IELTS Reading: Sự Phát Triển Của Xe Đạp Điện Trong Đi Lại Đô Thị – Đề Thi Mẫu Có Đáp Án Chi Tiết

Mở Bài

Chủ đề về phương tiện giao thông xanhđô thị hóa bền vững ngày càng xuất hiện thường xuyên trong các đề thi IELTS Reading, đặc biệt là những bài viết liên quan đến xe đạp điện (e-bikes) và vai trò của chúng trong việc cải thiện hệ thống giao thông đô thị. Đây là một chủ đề vừa mang tính thời sự, vừa liên quan đến nhiều khía cạnh như công nghệ, môi trường, kinh tế và xã hội – những lĩnh vực mà IELTS Reading thường khai thác.

Trong bài viết này, bạn sẽ được luyện tập với một đề thi IELTS Reading hoàn chỉnh gồm 3 passages từ dễ đến khó, bám sát cấu trúc đề thi thực tế. Mỗi passage được thiết kế tỉ mỉ với độ dài chuẩn Cambridge IELTS, từ vựng phong phú và các dạng câu hỏi đa dạng. Bạn sẽ học được cách nhận diện thông tin, paraphrase, suy luận và quản lý thời gian hiệu quả – những kỹ năng thiết yếu để đạt band điểm cao.

Đề thi này phù hợp cho học viên từ band 5.0 trở lên, với hướng dẫn chi tiết về đáp án, vị trí thông tin trong bài và cách paraphrase. Ngoài ra, bạn còn được trang bị bộ từ vựng học thuật quan trọng kèm phiên âm, nghĩa và collocation để nâng cao vốn từ đồng thời rèn luyện kỹ năng đọc hiểu chuyên sâu.

1. Hướng Dẫn Làm Bài IELTS Reading

Tổng Quan Về IELTS Reading Test

IELTS Reading Test kéo dài 60 phút với 3 passages và tổng cộng 40 câu hỏi. Mỗi passage có độ dài khoảng 700-1000 từ và độ khó tăng dần từ passage 1 đến passage 3. Điểm số được tính dựa trên số câu trả lời đúng, không bị trừ điểm khi sai.

Phân bổ thời gian khuyến nghị:

  • Passage 1: 15-17 phút (độ khó dễ – band 5.0-6.5)
  • Passage 2: 18-20 phút (độ khó trung bình – band 6.0-7.5)
  • Passage 3: 23-25 phút (độ khó cao – band 7.0-9.0)

Lưu ý dành 2-3 phút cuối để chuyển đáp án vào Answer Sheet và kiểm tra lại những câu chưa chắc chắn.

Các Dạng Câu Hỏi Trong Đề Này

Đề thi mẫu này bao gồm đầy đủ các dạng câu hỏi phổ biến nhất trong IELTS Reading:

  1. Multiple Choice – Trắc nghiệm nhiều lựa chọn
  2. True/False/Not Given – Xác định thông tin đúng/sai/không đề cập
  3. Matching Information – Nối thông tin với đoạn văn
  4. Sentence Completion – Hoàn thành câu
  5. Matching Headings – Nối tiêu đề với đoạn văn
  6. Summary Completion – Hoàn thành đoạn tóm tắt
  7. Short-answer Questions – Câu hỏi trả lời ngắn

Mỗi dạng câu hỏi yêu cầu kỹ năng đọc khác nhau: scanning (đọc lướt tìm thông tin), skimming (đọc nhanh nắm ý chính), và reading for detail (đọc kỹ hiểu chi tiết).


2. IELTS Reading Practice Test

PASSAGE 1 – The Growing Popularity of Electric Bicycles

Độ khó: Easy (Band 5.0-6.5)

Thời gian đề xuất: 15-17 phút

In recent years, electric bicycles, commonly known as e-bikes, have experienced a remarkable surge in popularity across urban areas worldwide. These innovative vehicles combine traditional pedaling with an electric motor that provides assistance, making cycling more accessible to a broader range of people. Unlike conventional bicycles that rely solely on human power, e-bikes offer riders the option to engage the motor when facing challenging terrain, headwinds, or when they simply want to arrive at their destination without breaking a sweat.

The technology behind e-bikes is relatively straightforward yet highly effective. Most models feature a rechargeable lithium-ion battery mounted on the frame, typically offering a range of 25 to 70 miles on a single charge, depending on factors such as terrain, rider weight, and the level of assistance selected. The motor, usually positioned in the front or rear wheel hub or near the pedals, delivers power seamlessly as the rider pedals. Sensors detect the pedaling motion and automatically adjust the motor’s output to match the rider’s effort, creating a smooth and intuitive riding experience.

One of the primary reasons for the rapid adoption of e-bikes in cities is their ability to address several urban transportation challenges simultaneously. First and foremost, they offer a practical solution to the “last-mile problem” – the difficulty commuters face in traveling between public transportation stations and their final destinations. Many city dwellers find that e-bikes complement existing public transit systems perfectly, enabling them to cover distances that would be too far to walk comfortably but too short to justify taking a car or taxi.

Environmental benefits represent another compelling factor driving e-bike adoption. As cities worldwide grapple with air pollution and climate change, e-bikes present a sustainable alternative to gasoline-powered vehicles. Studies have shown that replacing car trips with e-bike journeys can reduce carbon emissions by up to 50% per mile traveled. Additionally, e-bikes consume minimal electricity compared to electric cars – a full charge typically costs less than 10 cents and produces only a fraction of the emissions associated with manufacturing and operating automobiles.

The health advantages of e-bike commuting should not be underestimated either. While some critics initially argued that e-bikes provide too much assistance to offer meaningful exercise, research has demonstrated otherwise. A comprehensive study conducted by the European Cyclists’ Federation found that e-bike riders typically engage in physical activity for longer durations than conventional cyclists because the electric assistance makes longer journeys more feasible. The study revealed that e-bike users averaged 8 miles per trip compared to 5.3 miles for traditional bicycle riders, resulting in comparable or even greater overall physical activity levels.

Economic considerations also play a significant role in the e-bike revolution. The total cost of ownership for an e-bike is substantially lower than that of a car, even when factoring in the initial purchase price, which typically ranges from $800 to $3,500 for quality models. E-bikes require minimal maintenance, no fuel costs beyond negligible electricity expenses, and in most jurisdictions, no insurance, registration, or licensing fees. For urban commuters, these savings can amount to thousands of dollars annually compared to car ownership.

Despite these advantages, several challenges continue to hinder the widespread adoption of e-bikes in some regions. Infrastructure limitations remain a primary concern, as many cities lack adequate cycling lanes, secure parking facilities, and charging stations. Safety issues also persist, particularly in areas where e-bikes must share roads with faster-moving vehicles or navigate through heavy pedestrian traffic. Furthermore, the relatively high upfront cost can be prohibitive for some potential users, although various government incentive programs in countries like Germany, France, and Norway are beginning to address this barrier through purchase subsidies.

The e-bike market has responded to growing demand with remarkable innovation. Manufacturers now offer specialized models for different purposes, including cargo e-bikes designed for transporting goods or children, folding e-bikes for commuters with limited storage space, and mountain e-bikes for recreational trail riding. Advanced features such as smartphone connectivity, GPS navigation, and anti-theft tracking systems are becoming increasingly common, further enhancing the appeal of these vehicles to tech-savvy urban residents.

Questions 1-5

Choose the correct letter, A, B, C, or D.

  1. What is the main advantage of e-bikes over conventional bicycles mentioned in the first paragraph?

    • A. They are faster than regular bikes
    • B. They help riders avoid physical exhaustion
    • C. They are cheaper to maintain
    • D. They are easier to store
  2. According to the passage, the range of most e-bike batteries depends on

    • A. the brand of the bicycle only
    • B. multiple factors including terrain and rider weight
    • C. the speed at which the bike is ridden
    • D. the age of the battery exclusively
  3. E-bikes help solve the “last-mile problem” by

    • A. replacing public transportation entirely
    • B. providing transportation for distances unsuitable for walking or driving
    • C. eliminating the need for cars in cities
    • D. making public transit unnecessary
  4. Research by the European Cyclists’ Federation found that e-bike riders

    • A. exercise less than traditional cyclists
    • B. travel shorter distances on average
    • C. actually engage in more physical activity overall
    • D. prefer not to use traditional bicycles
  5. What is identified as a major barrier to e-bike adoption?

    • A. Lack of variety in available models
    • B. Insufficient infrastructure and high initial costs
    • C. Poor battery technology
    • D. Government regulations

Questions 6-10

Do the following statements agree with the information given in the passage? Write:

  • TRUE if the statement agrees with the information
  • FALSE if the statement contradicts the information
  • NOT GIVEN if there is no information on this
  1. E-bikes produce more carbon emissions than electric cars per mile traveled.

  2. The cost of fully charging an e-bike battery is less than 10 cents.

  3. All cities have implemented government incentive programs for e-bike purchases.

  4. Cargo e-bikes can be used to transport children.

  5. E-bike riders must have a special license in most countries.

Questions 11-13

Complete the sentences below. Choose NO MORE THAN THREE WORDS from the passage for each answer.

  1. The motor in e-bikes uses __ to detect when the rider is pedaling and adjust power accordingly.

  2. Studies show that replacing car trips with e-bike journeys can reduce __ by up to 50% per mile.

  3. Modern e-bikes increasingly feature __ that allow connection to mobile devices.

Người đi xe đạp điện trên làn đường riêng trong khu đô thị hiện đại với hệ thống giao thông thông minhNgười đi xe đạp điện trên làn đường riêng trong khu đô thị hiện đại với hệ thống giao thông thông minh


PASSAGE 2 – The Economic and Social Impact of E-bike Integration

Độ khó: Medium (Band 6.0-7.5)

Thời gian đề xuất: 18-20 phút

The proliferation of electric bicycles in urban environments has catalyzed significant transformations that extend far beyond individual transportation choices, reshaping economic structures, social dynamics, and urban planning paradigms. As cities worldwide confront mounting pressures from congestion, pollution, and the imperative for sustainable development, e-bikes have emerged as a multifaceted solution that addresses numerous interconnected challenges simultaneously.

From an economic perspective, the e-bike industry has evolved into a substantial market sector with global sales surpassing 40 million units annually and projected to reach 77 million by 2030. This growth has spawned entirely new business ecosystems, including specialized manufacturing, component suppliers, maintenance services, and sharing economy platforms. Cities such as Copenhagen, Amsterdam, and increasingly, Chinese metropolises like Hangzhou and Beijing, have witnessed the emergence of thousands of jobs directly or indirectly linked to the e-bike economy. The ripple effects extend to ancillary sectors: retail shops specializing in e-bike accessories, charging infrastructure developers, and insurance providers offering specialized coverage for these vehicles.

Urban delivery services have particularly embraced e-bike technology as a game-changing innovation. Major logistics companies and food delivery platforms have integrated e-bikes into their fleets, recognizing their superior efficiency in navigating congested city centers compared to traditional delivery vehicles. A comprehensive analysis by the Institute for Transportation and Development Policy revealed that e-bike deliveries in dense urban areas can be up to 60% faster than van deliveries while generating 90% fewer emissions. This operational advantage has proven especially valuable during peak hours when conventional vehicles face gridlock, enabling companies to guarantee faster delivery times and reduce operational costs substantially.

The democratization of cycling represents another profound social impact of e-bike adoption. Traditional cycling has often been perceived as primarily accessible to young, physically fit individuals willing to endure exertion and arrive at destinations perspiring. E-bikes have fundamentally challenged this perception by making cycling viable for elderly populations, individuals with moderate physical limitations, and those recovering from injuries. Research conducted across multiple European cities indicates that e-bike ownership among individuals over 65 has increased by 340% since 2015, with many citing renewed independence and social connectivity as primary benefits. This inclusive mobility dimension addresses broader societal goals of ensuring transportation equity and maintaining elderly populations’ quality of life.

However, the rapid integration of e-bikes has not occurred without friction and controversy. Urban planners and policymakers face complex challenges in accommodating these vehicles within existing transportation frameworks. The regulatory ambiguity surrounding e-bike classification has prompted debates in numerous jurisdictions: should they be treated as bicycles, subject only to cycling infrastructure rules, or do their higher speeds and weights necessitate distinct regulations? Some cities have responded by implementing tiered classification systems that differentiate between e-bikes based on maximum assisted speed and motor power, applying varying regulations to each category.

Safety concerns have emerged as particularly contentious issues. Statistical analyses from cities with high e-bike penetration rates reveal nuanced patterns: while absolute numbers of cycling-related accidents have increased, the rate of accidents per kilometer traveled has actually declined in most cases. Nevertheless, the perception of danger persists, partly fueled by media coverage of notable accidents and partly reflecting legitimate concerns about interactions between e-bikes, pedestrians, and traditional bicycles in shared spaces. Cities such as Oslo and Portland have responded by investing heavily in segregated infrastructure – dedicated e-bike lanes physically separated from both vehicle traffic and pedestrian pathways – though the substantial costs of such infrastructure remain prohibitive for many municipalities.

The behavioral economics of e-bike adoption present fascinating patterns worthy of examination. Contrary to initial assumptions that e-bikes would primarily attract existing cyclists seeking an easier ride, research indicates that approximately 40-60% of e-bike users are modal shift adopters – individuals who previously relied on cars or motorcycles for their urban transportation. This finding has profound implications for urban transportation policy, suggesting that e-bikes succeed in attracting precisely the population segment whose behavioral change generates maximum environmental and congestion-reduction benefits. The psychological factors underlying this shift appear multifaceted: e-bikes reduce perceived barriers to cycling (such as concerns about arriving sweaty or exhausted), provide tangible cost savings compared to vehicle operation, and increasingly carry positive social connotations as symbols of environmental consciousness and urban sophistication.

Equity considerations complicate the narrative of e-bike benefits. While e-bikes offer remarkable advantages, their distribution across socioeconomic groups remains markedly uneven. Higher-income urban residents disproportionately represent early adopters, reflecting both the significant upfront investment required and the concentration of supportive infrastructure in affluent neighborhoods. Several cities have recognized this disparity and initiated programs aimed at democratizing e-bike access. Barcelona’s means-tested subsidy program provides low-income residents with up to 50% purchase subsidies, while Oakland, California has implemented a lending library model that allows residents to borrow e-bikes for extended periods at no cost. These initiatives acknowledge that realizing e-bikes’ full potential for sustainable urban transformation requires ensuring access transcends economic boundaries.

Looking forward, the trajectory of e-bike integration appears poised to accelerate, driven by technological advancement, environmental imperatives, and evolving urban design philosophies. Battery technology improvements promise extended ranges and faster charging times, while artificial intelligence integration may soon enable advanced features such as predictive route optimization and automated safety systems. As cities worldwide pursue post-automobile urban visions, e-bikes increasingly feature prominently in strategic planning documents, positioned as essential components of multimodal transportation networks that prioritize human-scale mobility, environmental sustainability, and vibrant public spaces over automobile dominance.

Questions 14-18

Choose the correct letter, A, B, C, or D.

  1. According to the passage, global e-bike sales are expected to

    • A. remain stable until 2030
    • B. nearly double by 2030
    • C. decline due to competition
    • D. triple within five years
  2. The Institute for Transportation and Development Policy found that e-bike deliveries in cities are

    • A. slower but more environmentally friendly
    • B. faster and produce significantly fewer emissions
    • C. equally fast as van deliveries
    • D. only effective during off-peak hours
  3. E-bike ownership among people over 65 has increased since 2015 by

    • A. 65%
    • B. 150%
    • C. 240%
    • D. 340%
  4. Research shows that a significant percentage of e-bike users are

    • A. experienced cyclists seeking convenience
    • B. people who previously used cars or motorcycles
    • C. younger individuals without driver’s licenses
    • D. environmental activists exclusively
  5. Barcelona’s e-bike program for low-income residents provides

    • A. free e-bikes for permanent ownership
    • B. subsidies covering up to 50% of purchase costs
    • C. monthly rental options
    • D. tax deductions for e-bike purchases

Questions 19-23

Complete the summary below. Choose NO MORE THAN TWO WORDS from the passage for each answer.

The economic impact of e-bikes extends beyond manufacturing to create entire 19. __ that include maintenance services and sharing platforms. In urban delivery, e-bikes have proven particularly valuable during 20. __ when traditional vehicles experience gridlock. The adoption of e-bikes has led to the 21. __ of cycling, making it accessible to elderly people and those with physical limitations.

However, 22. __ surrounding e-bike classification has created challenges for policymakers. Some cities have addressed safety concerns by investing in 23. __ that physically separates e-bikes from other traffic.

Questions 24-26

Do the following statements agree with the information given in the passage? Write:

  • YES if the statement agrees with the views of the writer
  • NO if the statement contradicts the views of the writer
  • NOT GIVEN if it is impossible to say what the writer thinks about this
  1. The rate of cycling accidents per kilometer has increased in most cities with high e-bike usage.

  2. E-bikes are currently distributed equally across all socioeconomic groups in urban areas.

  3. Future e-bikes will likely incorporate artificial intelligence for safety and navigation features.


PASSAGE 3 – The Technological Evolution and Future Paradigms of Electric Bicycle Systems

Độ khó: Hard (Band 7.0-9.0)

Thời gian đề xuất: 23-25 phút

The contemporary landscape of urban mobility stands at a critical juncture, characterized by the convergence of technological innovation, environmental exigency, and shifting societal values regarding transportation. Within this complex milieu, electric bicycles have emerged not merely as incremental improvements upon traditional cycling but as catalysts for fundamental reconceptualizations of how cities function, how individuals navigate urban spaces, and how societies balance competing imperatives of mobility, sustainability, and livability. The technological trajectory of e-bikes, far from representing a linear progression of refinement, instead reflects a sophisticated interplay between engineering advancement, user experience optimization, and systemic integration with broader smart city infrastructures.

At the technological vanguard, battery chemistry innovations constitute the primary determinant of e-bike capability and adoption potential. The transition from earlier nickel-cadmium and nickel-metal hydride batteries to contemporary lithium-ion variants represented a quantum leap in energy density, cycle longevity, and weight reduction. However, even within the lithium-ion category, substantial heterogeneity exists. Premium e-bike manufacturers increasingly deploy lithium iron phosphate (LiFePO4) cells, which, despite marginally lower energy density compared to conventional lithium-ion configurations, offer superior thermal stability, extended cycle life exceeding 2,000 charge cycles, and enhanced safety profiles that virtually eliminate thermal runaway risks – a critical consideration given the intensive usage patterns characteristic of urban commuting applications.

Emerging solid-state battery technology promises to revolutionize the sector further within the next decade. By replacing liquid electrolytes with solid compounds, these next-generation cells theoretically offer dramatic improvements: energy densities potentially double those of current lithium-ion batteries, charging times measured in minutes rather than hours, and operational temperature ranges that maintain performance in extreme climatic conditions. Several major e-bike manufacturers have announced partnerships with solid-state battery developers, with pilot production anticipated by 2025 and commercial availability projected for 2027-2029. The implications extend beyond mere performance enhancement; such technological leaps could fundamentally alter the value proposition of e-bikes, positioning them as genuinely equivalent alternatives to automobiles for virtually all urban journey types, including those currently perceived as impractical due to range or charging constraints.

The integration of sophisticated sensor arrays and computational systems represents another dimension of technological evolution transforming e-bikes from simple transportation devices into intelligent mobility platforms. Contemporary high-end models incorporate accelerometers, gyroscopes, GPS modules, and increasingly, LiDAR and radar systems that enable real-time environmental perception. These sensor suites feed data to onboard processing units that facilitate advanced functionalities: adaptive motor control that modulates assistance based on terrain gradient and rider fatigue indicators; predictive range estimation algorithms that account for planned route topography, weather forecasts, and historical usage patterns; and collision avoidance systems that provide haptic or auditory warnings when sensors detect potential hazards.

The Internet of Things (IoT) connectivity dimension has transformed e-bikes into nodes within broader urban data ecosystems. Through continuous wireless communication with cloud-based platforms, e-bikes generate granular data regarding route preferences, road surface conditions, traffic patterns, and air quality variations across different urban zones. This data aggregation yields insights valuable not only to individual riders – who receive personalized route recommendations optimized for efficiency, safety, or scenic quality – but also to municipal planners seeking empirical bases for infrastructure investment decisions. Several European cities have initiated data-sharing partnerships with e-bike sharing platforms, utilizing anonymized usage data to identify high-demand corridors warranting dedicated cycling infrastructure, pinpoint hazardous intersections requiring redesign, and model the transportation network impacts of proposed urban development projects.

The cybersecurity implications of increasingly connected e-bikes warrant serious consideration. As these vehicles evolve into software-defined platforms with wireless connectivity and remote update capabilities, they inherit vulnerabilities analogous to those affecting other connected devices. Theoretical attack vectors include unauthorized access to GPS location data, malicious firmware updates that alter motor control parameters, or denial-of-service attacks targeting the authentication systems of shared e-bike networks. The industry has begun addressing these concerns through implementation of encryption protocols, secure boot mechanisms, and over-the-air update authentication, though the rapid pace of feature expansion inevitably creates an ongoing tension between functionality enhancement and security robustness.

From a systems theory perspective, perhaps the most profound implication of e-bike proliferation concerns their role in facilitating transitions toward post-automobile urban configurations. Traditional urban planning paradigms, heavily influenced by automobile-centric assumptions, have produced cities characterized by spatial diffusion, functional segregation, and infrastructure dominated by roads and parking facilities. E-bikes contribute to undermining these paradigms by expanding the practical radius of active transportation from approximately 2-3 kilometers (comfortable walking or conventional cycling distance) to 8-12 kilometers, thereby rendering viable a far larger proportion of urban journeys without automobile dependence. This expansion of the feasibility frontier for car-free travel catalyzes feedback loops: as more individuals adopt e-bikes, political support strengthens for reallocating road space to cycling infrastructure; improved infrastructure further incentivizes adoption; increased cycling presence enhances safety through the safety in numbers phenomenon; and gradual cultural normalization of cycling erodes social barriers to adoption.

The microeconomic behavioral models underlying transportation mode choice illuminate why e-bikes succeed in prompting modal shifts where traditional cycling often failed. Classical transport economics conceptualizes mode choice as utility maximization subject to constraints, with utility functions incorporating travel time, monetary cost, comfort, reliability, and subjective factors like prestige or environmental identity expression. E-bikes effectively restructure this decision landscape by simultaneously reducing travel time (relative to traditional cycling, particularly for longer distances or hillier terrain), maintaining low monetary costs, substantially enhancing comfort through elimination of exertion-related discomfort, and increasingly conferring positive social signaling value as symbols of technological sophistication and environmental consciousness. This multi-dimensional utility enhancement explains e-bikes’ effectiveness in attracting previous automobile users – a population segment for whom conventional cycling’s value proposition proved insufficient to overcome revealed preference for motorized convenience.

Equity dimensions of the e-bike transition merit rigorous scholarly and policy attention, as technological transitions frequently recapitulate or exacerbate existing socioeconomic stratifications. Current adoption patterns demonstrate clear sociodemographic skews: higher-income, higher-education urban residents disproportionately represent early adopters, while lower-income populations, despite potentially benefiting most from the transportation cost savings e-bikes enable, face barriers including upfront capital requirements, limited access to secure storage, and concentration of supportive infrastructure in affluent neighborhoods. This pattern risks creating a two-tier transportation system wherein e-bikes facilitate mobility and access for privileged populations while underserved communities remain dependent on inadequate public transit or face disproportionate automobile ownership costs relative to income. Addressing this trajectory necessitates deliberate policy interventions: means-tested purchase subsidies, public e-bike lending programs, equitable distribution of infrastructure investments, and integration of e-bike sharing stations with public transit hubs serving lower-income neighborhoods.

The geopolitical dimensions of e-bike supply chains introduce additional complexity. Currently, Chinese manufacturers dominate global e-bike production, accounting for approximately 85-90% of worldwide output, while rare earth elements critical for motor and battery production are similarly concentrated geographically. This concentration creates potential vulnerabilities regarding supply chain resilience and raises questions about the sustainability credentials of vehicles manufactured through processes potentially involving problematic labor practices or environmental externalities. European and North American manufacturers have begun establishing domestic or regional production capacity, motivated partly by supply chain risk mitigation and partly by consumer preferences for locally-produced alternatives, though achieving price competitiveness with Asian imports remains challenging given established economies of scale and vertically integrated supply chains.

Looking toward emerging horizons, several technological and social trajectories seem poised to further transform the e-bike landscape. Vehicle-to-infrastructure (V2I) communication protocols may enable e-bikes to receive real-time information from smart traffic lights, dynamic lane assignment systems, and hazard warning networks. Bidirectional charging capabilities could theoretically allow e-bike batteries to serve as distributed energy storage resources, feeding power back to buildings or electrical grids during peak demand periods. Autonomous e-bike technology, while technically feasible, faces more complex questions regarding utility and social acceptance – unlike automobiles, the human physical engagement inherent to cycling represents a core appeal rather than a burden to minimize. Perhaps most intriguingly, the convergence of e-bikes with micro-mobility ecosystems encompassing e-scooters, cargo e-bikes, and adaptive mobility devices suggests movement toward personalized, multi-modal journey planning platforms that seamlessly integrate diverse transportation options optimized for specific journey requirements, user preferences, and real-time conditions.

Questions 27-31

Choose the correct letter, A, B, C, or D.

  1. According to the passage, lithium iron phosphate batteries are preferred by premium manufacturers because they

    • A. have higher energy density than all other battery types
    • B. are cheaper to produce than standard lithium-ion batteries
    • C. offer better safety and longer lifespan despite slightly lower energy density
    • D. charge faster than conventional lithium-ion configurations
  2. Solid-state battery technology for e-bikes is expected to reach commercial availability

    • A. by 2025
    • B. between 2027 and 2029
    • C. after 2030
    • D. within the next year
  3. The data generated by connected e-bikes is valuable to city planners for

    • A. tracking individual rider movements exclusively
    • B. generating advertising revenue
    • C. identifying where cycling infrastructure is needed
    • D. controlling traffic light systems only
  4. The author suggests that e-bikes expand the practical radius of active transportation from approximately

    • A. 1-2 kilometers to 5-8 kilometers
    • B. 2-3 kilometers to 8-12 kilometers
    • C. 3-5 kilometers to 10-15 kilometers
    • D. 5-7 kilometers to 15-20 kilometers
  5. Chinese manufacturers currently account for what percentage of global e-bike production?

    • A. 50-60%
    • B. 65-75%
    • C. 75-85%
    • D. 85-90%

Chi tiết công nghệ pin lithium-ion và hệ thống cảm biến thông minh trên xe đạp điện thế hệ mớiChi tiết công nghệ pin lithium-ion và hệ thống cảm biến thông minh trên xe đạp điện thế hệ mới

Questions 32-36

Complete the summary using the list of phrases A-J below.

Modern e-bikes have evolved into intelligent mobility platforms equipped with 32. __ that enable real-time environmental perception. These systems collect data that feeds into 33. __ which municipalities can use for urban planning. However, the increasing connectivity raises 34. __ including potential unauthorized access to location data.

The adoption of e-bikes facilitates a transition toward 35. __ by expanding the practical radius for non-automobile travel. Current adoption patterns show clear 36. __ with higher-income residents being early adopters.

A. cybersecurity concerns
B. post-automobile urban configurations
C. sensor arrays and computational systems
D. sociodemographic skews
E. mechanical improvements
F. urban data ecosystems
G. battery replacement cycles
H. manufacturing defects
I. weather prediction models
J. traffic violation systems

Questions 37-40

Answer the questions below. Choose NO MORE THAN THREE WORDS from the passage for each answer.

  1. What phenomenon helps enhance safety as more people start cycling in urban areas?

  2. What type of elements, concentrated geographically, are critical for e-bike motor and battery production?

  3. What communication protocol may enable e-bikes to receive information from smart traffic systems?

  4. What type of charging capability could allow e-bike batteries to function as distributed energy storage?


3. Answer Keys – Đáp Án

PASSAGE 1: Questions 1-13

  1. B
  2. B
  3. B
  4. C
  5. B
  6. FALSE
  7. TRUE
  8. FALSE (hoặc NOT GIVEN)
  9. TRUE
  10. NOT GIVEN
  11. sensors
  12. carbon emissions
  13. smartphone connectivity

PASSAGE 2: Questions 14-26

  1. B
  2. B
  3. D
  4. B
  5. B
  6. business ecosystems
  7. peak hours
  8. democratization
  9. regulatory ambiguity
  10. segregated infrastructure
  11. NO
  12. NO
  13. YES

PASSAGE 3: Questions 27-40

  1. C
  2. B
  3. C
  4. B
  5. D
  6. C
  7. F
  8. A
  9. B
  10. D
  11. safety in numbers
  12. rare earth elements
  13. vehicle-to-infrastructure (hoặc V2I communication)
  14. bidirectional charging

4. Giải Thích Đáp Án Chi Tiết

Passage 1 – Giải Thích

Câu 1: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: main advantage, e-bikes, conventional bicycles
  • Vị trí trong bài: Đoạn 1, dòng 3-5
  • Giải thích: Passage nói rõ “e-bikes offer riders the option to engage the motor when… they simply want to arrive at their destination without breaking a sweat” – tức là giúp người đi không bị mệt mỏi/đổ mồ hôi. Đây được paraphrase thành “avoid physical exhaustion” trong đáp án B.

Câu 2: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: range, e-bike batteries, depends on
  • Vị trí trong bài: Đoạn 2, dòng 2-4
  • Giải thích: Passage liệt kê: “depending on factors such as terrain, rider weight, and the level of assistance selected” – nhiều yếu tố bao gồm địa hình và trọng lượng người đi, khớp với đáp án B.

Câu 3: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: last-mile problem
  • Vị trí trong bài: Đoạn 3, dòng 3-6
  • Giải thích: Passage giải thích last-mile problem là “difficulty… in traveling between public transportation stations and their final destinations” và nói e-bikes giúp “cover distances that would be too far to walk comfortably but too short to justify taking a car” – chính xác là đáp án B.

Câu 6: FALSE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: carbon emissions, e-bikes, electric cars
  • Vị trí trong bài: Đoạn 4, dòng 5-7
  • Giải thích: Passage nói e-bikes “produces only a fraction of the emissions associated with… electric cars” – tức là e-bikes thải ít hơn, ngược lại với câu hỏi nên là FALSE.

Câu 7: TRUE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: charging cost, less than 10 cents
  • Vị trí trong bài: Đoạn 4, dòng 6-7
  • Giải thích: Passage nói rõ “a full charge typically costs less than 10 cents” – hoàn toàn khớp với câu hỏi.

Câu 11: sensors

  • Dạng câu hỏi: Sentence Completion
  • Từ khóa: motor, detect, pedaling
  • Vị trí trong bài: Đoạn 2, dòng 5-6
  • Giải thích: “Sensors detect the pedaling motion and automatically adjust the motor’s output” – từ cần điền là “sensors”.

Câu 12: carbon emissions

  • Dạng câu hỏi: Sentence Completion
  • Từ khóa: reduce, 50%, per mile
  • Vị trí trong bài: Đoạn 4, dòng 4-5
  • Giải thích: “reduce carbon emissions by up to 50% per mile traveled” – cụm từ chính xác là “carbon emissions”.

Passage 2 – Giải Thích

Câu 14: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: global e-bike sales, 2030
  • Vị trí trong bài: Đoạn 2, dòng 1-3
  • Giải thích: Passage nói “global sales surpassing 40 million units annually and projected to reach 77 million by 2030” – từ 40 triệu lên 77 triệu là gần gấp đôi (nearly double).

Câu 16: D

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: ownership, over 65, increased, 2015
  • Vị trí trong bài: Đoạn 4, dòng 5-6
  • Giải thích: “e-bike ownership among individuals over 65 has increased by 340% since 2015” – con số chính xác là 340%.

Câu 19: business ecosystems

  • Dạng câu hỏi: Summary Completion
  • Từ khóa: economic impact, maintenance services
  • Vị trí trong bài: Đoạn 2, dòng 3-4
  • Giải thích: “spawned entirely new business ecosystems, including specialized manufacturing, component suppliers, maintenance services” – cụm từ chính xác.

Câu 24: NO

  • Dạng câu hỏi: Yes/No/Not Given
  • Từ khóa: accident rate per kilometer, increased
  • Vị trí trong bài: Đoạn 6, dòng 2-4
  • Giải thích: Passage nói “the rate of accidents per kilometer traveled has actually declined in most cases” – giảm chứ không tăng, nên là NO.

Câu 25: NO

  • Dạng câu hỏi: Yes/No/Not Given
  • Từ khóa: distributed equally, socioeconomic groups
  • Vị trí trong bài: Đoạn 8, dòng 1-3
  • Giải thích: Passage nói rõ “distribution across socioeconomic groups remains markedly uneven. Higher-income urban residents disproportionately represent early adopters” – không phân bổ đều, nên là NO.

Passage 3 – Giải Thích

Câu 27: C

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: lithium iron phosphate, preferred, premium manufacturers
  • Vị trí trong bài: Đoạn 2, dòng 5-9
  • Giải thích: Passage nói LiFePO4 có “marginally lower energy density” nhưng lại có “superior thermal stability, extended cycle life… and enhanced safety profiles” – tức là an toàn và tuổi thọ tốt hơn mặc dù mật độ năng lượng hơi thấp, khớp với đáp án C.

Câu 30: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: practical radius, active transportation
  • Vị trí trong bài: Đoạn 7, dòng 4-6
  • Giải thích: “expanding the practical radius of active transportation from approximately 2-3 kilometers… to 8-12 kilometers” – con số chính xác được nêu rõ.

Câu 37: safety in numbers

  • Dạng câu hỏi: Short-answer
  • Từ khóa: phenomenon, enhance safety, more people cycling
  • Vị trí trong bài: Đoạn 7, dòng 9-10
  • Giải thích: “increased cycling presence enhances safety through the safety in numbers phenomenon” – đây là hiện tượng được đề cập.

Câu 38: rare earth elements

  • Dạng câu hỏi: Short-answer
  • Từ khóa: elements, concentrated geographically, motor and battery
  • Vị trí trong bài: Đoạn 10, dòng 2-3
  • Giải thích: “rare earth elements critical for motor and battery production are… concentrated geographically” – cụm từ chính xác.

5. Từ Vựng Quan Trọng Theo Passage

Passage 1 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
surge n /sɜːdʒ/ sự tăng vọt, sự gia tăng mạnh experienced a remarkable surge in popularity a surge in demand/popularity
assist/assistance v/n /əˈsɪst/ /əˈsɪstəns/ hỗ trợ, sự hỗ trợ provides assistance, level of assistance provide/offer assistance
rechargeable adj /riːˈtʃɑːdʒəbl/ có thể sạc lại rechargeable lithium-ion battery rechargeable battery
intuitive adj /ɪnˈtjuːɪtɪv/ trực quan, dễ hiểu tự nhiên intuitive riding experience intuitive interface/design
urban adj /ˈɜːbən/ thuộc đô thị urban transportation challenges urban area/environment
compelling adj /kəmˈpelɪŋ/ thuyết phục, hấp dẫn compelling factor compelling reason/evidence
grapple with v phrase /ˈɡræpl wɪð/ vật lộn với, đối mặt với cities grapple with air pollution grapple with a problem
sustainable adj /səˈsteɪnəbl/ bền vững sustainable alternative sustainable development
comparable adj /ˈkɒmpərəbl/ có thể so sánh, tương đương comparable overall activity levels comparable to/with
prohibitive adj /prəˈhɪbɪtɪv/ quá đắt, cấm đoán prohibitive for potential users prohibitive cost/price
infrastructure n /ˈɪnfrəstrʌktʃə/ cơ sở hạ tầng infrastructure limitations transport/cycling infrastructure
incentive n /ɪnˈsentɪv/ khuyến khích, ưu đãi government incentive programs financial/tax incentive

Passage 2 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
proliferation n /prəˌlɪfəˈreɪʃn/ sự gia tăng nhanh, sự phổ biến proliferation of electric bicycles nuclear proliferation
catalyze v /ˈkætəlaɪz/ xúc tác, thúc đẩy catalyzed significant transformations catalyze change/growth
congestion n /kənˈdʒestʃən/ sự tắc nghẽn congestion and pollution traffic congestion
multifaceted adj /ˌmʌltiˈfæsɪtɪd/ đa diện, nhiều khía cạnh multifaceted solution multifaceted approach/problem
spawn v /spɔːn/ tạo ra, sinh ra spawned new business ecosystems spawn innovation/growth
ancillary adj /ænˈsɪləri/ phụ trợ, bổ sung ancillary sectors ancillary services/benefits
ripple effect n phrase /ˈrɪpl ɪˈfekt/ hiệu ứng lan tỏa ripple effects extend to have a ripple effect
democratization n /dɪˌmɒkrətaɪˈzeɪʃn/ dân chủ hóa, phổ cập democratization of cycling democratization of technology
friction n /ˈfrɪkʃn/ ma sát, xung đột not without friction cause/create friction
ambiguity n /ˌæmbɪˈɡjuːəti/ sự mơ hồ, nhập nhằng regulatory ambiguity legal/moral ambiguity
tiered adj /tɪəd/ phân tầng, phân cấp tiered classification systems tiered pricing/system
nuanced adj /ˈnjuːɑːnst/ tinh tế, nhiều sắc thái nuanced patterns nuanced understanding/view
modal shift n phrase /ˈməʊdl ʃɪft/ chuyển đổi phương thức (giao thông) modal shift adopters encourage modal shift
disparity n /dɪˈspærəti/ sự chênh lệch, bất bình đẳng recognize this disparity income/wealth disparity
means-tested adj /miːnz testɪd/ xét nghiệm thu nhập means-tested subsidy program means-tested benefits

Passage 3 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
convergence n /kənˈvɜːdʒəns/ sự hội tụ, giao thoa convergence of technological innovation convergence of interests
exigency n /ˈeksɪdʒənsi/ tính cấp thiết, nhu cầu cấp bách environmental exigency financial exigency
catalyst n /ˈkætəlɪst/ chất xúc tác, yếu tố thúc đẩy catalysts for reconceptualizations act as a catalyst
vanguard n /ˈvænɡɑːd/ tiên phong, đầu tàu at the technological vanguard in the vanguard of
heterogeneity n /ˌhetərəʊdʒəˈniːəti/ tính không đồng nhất, đa dạng substantial heterogeneity exists genetic/cultural heterogeneity
thermal runaway n phrase /ˈθɜːml ˈrʌnəweɪ/ hiện tượng quá nhiệt không kiểm soát eliminate thermal runaway risks prevent thermal runaway
solid-state adj /ˈsɒlɪd steɪt/ thể rắn solid-state battery technology solid-state electronics
pilot production n phrase /ˈpaɪlət prəˈdʌkʃn/ sản xuất thử nghiệm pilot production anticipated enter pilot production
sensor array n phrase /ˈsensə əˈreɪ/ mảng cảm biến sophisticated sensor arrays deploy sensor arrays
LiDAR n /ˈlaɪdɑː/ công nghệ quét laser LiDAR and radar systems LiDAR technology/data
modulate v /ˈmɒdjuleɪt/ điều chỉnh, biến điệu modulates assistance modulate speed/intensity
granular adj /ˈɡrænjələ/ chi tiết, tỉ mỉ granular data granular detail/analysis
cybersecurity n /ˈsaɪbəsɪkjʊərəti/ an ninh mạng cybersecurity implications cybersecurity threat/risk
attack vector n phrase /əˈtæk ˈvektə/ phương thức tấn công theoretical attack vectors identify attack vectors
encryption n /ɪnˈkrɪpʃn/ mã hóa encryption protocols data encryption
spatial diffusion n phrase /ˈspeɪʃl dɪˈfjuːʒn/ sự lan tỏa không gian spatial diffusion pattern of spatial diffusion
feasibility frontier n phrase /ˌfiːzəˈbɪləti ˈfrʌntɪə/ ranh giới khả thi expansion of feasibility frontier push the feasibility frontier
utility maximization n phrase /juːˈtɪləti ˌmæksɪmaɪˈzeɪʃn/ tối đa hóa lợi ích utility maximization principle of utility maximization
stratification n /ˌstrætɪfɪˈkeɪʃn/ sự phân tầng socioeconomic stratifications social stratification
two-tier system n phrase /tuː tɪə ˈsɪstəm/ hệ thống hai cấp two-tier transportation system create a two-tier system
geopolitical adj /ˌdʒiːəʊpəˈlɪtɪkl/ địa chính trị geopolitical dimensions geopolitical tensions/factors
economies of scale n phrase /ɪˈkɒnəmiz əv skeɪl/ lợi thế quy mô established economies of scale achieve economies of scale
bidirectional adj /ˌbaɪdəˈrekʃənl/ hai chiều bidirectional charging bidirectional communication

Trạm chia sẻ xe đạp điện thông minh với ứng dụng di động và hệ thống thanh toán không tiếp xúc trong thành phốTrạm chia sẻ xe đạp điện thông minh với ứng dụng di động và hệ thống thanh toán không tiếp xúc trong thành phố


Kết Bài

Chủ đề về sự phát triển của xe đạp điện trong đi lại đô thị không chỉ là một xu hướng tạm thời mà đại diện cho sự chuyển đổi căn bản trong cách chúng ta nhìn nhận về giao thông đô thị bền vững. Qua bộ đề thi IELTS Reading hoàn chỉnh này, bạn đã được tiếp cận với ba cấp độ khó khác nhau – từ thông tin cơ bản về công nghệ e-bike, đến phân tích kinh tế-xã hội, và cuối cùng là những khía cạnh học thuật sâu sắc về công nghệ tiên tiến và ý nghĩa hệ thống.

Ba passages trong đề thi đã cung cấp đầy đủ các dạng câu hỏi phổ biến nhất trong IELTS Reading: Multiple Choice, True/False/Not Given, Yes/No/Not Given, Matching, Summary Completion, và Short-answer Questions. Việc luyện tập với đề thi này giúp bạn làm quen với format câu hỏi, rèn luyện kỹ năng scanning và skimming, đồng thời nâng cao khả năng nhận diện paraphrase – yếu tố then chốt để đạt band điểm cao.

Đáp án chi tiết kèm giải thích vị trí thông tin và cách paraphrase sẽ giúp bạn tự đánh giá chính xác năng lực hiện tại và hiểu rõ logic của người ra đề. Đặc biệt, bộ từ vựng được phân loại theo từng passage với phiên âm, nghĩa và collocation sẽ là tài liệu quý giá cho việc mở rộng vốn từ học thuật.

Hãy dành thời gian ôn lại những câu bị sai, phân tích kỹ lý do tại sao mình chọn nhầm, và ghi chú lại các mẫu câu hỏi còn yếu để tập trung luyện tập. Với sự kiên trì và phương pháp đúng đắn, bạn hoàn toàn có thể chinh phục IELTS Reading và đạt được band điểm mục tiêu. Chúc bạn học tập hiệu quả và thành công rực rỡ trong kỳ thi sắp tới!

Previous Article

IELTS Reading: Tác động của làm việc từ xa đến năng suất lao động - Đề thi mẫu có đáp án chi tiết

Next Article

IELTS Writing Task 2: Chính Phủ Có Nên Hỗ Trợ Tài Chính Cho Nghệ Sĩ? – Bài Mẫu Band 5-9 & Phân Tích Chi Tiết

Write a Comment

Leave a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Đăng ký nhận thông tin bài mẫu

Để lại địa chỉ email của bạn, chúng tôi sẽ thông báo tới bạn khi có bài mẫu mới được biên tập và xuất bản thành công.
Chúng tôi cam kết không spam email ✨