IELTS Reading: Vai trò của Công trình Xanh trong Giảm Nhiệt Đô thị – Đề thi Mẫu có Đáp án Chi tiết

Mở bài

Chủ đề về công trình xanh (green buildings) và hiệu ứng đảo nhiệt đô thị (urban heat island effect) ngày càng trở nên phổ biến trong các kỳ thi IELTS Reading gần đây. Đây là một trong những chủ đề thuộc lĩnh vực môi trường và kiến trúc bền vững – hai mảng thường xuyên xuất hiện trong Cambridge IELTS từ quyển 12 đến 19. Với sự gia tăng của biến đổi khí hậu và quá trình đô thị hóa nhanh chóng, việc hiểu rõ vai trò của kiến trúc xanh trong việc điều hòa nhiệt độ thành phố không chỉ giúp bạn đạt band điểm cao mà còn trang bị kiến thức thực tế vô cùng hữu ích.

Trong bài viết này, bạn sẽ được trải nghiệm một bộ đề thi IELTS Reading hoàn chỉnh với 3 passages (40 câu hỏi) được thiết kế theo đúng chuẩn thi thật. Đề thi bao gồm: Passage 1 (độ khó Easy – phù hợp band 5.0-6.5) giới thiệu khái niệm cơ bản về công trình xanh; Passage 2 (độ khó Medium – band 6.0-7.5) phân tích các công nghệ và chiến lược cụ thể; và Passage 3 (độ khó Hard – band 7.0-9.0) đi sâu vào nghiên cứu khoa học và tranh luận về hiệu quả kinh tế. Mỗi passage đều có đáp án chi tiết, giải thích từng câu hỏi, và danh sách từ vựng quan trọng kèm cách sử dụng thực tế.

Bộ đề này đặc biệt phù hợp cho học viên từ band 5.0 trở lên muốn làm quen với chủ đề môi trường đô thị và rèn luyện kỹ năng xử lý các dạng câu hỏi đa dạng trong điều kiện giống thi thật.

1. Hướng dẫn Làm bài IELTS Reading

Tổng Quan Về IELTS Reading Test

IELTS Reading Test kéo dài 60 phút với 3 passages và tổng cộng 40 câu hỏi. Mỗi câu trả lời đúng được tính 1 điểm, không có điểm âm khi trả lời sai. Độ khó tăng dần từ Passage 1 đến Passage 3.

Phân bổ thời gian khuyến nghị:

  • Passage 1: 15-17 phút (13 câu hỏi)
  • Passage 2: 18-20 phút (13 câu hỏi)
  • Passage 3: 23-25 phút (14 câu hỏi)

Lưu ý rằng bạn phải tự quản lý thời gian – không có thời gian riêng để chuyển đáp án sang answer sheet. Hãy viết đáp án trực tiếp vào phiếu trả lời ngay khi làm bài.

Các Dạng Câu Hỏi Trong Đề Này

Bộ đề thi mẫu này bao gồm 7 dạng câu hỏi phổ biến nhất trong IELTS Reading:

  1. Multiple Choice – Câu hỏi trắc nghiệm (Passage 1 & 3)
  2. True/False/Not Given – Xác định thông tin đúng/sai/không đề cập (Passage 1)
  3. Matching Information – Nối thông tin với đoạn văn (Passage 1)
  4. Matching Headings – Nối tiêu đề với đoạn văn (Passage 2)
  5. Summary Completion – Hoàn thành tóm tắt (Passage 2)
  6. Matching Features – Nối đặc điểm với đối tượng (Passage 3)
  7. Short-answer Questions – Câu hỏi trả lời ngắn (Passage 3)

Mỗi dạng câu hỏi yêu cầu kỹ năng đọc hiểu khác nhau, từ tìm thông tin chi tiết (scanning) đến hiểu ý chính (skimming) và suy luận (inference).

2. IELTS Reading Practice Test

PASSAGE 1 – The Basics of Green Buildings and Urban Heat

Độ khó: Easy (Band 5.0-6.5)

Thời gian đề xuất: 15-17 phút

Cities around the world are becoming increasingly warmer than their surrounding rural areas, a phenomenon known as the urban heat island effect. This temperature difference, which can reach up to 5-7 degrees Celsius during the day and 2-3 degrees at night, is primarily caused by human activities and the materials used in urban construction. Traditional buildings with dark roofs and walls absorb and retain heat, while the lack of vegetation means there is minimal natural cooling through the process of evapotranspiration.

Green buildings offer a promising solution to this growing environmental challenge. These structures are designed to minimize their environmental impact throughout their entire lifecycle, from construction to demolition. A key feature of green buildings is their ability to reduce the amount of heat absorbed and reflected back into the urban environment. This is achieved through various design elements and technologies that work together to create a more sustainable and comfortable urban climate.

One of the most effective strategies employed by green buildings is the installation of green roofs, also known as living roofs or vegetated roofs. These are partially or completely covered with vegetation and a growing medium, planted over a waterproofing membrane. Green roofs provide multiple benefits: they absorb rainwater, provide insulation, create habitats for wildlife, and most importantly, help lower urban air temperatures. The plants on green roofs absorb heat through photosynthesis and release moisture into the air through transpiration, creating a natural cooling effect. Studies have shown that green roofs can be 30-40 degrees Fahrenheit cooler than conventional roofs during summer months.

Another important feature is the use of cool roofing materials. Unlike traditional dark roofs that absorb up to 90% of solar radiation, cool roofs are designed to reflect more sunlight and absorb less heat. These roofs typically have a high solar reflectance (the ability to reflect sunlight) and high thermal emittance (the ability to release absorbed heat). Cool roofing materials include white or light-colored surfaces, special reflective paints, tiles, or shingles. Research conducted in California demonstrated that buildings with cool roofs maintained indoor temperatures 2-5 degrees lower than similar buildings with dark roofs, resulting in significant energy savings for air conditioning.

Vertical gardens, or living walls, represent another innovative approach to cooling urban environments. These are walls partially or completely covered with vegetation, which may include a growing medium such as soil or an inorganic substrate. Like green roofs, vertical gardens provide cooling through evapotranspiration while also improving air quality by filtering pollutants and producing oxygen. A well-designed vertical garden can reduce the temperature of a building’s exterior wall by up to 10 degrees Celsius during hot summer days. Additionally, they provide aesthetic benefits, creating visually appealing spaces in dense urban areas where ground-level greenery may be limited.

The choice of building materials also plays a crucial role in determining how much heat a structure absorbs and retains. Green buildings often incorporate materials with high thermal mass, such as concrete, brick, or stone, which can absorb heat during the day and release it slowly at night. When combined with proper insulation and ventilation systems, these materials help maintain stable indoor temperatures and reduce the need for mechanical cooling. Furthermore, the use of permeable pavements around buildings allows rainwater to seep into the ground rather than running off into storm drains, which helps keep surrounding areas cooler.

Window design and placement are equally important considerations in green building construction. Strategic window placement maximizes natural light while minimizing heat gain. This is often achieved through the use of smaller windows on the east and west sides of buildings, where morning and afternoon sun can cause significant heating. Larger windows are placed on the north and south sides, where sunlight is easier to control through shading devices. Modern green buildings also utilize low-emissivity (low-e) glass, which has a special coating that reflects infrared light, keeping heat out in summer and inside during winter. This type of glass can reduce energy costs by up to 30% compared to standard glazing.

The orientation of a building on its site is another fundamental aspect of green design that affects urban heat. Buildings oriented to take advantage of prevailing winds and natural shade from nearby structures or trees can significantly reduce their contribution to the urban heat island effect. In the Northern Hemisphere, buildings with their longest axis running east-west maximize opportunities for passive solar heating in winter while allowing for effective shading in summer. This principle, known as passive solar design, has been used for centuries but is now being refined with modern materials and technologies.

Green buildings also address urban heat through their landscaping strategies. By incorporating trees, shrubs, and other vegetation around buildings, architects create microclimates that are several degrees cooler than surrounding paved areas. Trees provide direct shade, blocking up to 90% of solar radiation from reaching building surfaces and paved areas. They also cool the air through evapotranspiration, with a single large tree able to release up to 100 gallons of water into the atmosphere on a hot day. The strategic placement of deciduous trees can provide summer shade while allowing winter sun to warm buildings after the leaves have fallen.

As cities continue to grow and climate change intensifies, The Role Of Green Buildings In Reducing Urban Heat becomes increasingly vital. Many city governments are now offering incentives for green building construction, including tax breaks, expedited permitting, and grants. Some cities have even mandated that new buildings must incorporate certain green features, such as cool roofs or green roofs. These policies recognize that the benefits of green buildings extend beyond individual structures to improve the overall urban environment, making cities more livable and resilient in the face of rising temperatures.

Questions 1-5: Multiple Choice

Choose the correct letter, A, B, C, or D.

  1. According to the passage, the urban heat island effect can cause temperature differences of:
    A. 1-2 degrees Celsius at all times
    B. Up to 5-7 degrees during daytime
    C. Only 2-3 degrees during the day
    D. 10 degrees at night

  2. Green roofs provide cooling primarily through:
    A. Reflecting sunlight away from buildings
    B. Using air conditioning systems
    C. Photosynthesis and transpiration processes
    D. Installing waterproofing membranes

  3. Cool roofing materials are designed to:
    A. Absorb 90% of solar radiation
    B. Be darker in color for better aesthetics
    C. Reflect more sunlight and absorb less heat
    D. Eliminate the need for insulation

  4. Vertical gardens can reduce exterior wall temperatures by up to:
    A. 2-5 degrees Celsius
    B. 10 degrees Celsius
    C. 30-40 degrees Fahrenheit
    D. 100 degrees Fahrenheit

  5. Low-emissivity glass works by:
    A. Blocking all natural light
    B. Reflecting infrared light
    C. Absorbing heat during summer
    D. Eliminating windows entirely

Questions 6-9: True/False/Not Given

Do the following statements agree with the information in the passage?

Write:

  • TRUE if the statement agrees with the information
  • FALSE if the statement contradicts the information
  • NOT GIVEN if there is no information on this
  1. Green roofs can be 30-40 degrees Fahrenheit cooler than traditional roofs in summer.

  2. All green buildings must include both green roofs and vertical gardens to be effective.

  3. Buildings in the Northern Hemisphere should have their longest axis running east-west.

  4. Green building construction is more expensive than traditional construction in all cases.

Questions 10-13: Matching Information

Which paragraph contains the following information? Write the correct letter, A-J.

Note: You may use any letter more than once.

  1. Information about government policies encouraging green building construction

  2. An explanation of how trees provide multiple cooling benefits

  3. Details about the temperature regulation properties of building materials

  4. A description of window placement strategies to control heat

Công trình xanh với vườn treo và mái xanh giúp giảm nhiệt độ đô thị hiệu quảCông trình xanh với vườn treo và mái xanh giúp giảm nhiệt độ đô thị hiệu quả


PASSAGE 2 – Technologies and Strategies for Urban Cooling

Độ khó: Medium (Band 6.0-7.5)

Thời gian đề xuất: 18-20 phút

A The integration of advanced technologies into green building design has revolutionized how architects and urban planners approach the challenge of urban heat mitigation. Modern green buildings employ a sophisticated combination of passive design strategies (those that work without mechanical systems) and active technologies (those requiring energy input) to maximize cooling efficiency. This holistic approach recognizes that no single solution can adequately address the complex interplay of factors contributing to urban heat islands. Instead, successful projects incorporate multiple complementary systems that work synergistically to create optimal thermal conditions.

B One of the most promising technological innovations is the development of phase-change materials (PCMs) embedded within building components. These remarkable substances absorb and release thermal energy during the process of melting and freezing, helping to regulate indoor temperatures without requiring active cooling systems. When incorporated into walls, floors, or ceilings, PCMs can absorb excess heat during the day and release it at night when temperatures drop. This process, known as thermal energy storage, effectively reduces peak cooling loads and can decrease air conditioning energy consumption by up to 30%. The most commonly used PCMs in building applications are paraffin waxes and salt hydrates, which have melting points carefully selected to match typical comfort temperature ranges.

C Electrochromic glazing represents another cutting-edge technology that is transforming how buildings respond to solar heat gain. Unlike traditional windows or even low-e glass, electrochromic windows can dynamically adjust their tinting in response to external conditions or user preferences. These “smart windows” contain multiple thin layers of electrochromic material that change opacity when a small electric current is applied. During hot periods, the windows can automatically darken to reduce solar heat gain and glare, while on cooler days they can become clearer to allow more passive solar heating. Studies have demonstrated that electrochromic glazing can reduce cooling energy requirements by 20-30% compared to conventional windows while simultaneously improving occupant comfort and productivity.

D The concept of district cooling systems offers a community-scale approach to reducing urban heat. Rather than each building operating its own air conditioning system, district cooling uses a centralized plant to produce chilled water, which is then distributed through underground pipes to multiple buildings. This approach offers several advantages: centralized systems can achieve higher efficiency through economies of scale; they can utilize waste heat from industrial processes or power generation; and they reduce the number of individual cooling units rejecting hot air into the urban environment. Cities like Singapore, Dubai, and Toronto have implemented extensive district cooling networks that serve hundreds of buildings. These systems can reduce electricity consumption for cooling by 30-50% compared to individual building systems while significantly decreasing the amount of heat released into urban streets.

E Photovoltaic (PV) panels integrated into building design serve a dual purpose in combating urban heat. Obviously, they generate clean electricity that can power cooling systems without adding to the urban heat burden through fossil fuel combustion. Less obviously, when installed as PV canopies or shading devices, they prevent direct solar radiation from striking building surfaces while simultaneously generating power. Recent research has shown that buildings with PV shading systems experience surface temperatures 15-20 degrees Celsius lower than those without, while also producing enough electricity to power the building’s cooling needs. This concept has been extended to solar carports and solar street furniture, creating shaded public spaces that generate power while cooling the urban environment.

F The application of biomimicry – learning from and mimicking nature’s strategies – has yielded innovative cooling solutions for green buildings. One notable example comes from studying termite mounds, which maintain remarkably stable internal temperatures despite extreme external heat. The Eastgate Centre in Harare, Zimbabwe, designed by architect Mick Pearce, uses a ventilation system inspired by these structures. The building has a series of chimney-like structures that exploit natural convection currents, drawing cool air through underground tunnels where it is naturally cooled before entering the building. Hot air rises and exits through vents at the top, creating continuous airflow without mechanical fans. This system uses 90% less energy for cooling than conventional buildings of similar size.

G Cool pavements represent a critical infrastructure intervention that addresses heat at the ground level, where urban residents actually experience it. Traditional asphalt and concrete pavements can reach temperatures of 60-70 degrees Celsius on hot summer days, significantly contributing to the urban heat island effect. Cool pavements use several approaches to reduce these temperatures: reflective coatings that bounce solar radiation back into the atmosphere; permeable pavements that allow water infiltration and evaporative cooling; and photocatalytic materials that can break down air pollutants while reflecting heat. Field studies in Los Angeles demonstrated that neighborhoods with cool pavements experienced ambient air temperatures 1.5-2 degrees Celsius lower than areas with traditional paving, with pavement surface temperatures reduced by up to 15 degrees.

H The strategic use of water features in and around green buildings provides both aesthetic and thermal benefits. Water has an exceptionally high heat capacity, meaning it can absorb large amounts of heat with minimal temperature increase. Fountains, pools, and water walls create localized cooling through evaporation while adding humidity to dry urban air. Some innovative buildings incorporate gray water recycling systems that use treated wastewater for irrigation and cooling purposes, reducing both the building’s water consumption and its contribution to urban heat. The Dubai Creek Tower, currently under construction, will feature a massive water fountain system at its base designed to cool the surrounding plaza by up to 5 degrees Celsius while creating a dramatic visual display.

I Building information modeling (BIM) and computational fluid dynamics (CFD) software have become indispensable tools for designing effective cooling strategies. These technologies allow architects and engineers to simulate how buildings will perform under various conditions before construction begins. CFD software can model airflow patterns around and through buildings, helping designers optimize natural ventilation strategies. Thermal modeling can predict energy consumption and identify potential hot spots where additional cooling measures may be needed. This data-driven design approach ensures that cooling strategies are not just theoretical but are calibrated to the specific climatic conditions and urban context of each project. Increasingly, these tools incorporate real-time weather data and can model future climate scenarios, allowing buildings to be designed for the hotter conditions expected in coming decades.

J The most successful green buildings recognize that technology alone is insufficient; behavioral and operational factors play equally important roles in reducing urban heat. Building management systems (BMS) that integrate all cooling technologies and automatically optimize their operation based on occupancy, weather conditions, and energy prices can dramatically improve efficiency. Additionally, educating building occupants about how to use natural ventilation, operable windows, and shading devices effectively is crucial. Studies have shown that buildings with engaged, educated occupants can achieve energy performance 20-30% better than identical buildings with passive users. This human dimension of green building performance highlights the importance of viewing urban cooling not just as a technical challenge but as a socio-technical system requiring both advanced technology and informed human participation.

Questions 14-20: Matching Headings

Choose the correct heading for each paragraph from the list of headings below.

Write the correct number, i-xiii.

List of Headings:
i. The importance of user behavior in building performance
ii. Materials that store and release heat automatically
iii. Windows that adapt to changing conditions
iv. Learning from natural ventilation systems
v. Combining multiple approaches for better results
vi. Centralized cooling for entire neighborhoods
vii. Ground-level solutions for heat reduction
viii. Generating power while providing shade
ix. Computer modeling for optimized design
x. Using water for cooling and aesthetics
xi. Cost analysis of green technologies
xii. Historical development of cooling systems
xiii. Government regulations for building design

  1. Paragraph A
  2. Paragraph B
  3. Paragraph C
  4. Paragraph D
  5. Paragraph E
  6. Paragraph G
  7. Paragraph I

Questions 21-26: Summary Completion

Complete the summary below using words from the box.

Write the correct letter, A-P.

Word Box:
A. electricity
B. humidity
C. passive
D. productivity
E. radiation
F. termite
G. active
H. temperature
I. biomimicry
J. efficiency
K. opacity
L. ventilation
M. consumption
N. cooling
O. surface
P. optimization

Green buildings use both (21)____ and (22)____ design strategies to reduce urban heat. One innovative approach called (23)____ involves learning from nature, such as studying (24)____ mounds to design natural ventilation systems. Cool pavements help reduce both air and (25)____ temperatures in urban areas. Computer software allows designers to conduct (26)____ studies to predict building performance before construction.


PASSAGE 3 – Economic and Scientific Perspectives on Green Building Effectiveness

Độ khó: Hard (Band 7.0-9.0)

Thời gian đề xuất: 23-25 phút

The discourse surrounding green buildings and their efficacy in mitigating urban heat has evolved from simple advocacy to rigorous scientific scrutiny, encompassing complex cost-benefit analyses and longitudinal studies that examine both immediate and long-term impacts. While early proponents of sustainable architecture often relied on anecdotal evidence and theoretical projections, contemporary research employs sophisticated methodologies including satellite thermal imaging, microclimate modeling, and comprehensive life-cycle assessments to quantify the actual cooling benefits of green buildings. This empirical approach has revealed a nuanced picture: green buildings undoubtedly contribute to urban heat reduction, but the magnitude of their impact varies significantly depending on factors such as climate zone, building density, implementation quality, and the specific combination of technologies employed.

A seminal study conducted by researchers at the Lawrence Berkeley National Laboratory examined the cooling effects of widespread green roof adoption in metropolitan areas across different climate zones. Using high-resolution urban climate models, the researchers simulated scenarios where varying percentages of existing buildings (25%, 50%, and 75%) were retrofitted with extensive green roofs. The results demonstrated that even modest adoption rates (25% coverage) could reduce city-wide ambient temperatures by 0.3-0.7 degrees Celsius during summer heat waves, with localized reductions of up to 2 degrees in areas with concentrated green roof coverage. However, the study also highlighted significant regional variability: humid subtropical climates like Houston experienced greater cooling benefits than arid climates like Phoenix, primarily due to differences in evapotranspiration potential. This finding underscores the importance of context-specific design rather than applying universal green building prescriptions across diverse climatic conditions.

The economic calculus of green building implementation presents both compelling incentives and significant barriers to adoption. Initial construction costs for green buildings typically exceed those of conventional structures by 2-8%, depending on the specific technologies incorporated and the level of certification sought (such as LEED or BREEAM standards). However, multiple studies have demonstrated that these upfront costs can be amortized through operational savings over relatively short periods. A comprehensive meta-analysis of 150 green buildings across North America found that they consume 25-30% less energy than comparable conventional buildings, translating to operational cost savings that typically achieve payback within 7-12 years for green roof systems and 3-7 years for cool roofing materials. Moreover, green buildings command rental premiums of 3-5% and demonstrate higher occupancy rates, while also benefiting from lower insurance premiums due to improved resilience to extreme weather events.

Yet critics argue that these financial analyses often fail to account for maintenance costs and the diminished performance of certain green technologies over time. Green roofs, for instance, require regular irrigation, weeding, and replanting, with annual maintenance costs typically ranging from $10-25 per square meter. Cool roofing materials can lose up to 20% of their reflectivity over a decade due to weathering and accumulation of atmospheric particulates, necessitating cleaning or replacement. Furthermore, skeptics point out that the embodied energy – the total energy required to produce, transport, and install green building materials – may be substantial, potentially offsetting some of the operational energy savings. A life-cycle assessment comparing conventional and green roofs found that while green roofs provide superior long-term thermal performance, their manufacturing and installation phases generate 15-20% more greenhouse gas emissions than standard roofing systems, though this “carbon debt” is typically repaid within 3-5 years of operation.

The scientific literature reveals intriguing debates about the scalability and saturation effects of green building cooling strategies. Some urban climate researchers have proposed that there may be diminishing marginal returns as green building adoption rates increase. Their models suggest that while the first 20-30% of buildings converted to green standards yield substantial city-wide cooling benefits, subsequent conversions produce progressively smaller incremental improvements. This phenomenon occurs because initial green buildings cool the most thermally stressed areas, while later conversions address already-cooler locations. Additionally, at very high adoption rates (above 70%), some simulations predict potential unintended consequences, such as altered precipitation patterns due to increased evapotranspiration or reduced nighttime cooling as thermal mass materials delay heat release into the evening hours. These findings remain contested, however, with other researchers arguing that the models rely on unrealistic assumptions about uniform implementation and fail to account for synergistic effects between different cooling strategies.

The intersection of green building strategies with climate change adaptation adds another layer of complexity to effectiveness assessments. Climate projections indicate that many urban areas will experience not only higher average temperatures but also increased frequency and intensity of heat waves, altered precipitation patterns, and more extreme weather events. Under these changing conditions, the relative effectiveness of different green building technologies may shift considerably. For instance, green roofs may become less effective in regions experiencing prolonged drought, as water scarcity makes maintaining vegetation increasingly challenging and costly. Conversely, technologies like phase-change materials and electrochromic glazing, which don’t depend on water availability, may become more attractive. Some researchers advocate for adaptive design frameworks that anticipate these shifts, incorporating modular systems that can be upgraded or modified as climatic conditions evolve, rather than static installations designed for current conditions.

Socioeconomic equity considerations further complicate the green building landscape. While affluent communities and premium commercial developments readily adopt green technologies, lower-income neighborhoods – which often experience the most severe heat exposure due to historic underinvestment in tree canopy and infrastructure – face significant barriers to implementation. The upfront cost premium of green construction, even when economically rational over the long term, may be prohibitive for affordable housing developers operating on thin margins. This creates a concerning environmental justice issue wherein those most vulnerable to urban heat have least access to mitigation technologies. Some cities have addressed this disparity through targeted programs: New York City’s Community Green Roofs initiative provides free green roof installation for qualifying low-income residential buildings, while Melbourne’s Growing Green Guide offers streamlined permitting and subsidies for green building retrofits in designated heat-vulnerable neighborhoods. Researchers studying these interventions report that they not only reduce heat exposure but also generate co-benefits including improved mental health, stronger community cohesion, and increased property values – though the latter may paradoxically contribute to gentrification pressures that displace the very residents the programs aim to help.

The role of policy instruments in accelerating green building adoption has been extensively studied, with results indicating that regulatory approaches generally outperform purely voluntary or incentive-based programs. Cities like Toronto and Tokyo, which mandate green roofs on new buildings exceeding certain size thresholds, have achieved green roof coverage of 15-20% within a decade of policy implementation, compared to 2-5% coverage in cities relying solely on incentives. However, prescriptive mandates also face criticism for potentially stifling innovation and failing to account for site-specific conditions where alternative cooling strategies might be more effective. Some policy experts advocate for performance-based codes that specify cooling objectives (such as maximum surface temperature or heat emission limits) while allowing developers flexibility in how they achieve those targets. This approach, pioneered in cities like Melbourne and Frankfurt, appears to generate more innovative solutions while ensuring measurable heat reduction outcomes. Nonetheless, implementation monitoring and enforcement capacity remain persistent challenges, as many jurisdictions lack the resources to verify that installed systems are properly maintained and performing as designed.

Emerging research is also examining how artificial intelligence and Internet of Things (IoT) technologies might enhance green building effectiveness. Machine learning algorithms trained on building performance data can identify optimization opportunities that human operators might miss, automatically adjusting ventilation, shading, and thermal mass charging/discharging cycles based on weather forecasts and occupancy patterns. Several pilot projects have reported energy savings of 10-15% beyond what conventional building management systems achieve, specifically through better coordination of passive and active cooling strategies. Predictive maintenance algorithms can also identify deteriorating performance in green roofs or cool coatings before it becomes severe, reducing long-term maintenance costs. However, these technologies introduce new considerations around data privacy, cybersecurity, and the digital divide – as sophisticated building management systems may be impractical for smaller or older buildings that comprise much of the existing urban fabric.

The trajectory of green building research increasingly emphasizes integrated assessment frameworks that evaluate cooling effectiveness alongside other sustainability dimensions including water conservation, biodiversity enhancement, air quality improvement, and carbon sequestration. This multi-criteria perspective recognizes that optimizing solely for cooling may produce suboptimal outcomes in other important domains. For example, extensive cool pavement implementation might maximize surface cooling but could also increase stormwater runoff compared to permeable green alternatives, while intensive irrigation of green roofs might provide superior cooling but at an unacceptable water cost in drought-prone regions. Several research groups have developed decision-support tools that allow planners to explore these trade-offs and identify Pareto optimal solutions – combinations of technologies that provide the best balance across multiple objectives for specific urban contexts. As these tools become more sophisticated and accessible, they promise to move green building design from a field dominated by rules of thumb and isolated case studies toward a more scientifically grounded, evidence-based discipline capable of delivering measurable urban heat reduction while advancing broader sustainability goals.

Questions 27-31: Multiple Choice

Choose the correct letter, A, B, C, or D.

  1. According to the passage, early research on green buildings primarily relied on:
    A. Sophisticated satellite imaging technology
    B. Theoretical projections and anecdotal evidence
    C. Government-funded longitudinal studies
    D. Computer-based microclimate modeling

  2. The Lawrence Berkeley study found that green roofs were MOST effective in:
    A. Arid climates like Phoenix
    B. All climate zones equally
    C. Humid subtropical climates like Houston
    D. Cold temperate regions

  3. Initial construction costs for green buildings typically exceed conventional buildings by:
    A. 2-8%
    B. 15-20%
    C. 25-30%
    D. 70%

  4. According to the passage, the “carbon debt” from green roof manufacturing is typically repaid within:
    A. 1-2 years
    B. 3-5 years
    C. 7-12 years
    D. 15-20 years

  5. Performance-based building codes differ from prescriptive mandates by:
    A. Being more expensive to implement
    B. Specifying exact technologies that must be used
    C. Allowing flexibility in achieving cooling objectives
    D. Requiring less government monitoring

Questions 32-36: Matching Features

Match each research finding or concept (32-36) with the correct source or location (A-H).

Note: You may use any letter more than once. You may not need to use all letters.

Research Findings/Concepts:
32. Demonstrated that modest green roof adoption could reduce temperatures by 0.3-0.7 degrees
33. Provides free green roof installation for qualifying low-income buildings
34. Achieved 15-20% green roof coverage within a decade of policy implementation
35. Reported 10-15% additional energy savings through AI optimization
36. Found that green buildings consume 25-30% less energy than conventional buildings

Sources/Locations:
A. Lawrence Berkeley National Laboratory
B. New York City’s Community Green Roofs initiative
C. Melbourne’s Growing Green Guide
D. Toronto and Tokyo
E. Machine learning pilot projects
F. Meta-analysis of 150 North American buildings
G. Phoenix climate study
H. Frankfurt performance-based codes

Questions 37-40: Short-answer Questions

Answer the questions below using NO MORE THAN THREE WORDS from the passage for each answer.

  1. What term describes the total energy required to produce, transport, and install building materials?

  2. What type of effect may occur when the cooling benefits of additional green buildings become progressively smaller?

  3. What feature of green roofs may become problematic in regions experiencing water scarcity?

  4. What type of algorithms can identify when green building components need maintenance?

Công nghệ xanh hiện đại với tấm pin mặt trời và vật liệu làm mát cho đô thịCông nghệ xanh hiện đại với tấm pin mặt trời và vật liệu làm mát cho đô thị

3. Answer Keys – Đáp Án

PASSAGE 1: Questions 1-13

  1. B
  2. C
  3. C
  4. B
  5. B
  6. TRUE
  7. NOT GIVEN
  8. TRUE
  9. NOT GIVEN
  10. Paragraph J (đoạn cuối)
  11. Paragraph I (đoạn 9)
  12. Paragraph F (đoạn 6)
  13. Paragraph G (đoạn 7)

PASSAGE 2: Questions 14-26

  1. v
  2. ii
  3. iii
  4. vi
  5. viii
  6. vii
  7. ix
  8. C
  9. G
  10. I
  11. F
  12. O
  13. P

PASSAGE 3: Questions 27-40

  1. B
  2. C
  3. A
  4. B
  5. C
  6. A
  7. B
  8. D
  9. E
  10. F
  11. embodied energy
  12. diminishing marginal returns
  13. maintaining vegetation / vegetation (hoặc irrigation)
  14. predictive maintenance

4. Giải Thích Đáp Án Chi tiết

Passage 1 – Giải Thích

Câu 1: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: urban heat island effect, temperature differences
  • Vị trí trong bài: Đoạn 1, dòng 2-4
  • Giải thích: Bài văn nói rõ “This temperature difference, which can reach up to 5-7 degrees Celsius during the day and 2-3 degrees at night”. Đáp án B “Up to 5-7 degrees during daytime” chính xác khớp với thông tin này. Đáp án A sai vì nêu 1-2 độ; C sai vì đảo ngược thông tin ban ngày/ban đêm; D sai hoàn toàn.

Câu 2: C

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: green roofs, cooling, primarily
  • Vị trí trong bài: Đoạn 3, dòng 7-9
  • Giải thích: Passage giải thích “The plants on green roofs absorb heat through photosynthesis and release moisture into the air through transpiration, creating a natural cooling effect.” Đây chính là quá trình quang hợp (photosynthesis) và thoát hơi nước (transpiration). Đáp án A đề cập đến cool roofs chứ không phải green roofs; B không được nhắc đến; D là tính năng kỹ thuật không liên quan đến làm mát.

Câu 3: C

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: cool roofing materials, designed to
  • Vị trí trong bài: Đoạn 4, dòng 2-3
  • Giải thích: Bài viết nêu rõ “cool roofs are designed to reflect more sunlight and absorb less heat” – đáp án C paraphrase chính xác ý này. Đáp án A sai vì đó là đặc điểm của mái truyền thống (traditional dark roofs); B sai vì cool roofs thường có màu sáng; D không được đề cập.

Câu 6: TRUE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: green roofs, 30-40 degrees Fahrenheit cooler, summer
  • Vị trí trong bài: Đoạn 3, dòng cuối
  • Giải thích: Passage khẳng định: “Studies have shown that green roofs can be 30-40 degrees Fahrenheit cooler than conventional roofs during summer months.” Câu hỏi và bài đọc khớp hoàn toàn về con số và ngữ cảnh.

Câu 7: NOT GIVEN

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: must include, both green roofs and vertical gardens
  • Vị trí trong bài: Toàn bộ passage
  • Giải thích: Mặc dù passage mô tả cả green roofs (đoạn 3) và vertical gardens (đoạn 5), nhưng không bao giờ nói rằng một công trình xanh PHẢI có cả hai tính năng này để hiệu quả. Đây là thông tin không được đề cập.

Câu 10: Paragraph J

  • Dạng câu hỏi: Matching Information
  • Từ khóa: government policies, encouraging green building construction
  • Vị trí trong bài: Đoạn cuối (J)
  • Giải thích: Đoạn cuối đề cập rõ ràng: “Many city governments are now offering incentives for green building construction, including tax breaks, expedited permitting, and grants. Some cities have even mandated that new buildings must incorporate certain green features.”

Câu 12: Paragraph F

  • Dạng câu hỏi: Matching Information
  • Từ khóa: temperature regulation properties, building materials
  • Vị trí trong bài: Đoạn 6
  • Giải thích: Đoạn này thảo luận về “materials with high thermal mass, such as concrete, brick, or stone, which can absorb heat during the day and release it slowly at night” – đây chính là tính chất điều hòa nhiệt độ của vật liệu xây dựng.

Passage 2 – Giải Thích

Câu 14: v (Combining multiple approaches for better results)

  • Dạng câu hỏi: Matching Headings
  • Vị trí trong bài: Paragraph A
  • Giải thích: Đoạn A nhấn mạnh “holistic approach” và “multiple complementary systems that work synergistically” – đây chính là việc kết hợp nhiều phương pháp để đạt kết quả tốt hơn. Từ khóa “synergistically” là dấu hiệu quan trọng.

Câu 16: iii (Windows that adapt to changing conditions)

  • Dạng câu hỏi: Matching Headings
  • Vị trí trong bài: Paragraph C
  • Giải thích: Toàn bộ đoạn C nói về “electrochromic glazing” hay “smart windows” có thể “dynamically adjust their tinting in response to external conditions” – cửa sổ thích nghi với điều kiện thay đổi.

Câu 21-26: Summary Completion

  • Giải thích tổng thể: Cần đọc kỹ các đoạn liên quan và xác định từ loại phù hợp từ word box.
  • 21-22 (C-passive, G-active): Đoạn A nêu rõ “passive design strategies” và “active technologies”
  • 23 (I-biomimicry): Đoạn F giới thiệu khái niệm “biomimicry – learning from and mimicking nature’s strategies”
  • 24 (F-termite): Cùng đoạn F đề cập “studying termite mounds”
  • 25 (O-surface): Đoạn G nói về “pavement surface temperatures reduced by up to 15 degrees”
  • 26 (P-optimization): Đoạn I nêu “simulate” và “optimize” – từ “optimization” phù hợp nhất

Passage 3 – Giải Thích

Câu 27: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: early research, primarily relied on
  • Vị trí trong bài: Đoạn 1, dòng 2-5
  • Giải thích: Passage nêu rõ “early proponents of sustainable architecture often relied on anecdotal evidence and theoretical projections” – bằng chứng giai thoại và các dự đoán lý thuyết. Đáp án B paraphrase chính xác điều này.

Câu 28: C

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: Lawrence Berkeley study, green roofs, most effective
  • Vị trí trong bài: Đoạn 2, dòng 8-11
  • Giải thích: Bài viết khẳng định “humid subtropical climates like Houston experienced greater cooling benefits than arid climates like Phoenix” – vùng khí hậu cận nhiệt đới ẩm như Houston hiệu quả hơn.

Câu 32: A (Lawrence Berkeley National Laboratory)

  • Dạng câu hỏi: Matching Features
  • Từ khóa: modest green roof adoption, 0.3-0.7 degrees
  • Vị trí trong bài: Đoạn 2, dòng 4-7
  • Giải thích: “A seminal study conducted by researchers at the Lawrence Berkeley National Laboratory” và sau đó đề cập “even modest adoption rates (25% coverage) could reduce city-wide ambient temperatures by 0.3-0.7 degrees Celsius”.

Câu 37: embodied energy

  • Dạng câu hỏi: Short-answer Questions
  • Từ khóa: total energy, produce, transport, install
  • Vị trí trong bài: Đoạn 4, dòng 6-7
  • Giải thích: Passage định nghĩa rõ ràng: “the embodied energy – the total energy required to produce, transport, and install green building materials”. Đây là thuật ngữ chuyên môn cần ghi nhớ.

Câu 38: diminishing marginal returns

  • Dạng câu hỏi: Short-answer Questions
  • Từ khóa: cooling benefits, progressively smaller
  • Vị trí trong bài: Đoạn 5, dòng 3-4
  • Giải thích: Bài viết sử dụng thuật ngữ kinh tế “diminishing marginal returns” để mô tả hiện tượng này. Đây là khái niệm quan trọng trong phân tích hiệu quả quy mô.

Nghiên cứu khoa học về hiệu quả làm mát của công trình xanh trong đô thịNghiên cứu khoa học về hiệu quả làm mát của công trình xanh trong đô thị

5. Từ Vựng Quan Trọng Theo Passage

Passage 1 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
evapotranspiration n /ɪˌvæpəʊtrænspɪˈreɪʃən/ Sự thoát hơi nước (từ đất và cây) natural cooling through evapotranspiration evapotranspiration potential, evapotranspiration rate
waterproofing membrane n phrase /ˈwɔːtəpruːfɪŋ ˈmembreɪn/ Màng chống thấm planted over a waterproofing membrane install waterproofing membrane, durable membrane
solar reflectance n phrase /ˈsəʊlə rɪˈflektəns/ Độ phản xạ ánh sáng mặt trời high solar reflectance measure solar reflectance, improve reflectance
thermal emittance n phrase /ˈθɜːməl ɪˈmɪtəns/ Độ phát nhiệt high thermal emittance thermal emittance rating, enhance emittance
energy savings n phrase /ˈenədʒi ˈseɪvɪŋz/ Tiết kiệm năng lượng significant energy savings achieve energy savings, maximize savings
inorganic substrate n phrase /ˌɪnɔːˈɡænɪk ˈsʌbstreɪt/ Chất nền vô cơ inorganic substrate for plants use inorganic substrate, substrate material
thermal mass n phrase /ˈθɜːməl mæs/ Khối nhiệt (vật liệu lưu trữ nhiệt) materials with high thermal mass thermal mass properties, effective thermal mass
permeable pavements n phrase /ˈpɜːmiəbəl ˈpeɪvmənts/ Vỉa hè thấm nước use of permeable pavements install permeable pavements, pervious pavement
low-emissivity glass n phrase /ləʊ ɪˌmɪsɪˈvɪti ɡlɑːs/ Kính phản xạ hồng ngoại utilize low-emissivity (low-e) glass low-e glass coating, energy-efficient glass
passive solar design n phrase /ˈpæsɪv ˈsəʊlə dɪˈzaɪn/ Thiết kế năng lượng mặt trời thụ động principle known as passive solar design passive solar principles, passive design strategies
microclimates n /ˈmaɪkrəʊklaɪməts/ Vi khí hậu create microclimates local microclimates, urban microclimates
strategic placement n phrase /strəˈtiːdʒɪk ˈpleɪsmənt/ Bố trí chiến lược strategic placement of deciduous trees strategic tree placement, optimal placement

Passage 2 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
holistic approach n phrase /həʊˈlɪstɪk əˈprəʊtʃ/ Cách tiếp cận toàn diện holistic approach recognizes adopt holistic approach, holistic perspective
phase-change materials n phrase /feɪz tʃeɪndʒ məˈtɪəriəlz/ Vật liệu chuyển pha development of phase-change materials PCM technology, integrate PCMs
thermal energy storage n phrase /ˈθɜːməl ˈenədʒi ˈstɔːrɪdʒ/ Lưu trữ năng lượng nhiệt process known as thermal energy storage thermal storage systems, energy storage capacity
paraffin waxes n phrase /ˈpærəfɪn ˈwæksɪz/ Sáp parafin commonly used PCMs are paraffin waxes paraffin-based materials, microencapsulated paraffin
electrochromic glazing n phrase /ɪˌlektrəʊˈkrəʊmɪk ˈɡleɪzɪŋ/ Kính điện sắc electrochromic glazing represents electrochromic windows, smart glazing technology
district cooling systems n phrase /ˈdɪstrɪkt ˈkuːlɪŋ ˈsɪstəmz/ Hệ thống làm mát tập trung concept of district cooling systems district cooling network, centralized cooling
economies of scale n phrase /ɪˈkɒnəmiz əv skeɪl/ Lợi thế kinh tế theo quy mô achieve higher efficiency through economies of scale benefit from economies of scale, scale advantages
photovoltaic panels n phrase /ˌfəʊtəʊvɒlˈteɪɪk ˈpænəlz/ Tấm pin quang điện photovoltaic (PV) panels integrated PV panel installation, solar panels
biomimicry n /ˌbaɪəʊˈmɪmɪkri/ Bắt chước sinh học application of biomimicry biomimicry principles, biomimetic design
chimney-like structures n phrase /ˈtʃɪmni laɪk ˈstrʌktʃəz/ Cấu trúc giống ống khói series of chimney-like structures natural ventilation chimneys, stack effect structures
photocatalytic materials n phrase /ˌfəʊtəʊkætəˈlɪtɪk məˈtɪəriəlz/ Vật liệu quang xúc tác photocatalytic materials break down pollutants photocatalytic coatings, self-cleaning materials
gray water recycling n phrase /ɡreɪ ˈwɔːtə riːˈsaɪklɪŋ/ Tái chế nước xám gray water recycling systems gray water treatment, water reuse systems
computational fluid dynamics n phrase /ˌkɒmpjʊˈteɪʃənəl ˈfluːɪd daɪˈnæmɪks/ Động lực học chất lỏng tính toán computational fluid dynamics (CFD) software CFD simulation, CFD modeling
thermal modeling n phrase /ˈθɜːməl ˈmɒdəlɪŋ/ Mô hình hóa nhiệt thermal modeling can predict thermal simulation, energy modeling
socio-technical system n phrase /ˌsəʊsiəʊ ˈteknɪkəl ˈsɪstəm/ Hệ thống kỹ thuật-xã hội viewing urban cooling as a socio-technical system socio-technical integration, complex system

Passage 3 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
cost-benefit analyses n phrase /kɒst ˈbenɪfɪt əˈnæləsiːz/ Phân tích chi phí-lợi ích encompassing complex cost-benefit analyses conduct cost-benefit analysis, economic analysis
longitudinal studies n phrase /ˌlɒŋɡɪˈtjuːdɪnəl ˈstʌdiz/ Nghiên cứu theo chiều dọc (dài hạn) longitudinal studies examine long-term impacts longitudinal research, long-term study
anecdotal evidence n phrase /ˌænɪkˈdəʊtəl ˈevɪdəns/ Bằng chứng giai thoại relied on anecdotal evidence anecdotal reports, empirical evidence vs anecdotal
life-cycle assessments n phrase /laɪf ˈsaɪkəl əˈsesmənt/ Đánh giá vòng đời comprehensive life-cycle assessments LCA methodology, cradle-to-grave assessment
microclimate modeling n phrase /ˈmaɪkrəʊklaɪmət ˈmɒdəlɪŋ/ Mô hình hóa vi khí hậu microclimate modeling quantifies impacts microclimate simulation, climate modeling
evapotranspiration potential n phrase /ɪˌvæpəʊtrænspɪˈreɪʃən pəˈtenʃəl/ Tiềm năng thoát hơi nước differences in evapotranspiration potential ET potential, evaporative capacity
context-specific design n phrase /ˈkɒntekst spəˈsɪfɪk dɪˈzaɪn/ Thiết kế theo ngữ cảnh cụ thể importance of context-specific design site-specific design, localized approach
amortized v /ˈæmətaɪzd/ Phân bổ (chi phí) costs can be amortized amortize investment, amortization period
payback n /ˈpeɪbæk/ Hoàn vốn achieve payback within 7-12 years payback period, return on investment
rental premiums n phrase /ˈrentəl ˈpriːmiəmz/ Phí thuê cao hơn command rental premiums of 3-5% premium pricing, rental rate premium
embodied energy n phrase /ɪmˈbɒdid ˈenədʒi/ Năng lượng hóa thân embodied energy may be substantial embodied carbon, embodied emissions
greenhouse gas emissions n phrase /ˈɡriːnhaʊs ɡæs ɪˈmɪʃənz/ Khí thải nhà kính generate greenhouse gas emissions GHG emissions, carbon emissions
scalability n /ˌskeɪləˈbɪləti/ Khả năng mở rộng quy mô debates about scalability scalability challenges, scale up
diminishing marginal returns n phrase /dɪˈmɪnɪʃɪŋ ˈmɑːdʒɪnəl rɪˈtɜːnz/ Lợi ích biên giảm dần diminishing marginal returns as adoption increases law of diminishing returns, marginal benefit
synergistic effects n phrase /ˌsɪnəˈdʒɪstɪk ɪˈfekts/ Hiệu ứng hiệp đồng synergistic effects between strategies synergy, complementary effects
environmental justice n phrase /ɪnˌvaɪrənˈmentəl ˈdʒʌstɪs/ Công bằng môi trường environmental justice issue environmental equity, climate justice
gentrification pressures n phrase /ˌdʒentrɪfɪˈkeɪʃən ˈpreʃəz/ Áp lực quý tộc hóa contribute to gentrification pressures urban gentrification, displacement pressure
prescriptive mandates n phrase /prɪˈskrɪptɪv ˈmændeɪts/ Quy định chi tiết (bắt buộc) prescriptive mandates face criticism prescriptive regulations, mandatory requirements
performance-based codes n phrase /pəˈfɔːməns beɪst kəʊdz/ Quy chuẩn dựa trên hiệu suất advocate for performance-based codes performance standards, outcome-based regulations
machine learning algorithms n phrase /məˈʃiːn ˈlɜːnɪŋ ˈælɡərɪðəmz/ Thuật toán học máy machine learning algorithms trained on data ML algorithms, AI-driven optimization
predictive maintenance n phrase /prɪˈdɪktɪv ˈmeɪntənəns/ Bảo trì dự đoán predictive maintenance algorithms proactive maintenance, condition monitoring
multi-criteria perspective n phrase /ˌmʌlti kraɪˈtɪəriə pəˈspektɪv/ Góc nhìn đa tiêu chí multi-criteria perspective evaluates multi-objective optimization, holistic evaluation
Pareto optimal solutions n phrase /pəˈreɪtəʊ ˈɒptɪməl səˈluːʃənz/ Giải pháp tối ưu Pareto identify Pareto optimal solutions Pareto efficiency, optimal trade-offs
evidence-based discipline n phrase /ˈevɪdəns beɪst ˈdɪsəplɪn/ Ngành học dựa trên bằng chứng toward evidence-based discipline evidence-based practice, research-driven approach

Kết bài

Chủ đề “The role of green buildings in reducing urban heat” không chỉ là một trong những chủ đề thời sự quan trọng nhất của thế kỷ 21 mà còn đại diện cho xu hướng ra đề của IELTS Reading trong những năm gần đây. Tương tự như The effects of climate change on global food security, chủ đề này yêu cầu người học không chỉ có khả năng đọc hiểu mà còn phải nắm vững từ vựng chuyên ngành và hiểu được các mối quan hệ nhân quả phức tạp.

Bộ đề thi mẫu gồm 3 passages này đã cung cấp cho bạn trải nghiệm hoàn chỉnh với tất cả các độ khó – từ Easy (Passage 1) giúp bạn làm quen với khái niệm cơ bản về công trình xanh và các chiến lược làm mát thụ động; đến Medium (Passage 2) giới thiệu các công nghệ tiên tiến như vật liệu chuyển pha, kính điện sắc và hệ thống làm mát tập trung; và cuối cùng là Hard (Passage 3) đòi hỏi kỹ năng phân tích cao với các nghiên cứu khoa học, đánh giá kinh tế và các tranh luận về công bằng xã hội. Đối với những bạn quan tâm đến các chủ đề liên quan, How green technologies are influencing global agriculture cũng cung cấp góc nhìn bổ sung về vai trò của công nghệ xanh trong nhiều lĩnh vực.

Phần đáp án chi tiết không chỉ cho bạn biết câu trả lời đúng mà còn giải thích WHY (tại sao) và HOW (làm thế nào) để tìm ra đáp án – đây chính là chìa khóa để cải thiện kỹ năng làm bài IELTS Reading. Bạn đã học được cách xác định từ khóa, paraphrase, và định vị thông tin trong passages dài. Bạn cũng đã làm quen với 7 dạng câu hỏi phổ biến nhất, mỗi dạng với chiến lược riêng. Mối liên hệ giữa đô thị hóa và môi trường cũng được thảo luận sâu hơn trong Impact of urbanization on wildlife conservation, giúp bạn có cái nhìn toàn diện hơn về các thách thức môi trường đô thị.

Đặc biệt, 3 bảng từ vựng tổng hợp hơn 40 từ/cụm từ quan trọng nhất kèm phiên âm, định nghĩa, ví dụ thực tế và collocations sẽ là nguồn tài liệu quý giá cho việc học từ vựng của bạn. Hãy chú ý rằng những từ vựng này không chỉ hữu ích cho IELTS Reading mà còn xuất hiện trong Writing Task 2 khi bạn viết về các chủ đề môi trường và đô thị. Để hiểu rõ hơn về các tác động của quá dân số lên môi trường đô thị, bạn có thể tham khảo Effects of overpopulation on urban areas.

Hãy nhớ rằng việc luyện tập với đề thi mẫu chất lượng cao như thế này chỉ hiệu quả khi bạn phân tích kỹ lưỡng từng câu hỏi sai, hiểu rõ lý do, và rút ra bài học cho những lần làm bài sau. Đừng chỉ đếm số câu đúng – hãy tập trung vào quá trình tư duy và các kỹ thuật tìm đáp án. Xu hướng làm việc từ xa và tác động của nó đến không gian văn phòng, như được thảo luận trong The rise of remote working and its effect on office space demand, cũng là một chủ đề thú vị liên quan đến việc thiết kế công trình và sử dụng không gian đô thị một cách bền vững.

Với nền tảng vững chắc từ bộ đề này, bạn đã sẵn sàng chinh phục IELTS Reading với sự tự tin cao hơn. Chúc bạn đạt được band điểm mục tiêu trong kỳ thi sắp tới!

Previous Article

Cách Sử Dụng Present Perfect Tense Trong IELTS - Công Thức & Ví Dụ Band 8.0

Next Article

IELTS Reading: Ảnh Hưởng Văn Hóa Đến Việc Áp Dụng Công Nghệ Giáo Dục - Đề Thi Mẫu Có Đáp Án Chi Tiết

Write a Comment

Leave a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Đăng ký nhận thông tin bài mẫu

Để lại địa chỉ email của bạn, chúng tôi sẽ thông báo tới bạn khi có bài mẫu mới được biên tập và xuất bản thành công.
Chúng tôi cam kết không spam email ✨