increase or decrease asynchronously | asynchronous responses, asynchronous dynamics |
| charismatic megafauna | n phrase | /ˌkærɪzˈmætɪk ˌmeɡəˈfɔːnə/ | động vật lớn có sức hấp dẫn | Conservation focusing on charismatic megafauna | charismatic species, megafauna conservation |
| adaptive management | n phrase | /əˈdæptɪv ˈmænɪdʒmənt/ | quản lý thích ứng | Adaptive management strategies are increasingly used | adaptive strategies, adaptive approaches |
Passage 3 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| Anthropocene | n | /ˈænθrəpəsiːn/ | kỷ nguyên Nhân sinh | The current epoch characterized as the Anthropocene | Anthropocene epoch, Anthropocene era |
| anthropogenic | adj | /ˌænθrəpəˈdʒenɪk/ | do con người gây ra | Anthropogenic transformation of the planet | anthropogenic impacts, anthropogenic climate change |
| synergistic effects | n phrase | /ˌsɪnəˈdʒɪstɪk ɪˈfekts/ | hiệu ứng hiệp đồng | Synergistic effects more severe than individual impacts | synergistic interactions, synergistic relationships |
| habitat fragmentation | n phrase | /ˈhæbɪtæt ˌfræɡmenˈteɪʃən/ | phân mảnh môi trường sống | Habitat fragmentation reduces available habitat | habitat loss and fragmentation |
| demographic stochasticity | n phrase | /ˌdeməˈɡræfɪk stəˈkæstɪsəti/ | biến động ngẫu nhiên về dân số | Populations exposed to demographic stochasticity | demographic processes, stochastic events |
| extinction vortices | n phrase | /ɪkˈstɪŋkʃən ˈvɔːtɪsiːz/ | xoáy tuyệt chủng | Extinction vortices accelerate population decline | extinction risk, extinction dynamics |
| phenological mismatches | n phrase | /ˌfiːnəˈlɒdʒɪkəl ˈmɪsmætʃɪz/ | sự không khớp về thời vụ | Phenological mismatches becoming increasingly common | phenological shifts, phenological changes |
| climatic envelopes | n phrase | /klaɪˈmætɪk ˈenvələʊps/ | phạm vi khí hậu phù hợp | Species cannot track their climatic envelopes | climatic niche, climatic range |
| extinction selectivity | n phrase | /ɪkˈstɪŋkʃən sɪˌlekˈtɪvəti/ | tính chọn lọc tuyệt chủng | Extinction selectivity means certain species more vulnerable | selective extinction, extinction patterns |
| functional homogenization | n phrase | /ˈfʌŋkʃənəl həˌməʊdʒənaɪˈzeɪʃən/ | đồng nhất hóa chức năng | Functional homogenization reduces ecological uniqueness | ecological homogenization, biotic homogenization |
| ecological network theory | n phrase | /ˌiːkəˈlɒdʒɪkəl ˈnetwɜːk ˈθɪəri/ | lý thuyết mạng lưới sinh thái | Network theory illuminates biodiversity loss effects | network analysis, network structure |
| regime shifts | n phrase | /reɪˈʒiːm ʃɪfts/ | chuyển đổi trạng thái hệ thống | Regime shifts to alternative stable states | ecological regime shifts, regime change |
| assisted migration | n phrase | /əˈsɪstɪd maɪˈɡreɪʃən/ | di cư có hỗ trợ | Assisted migration involves translocating species | assisted colonization, managed relocation |
| novel ecosystems | n phrase | /ˈnɒvəl ˈiːkəʊˌsɪstəmz/ | hệ sinh thái mới | Novel ecosystems have no historical analog | emerging ecosystems, transformed ecosystems |
| genetic rescue | n phrase | /dʒəˈnetɪk ˈreskjuː/ | cứu hộ di truyền | Genetic rescue increases genetic diversity | genetic restoration, genetic intervention |
| de-extinction | n | /ˌdiː ɪkˈstɪŋkʃən/ | hồi sinh loài tuyệt chủng | De-extinction programs using biotechnology | species de-extinction, de-extinction efforts |
| planetary boundaries | n phrase | /ˈplænətri ˈbaʊndriz/ | ranh giới hành tinh | Planetary boundaries for safe operating spaces | planetary limits, Earth system boundaries |
| transformative change | n phrase | /trænsˈfɔːmətɪv tʃeɪndʒ/ | thay đổi mang tính chuyển đổi | Transformative change necessary to reverse decline | transformative action, systemic transformation |
Kết Bài
Chủ đề “The Importance Of Biodiversity In Ecosystems” là một trong những đề tài xuất hiện thường xuyên trong IELTS Reading, đòi hỏi người học không chỉ nắm vững kỹ năng đọc hiểu mà còn phải có vốn từ vựng chuyên ngành về môi trường và sinh thái học. Tương tự như Climate change’s impact on coral reefs, đây là những chủ đề mang tính thời sự cao và có ý nghĩa thực tiễn lớn trong thế giới hiện đại.
Bài thi mẫu này đã cung cấp cho bạn một trải nghiệm làm bài hoàn chỉnh với 3 passages theo đúng cấu trúc thi thật. Passage 1 giới thiệu các khái niệm cơ bản về đa dạng sinh học với độ khó phù hợp cho band 5.0-6.5. Passage 2 đi sâu vào các cơ chế hoạt động của hệ sinh thái đa dạng ở mức độ trung bình. Passage 3 thách thức người học ở band 7.0-9.0 với những phân tích học thuật về khủng hoảng đa dạng sinh học trong kỷ nguyên Nhân sinh.
Các dạng câu hỏi đa dạng từ Multiple Choice, True/False/Not Given, Matching Headings đến Summary Completion sẽ giúp bạn làm quen với mọi định dạng có thể xuất hiện trong kỳ thi. Đối với những bạn quan tâm đến các vấn đề môi trường rộng hơn, Challenges in protecting marine biodiversity cũng là một chủ đề đáng để khám phá thêm.
Đáp án chi tiết với giải thích cụ thể về vị trí thông tin và cách paraphrase sẽ giúp bạn hiểu rõ logic của từng câu hỏi. Hãy dành thời gian phân tích kỹ phần giải thích để nắm bắt được phương pháp làm bài hiệu quả. Bảng từ vựng được sắp xếp theo từng passage với đầy đủ phiên âm, nghĩa và collocations sẽ là nguồn tài liệu quý giá cho việc mở rộng vốn từ của bạn.
Hãy nhớ rằng việc luyện tập thường xuyên với các đề thi mẫu chất lượng cao là chìa khóa để đạt band điểm mục tiêu. Để nâng cao nhận thức về các vấn đề môi trường và cách chúng ta có thể đóng góp, bạn có thể tham khảo thêm How to reduce your environmental impact at work. Ngoài ra, How AI is transforming wildlife conservation cũng mang đến góc nhìn thú vị về ứng dụng công nghệ trong bảo tồn.
Chúc bạn ôn tập hiệu quả và đạt kết quả cao trong kỳ thi IELTS sắp tới! Hãy kiên trì luyện tập và luôn tự tin vào khả năng của mình.