Chủ đề năng lượng tái tạo và biến đổi khí hậu đang là một trong những chủ đề “nóng” xuất hiện thường xuyên trong kỳ thi IELTS Reading. Với sự quan tâm ngày càng tăng về vấn đề môi trường toàn cầu, việc nắm vững từ vựng và kỹ năng đọc hiểu các bài viết học thuật về năng lượng xanh không chỉ giúp bạn đạt band điểm cao mà còn cung cấp kiến thức hữu ích cho cuộc sống.
Trong bài viết này, bạn sẽ được trải nghiệm một bộ đề thi IELTS Reading hoàn chỉnh với 3 passages có độ khó tăng dần từ Easy đến Hard, bao gồm đầy đủ 40 câu hỏi với 7 dạng câu hỏi phổ biến nhất trong kỳ thi thật. Mỗi passage được thiết kế dựa trên cấu trúc của Cambridge IELTS, đảm bảo tính xác thực và giá trị luyện tập tối ưu. Bạn cũng sẽ nhận được đáp án chi tiết kèm giải thích từng câu, phân tích kỹ thuật paraphrase, và bộ từ vựng quan trọng được phân loại theo từng passage.
Bộ đề này phù hợp cho học viên có trình độ từ band 5.0 trở lên, đặc biệt hữu ích cho những ai đang nhắm đến band 6.5-7.5 và cần làm quen với các chủ đề môi trường, khoa học và công nghệ trong IELTS.
Hướng dẫn làm bài IELTS Reading
Tổng Quan Về IELTS Reading Test
IELTS Reading Test kéo dài 60 phút với 3 passages và tổng cộng 40 câu hỏi. Độ khó tăng dần từ Passage 1 đến Passage 3, đòi hỏi bạn phải phân bổ thời gian hợp lý để hoàn thành tất cả các câu hỏi.
Phân bổ thời gian khuyến nghị:
- Passage 1: 15-17 phút (độ khó Easy)
- Passage 2: 18-20 phút (độ khó Medium)
- Passage 3: 23-25 phút (độ khó Hard)
Lưu ý rằng không có thời gian bổ sung để chép đáp án sang answer sheet, vì vậy bạn cần viết đáp án trực tiếp trong quá trình làm bài.
Các Dạng Câu Hỏi Trong Đề Này
Bộ đề thi này bao gồm 7 dạng câu hỏi phổ biến nhất trong IELTS Reading:
- Multiple Choice – Câu hỏi trắc nghiệm
- True/False/Not Given – Xác định thông tin đúng/sai/không có
- Matching Headings – Nối tiêu đề với đoạn văn
- Sentence Completion – Hoàn thành câu
- Summary Completion – Hoàn thành đoạn tóm tắt
- Matching Features – Nối đặc điểm với thông tin
- Short-answer Questions – Câu hỏi trả lời ngắn
Mỗi dạng câu hỏi yêu cầu kỹ năng đọc hiểu khác nhau, từ scanning (quét thông tin cụ thể) đến skimming (nắm ý chính) và critical thinking (tư duy phản biện).
IELTS Reading Practice Test
PASSAGE 1 – The Rise of Solar Power: A Global Revolution
Độ khó: Easy (Band 5.0-6.5)
Thời gian đề xuất: 15-17 phút
The world is witnessing a remarkable transformation in how energy is produced and consumed. Over the past decade, solar power has emerged as one of the most promising renewable energy sources, offering a clean alternative to fossil fuels that have dominated energy production for over a century. This shift towards solar energy is not merely an environmental choice but an economic imperative that is reshaping industries and societies worldwide.
Solar panels, also known as photovoltaic (PV) systems, work by converting sunlight directly into electricity through semiconductor materials, typically silicon. When sunlight hits these materials, it generates an electric current that can be used immediately or stored in batteries for later use. The technology, first developed in the 1950s for space applications, has become increasingly efficient and affordable over the years. In fact, the cost of solar panels has plummeted by more than 90% since 2010, making solar energy economically competitive with traditional energy sources in many regions.
Countries around the world are embracing solar technology at different rates and scales. China leads the global market, producing more than 30% of the world’s solar panels and installing vast solar farms across its territory. The Tengger Desert Solar Park, spanning over 1,200 square kilometers, is one of the largest solar installations on Earth, capable of generating enough electricity to power millions of homes. Meanwhile, Germany has become a pioneer in integrating solar power into residential areas, with over two million households equipped with rooftop solar panels. This decentralized approach to energy production allows citizens to generate their own electricity and even sell excess power back to the grid.
The environmental benefits of solar energy are substantial and well-documented. Unlike coal or natural gas power plants, solar panels produce electricity without emitting greenhouse gases such as carbon dioxide or methane. A typical residential solar system can offset approximately three to four tons of carbon emissions annually, equivalent to planting over 100 trees each year. Furthermore, solar energy production requires minimal water consumption, a critical advantage in water-scarce regions where traditional power plants consume vast quantities of water for cooling purposes.
However, solar power is not without its challenges. The intermittent nature of sunlight means that solar panels only generate electricity during daylight hours, and their output varies depending on weather conditions and seasons. This variability creates challenges for grid operators who must balance supply and demand in real-time. To address this issue, energy storage technologies, particularly lithium-ion batteries, are being deployed alongside solar installations. These batteries store excess electricity generated during sunny periods for use during nighttime or cloudy days, ensuring a consistent power supply.
The economic implications of solar energy adoption are equally significant. The solar industry has become a major source of employment, creating jobs in manufacturing, installation, maintenance, and research. According to recent estimates, the solar sector employs over 3.8 million people worldwide, a number that continues to grow as more countries invest in renewable infrastructure. Additionally, solar power can enhance energy security by reducing dependence on imported fossil fuels, insulating economies from volatile global oil and gas markets.
Looking ahead, innovations in solar technology promise to further enhance efficiency and affordability. Researchers are developing next-generation solar cells using perovskite materials that could potentially double the efficiency of current silicon-based panels. Transparent solar panels that can be integrated into windows and building facades are also under development, opening up new possibilities for urban energy generation. As these technologies mature and become commercially available, solar power is expected to play an increasingly central role in the global transition toward sustainable energy systems.
Questions 1-13
Questions 1-5: Multiple Choice
Choose the correct letter, A, B, C, or D.
-
According to the passage, solar panel technology was originally developed for:
- A) residential use
- B) space exploration
- C) industrial applications
- D) military purposes
-
What percentage has the cost of solar panels decreased by since 2010?
- A) Over 50%
- B) Approximately 70%
- C) More than 90%
- D) Nearly 100%
-
Which country is mentioned as producing the highest percentage of solar panels globally?
- A) Germany
- B) United States
- C) Japan
- D) China
-
How much carbon emissions can a typical residential solar system offset annually?
- A) One to two tons
- B) Three to four tons
- C) Five to six tons
- D) Seven to eight tons
-
What is identified as a major challenge for solar power?
- A) High maintenance costs
- B) Limited lifespan
- C) Intermittent electricity generation
- D) Environmental pollution
Questions 6-9: True/False/Not Given
Do the following statements agree with the information given in the passage?
Write:
- TRUE if the statement agrees with the information
- FALSE if the statement contradicts the information
- NOT GIVEN if there is no information on this
- The Tengger Desert Solar Park is the largest solar installation in the world.
- Solar panels require more water than traditional power plants for operation.
- Lithium-ion batteries are used to store excess solar electricity.
- All countries have adopted solar technology at the same rate.
Questions 10-13: Sentence Completion
Complete the sentences below.
Choose NO MORE THAN THREE WORDS from the passage for each answer.
- Photovoltaic systems convert sunlight into electricity using __.
- Germany has pioneered a __ to energy production by installing solar panels on residential rooftops.
- The solar industry provides employment in areas including manufacturing, installation, maintenance, and __.
- Scientists are developing solar cells using __ that could double current efficiency rates.
PASSAGE 2 – Wind Energy: Harnessing Nature’s Power for Carbon Reduction
Độ khó: Medium (Band 6.0-7.5)
Thời gian đề xuất: 18-20 phút
The quest for sustainable energy solutions has positioned wind power as a cornerstone of global decarbonization strategies. As nations grapple with the twin challenges of meeting growing energy demands while reducing carbon emissions, wind energy has emerged as a technologically mature, economically viable, and environmentally benign alternative to fossil fuel-based power generation. The exponential growth of wind capacity worldwide reflects not only technological advances but also fundamental shifts in energy policy and market dynamics.
Wind turbines operate on a deceptively simple principle: kinetic energy from moving air rotates turbine blades, which drive a generator to produce electricity. Modern wind turbines are marvels of engineering, with the largest models featuring blades exceeding 100 meters in length and towers reaching heights of over 150 meters. These colossal structures can generate up to 15 megawatts of power each, enough to supply electricity to thousands of homes. The efficiency of wind turbines has improved dramatically over the decades through aerodynamic optimization, advanced materials, and sophisticated control systems that allow turbines to adjust their orientation and blade pitch in response to changing wind conditions.
The geographical distribution of wind resources varies considerably, creating both opportunities and challenges for deployment. Coastal regions and offshore locations typically experience stronger and more consistent winds compared to inland areas, making them particularly attractive for large-scale wind farms. Offshore wind development has accelerated rapidly in recent years, with Europe leading the way. The Hornsea Project in the United Kingdom, when fully operational, will be the world’s largest offshore wind farm, with a capacity of 1.2 gigawatts—sufficient to power over one million homes. These marine installations, while more expensive to build and maintain than their onshore counterparts, benefit from superior wind conditions and reduced visual and noise impacts on communities.
The environmental credentials of wind energy extend beyond zero direct emissions during operation. Life cycle assessments demonstrate that wind turbines generate far more energy over their operational lifetime—typically 20 to 25 years—than is consumed in their manufacturing, installation, and eventual decommissioning. Studies indicate that a wind turbine can recoup the energy invested in its production within six to eight months of operation. Furthermore, the carbon payback period—the time required to offset the emissions associated with manufacturing—is similarly brief, often less than one year. This favorable energy return on investment makes wind power one of the most carbon-efficient technologies available for electricity generation.
However, the integration of wind energy into existing power grids presents technical and logistical complexities. Wind’s inherent variability—fluctuating with weather patterns and time of day—creates challenges for grid operators who must maintain a constant balance between electricity supply and demand. Sudden drops in wind speed can lead to rapid decreases in power generation, potentially destabilizing the grid if not properly managed. To mitigate these challenges, utilities are employing several strategies. Geographic diversification—distributing wind farms across wide areas—reduces the impact of localized weather variations. Enhanced forecasting methods using satellite data and advanced modeling allow operators to predict wind patterns with increasing accuracy, typically 24 to 48 hours in advance. Additionally, grid-scale energy storage systems, ranging from pumped hydroelectric storage to emerging battery technologies, provide crucial buffering capacity to smooth out fluctuations in wind generation.
The economic case for wind energy has strengthened considerably in recent years. The levelized cost of electricity (LCOE) from wind—a measure that accounts for all costs over a project’s lifetime—has declined by approximately 70% since 2009, making it cost-competitive with or cheaper than fossil fuel alternatives in many markets. This cost reduction results from economies of scale in manufacturing, improved turbine efficiency, and enhanced project development practices. Governments worldwide have supported wind development through various policy mechanisms, including feed-in tariffs, tax incentives, and renewable portfolio standards, though many regions are now transitioning toward market-based auction systems where wind projects compete purely on price.
The social dimensions of wind energy development merit careful consideration. While wind farms generate clean energy and create local employment opportunities, they can also face opposition from communities concerned about visual impacts, noise pollution, and effects on wildlife, particularly birds and bats. Responsible site selection, stakeholder engagement, and adaptive management practices are essential to minimizing conflicts and ensuring sustainable development. Research into wildlife-friendly turbine designs and operational modifications, such as temporarily shutting down turbines during peak migration periods, demonstrates the industry’s commitment to addressing environmental concerns.
Looking toward the future, wind energy is poised for continued expansion. The International Energy Agency projects that wind capacity could increase fivefold by 2050, supplying more than one-third of global electricity demand. Innovations on the horizon include floating offshore wind platforms capable of operating in deeper waters previously inaccessible to fixed-foundation turbines, vertical-axis wind turbines with different design characteristics that may suit urban environments, and artificial intelligence systems that optimize turbine performance in real-time. As these technologies mature and deployment scales up, wind energy will play an increasingly vital role in the global transition toward carbon-neutral energy systems.
Questions 14-26
Questions 14-18: Yes/No/Not Given
Do the following statements agree with the claims of the writer in the passage?
Write:
- YES if the statement agrees with the claims of the writer
- NO if the statement contradicts the claims of the writer
- NOT GIVEN if it is impossible to say what the writer thinks about this
- Modern wind turbines can adjust to changing wind conditions automatically.
- Offshore wind farms are cheaper to construct than onshore installations.
- Wind turbines typically recover the energy used in their production within the first year.
- All communities welcome wind farm developments in their areas.
- Wind energy will completely replace fossil fuels by 2050.
Questions 19-23: Matching Headings
The passage has eight paragraphs. Choose the correct heading for paragraphs B-F from the list of headings below.
List of Headings:
- i. Economic advantages of modern wind technology
- ii. How wind turbines convert air movement to electricity
- iii. The future potential of wind energy globally
- iv. Environmental benefits throughout turbine lifespan
- v. Challenges of maintaining consistent power supply
- vi. Geographic factors influencing wind farm locations
- vii. Government support mechanisms for renewable energy
- viii. Community concerns about wind developments
- Paragraph B
- Paragraph C
- Paragraph D
- Paragraph E
- Paragraph F
Questions 24-26: Summary Completion
Complete the summary below.
Choose NO MORE THAN TWO WORDS from the passage for each answer.
Wind turbines have become increasingly efficient through improvements in aerodynamics, materials, and control systems. The (24) __ of wind resources varies globally, with offshore locations typically offering better conditions. To manage the variability of wind power, operators use strategies including (25) __ across multiple locations and improved forecasting. The (26) __ from wind power has decreased by about 70% since 2009, making it economically competitive.
Tua-bin gió biển khổng lồ sản xuất năng lượng xanh giảm phát thải carbon hiệu quả
PASSAGE 3 – The Complex Dynamics of Green Energy Transition and Carbon Mitigation
Độ khó: Hard (Band 7.0-9.0)
Thời gian đề xuất: 23-25 phút
The paradigm shift toward renewable energy sources represents one of the most consequential transformations in human industrial history, with profound implications for climate change mitigation, economic structures, and geopolitical configurations. While the imperative to reduce carbon emissions has driven unprecedented investment in green technologies, the transition from carbon-intensive energy systems to renewable alternatives is fraught with complexities that extend far beyond technological considerations. Understanding these multifaceted challenges is essential for developing effective strategies that balance environmental objectives with economic realities and social equity concerns.
The relationship between renewable energy deployment and carbon emission reduction, though seemingly straightforward, is mediated by numerous factors that can attenuate or amplify environmental benefits. Life cycle analysis (LCA) provides a comprehensive framework for assessing the true carbon footprint of renewable energy technologies by accounting for emissions across all stages: raw material extraction, manufacturing, transportation, installation, operation, maintenance, and end-of-life disposal. For instance, while solar panels generate zero emissions during operation, their production involves energy-intensive processes including silicon purification and cell fabrication, which currently rely heavily on electricity from fossil fuel sources in many manufacturing regions. Research indicates that the carbon intensity of solar panel manufacturing varies significantly depending on the energy mix of the production location, with panels manufactured in regions with coal-dominated electricity grids having carbon footprints up to three times higher than those produced using renewable electricity.
Similarly, the production of wind turbines requires substantial quantities of steel, concrete, and rare earth elements such as neodymium and dysprosium, which are essential for the powerful permanent magnets used in modern generators. The extraction and refinement of these materials entail considerable energy consumption and environmental disturbance. Moreover, the geographic concentration of rare earth element production—with China controlling approximately 80% of global supply—introduces supply chain vulnerabilities and geopolitical considerations into renewable energy deployment strategies. These upstream emissions, often referred to as “embodied carbon,” must be factored into holistic assessments of renewable energy’s climate benefits. Nonetheless, studies consistently demonstrate that despite these embedded emissions, renewable energy technologies achieve net carbon reductions within months to a few years of operation, delivering substantial climate benefits over their operational lifetimes.
The temporal and spatial intermittency of renewable energy sources poses another layer of complexity in achieving carbon reduction objectives. Solar and wind resources are inherently variable, subject to diurnal cycles, seasonal patterns, and stochastic weather fluctuations. This variability necessitates backup capacity to ensure grid stability and continuous electricity supply. In many energy systems, this backup function has traditionally been fulfilled by dispatchable fossil fuel plants, particularly natural gas facilities, which can ramp up or down relatively quickly in response to fluctuations in renewable generation. This reliance on fossil fuel backup has given rise to concerns about “hidden carbon emissions” associated with renewable energy integration. When renewable output is low, fossil fuel plants must compensate, and in some cases, maintaining fossil fuel capacity in standby mode can result in operational inefficiencies and higher per-unit emissions than continuous operation at optimal capacity.
The concept of “carbon lock-in” further complicates the transition dynamics. Existing fossil fuel infrastructure—power plants, pipelines, refineries, and distribution networks—represents trillions of dollars in sunk capital with remaining operational lifespans that can extend decades into the future. The premature retirement of these assets to accelerate renewable deployment involves substantial economic costs and political resistance from vested interests. Furthermore, the stranded asset risk associated with fossil fuel infrastructure poses financial stability concerns for investors, pension funds, and economies heavily dependent on fossil fuel revenues. Navigating this transition requires careful policy design that provides clear signals for long-term investment decisions while managing the socioeconomic impacts on workers and communities dependent on fossil fuel industries.
Energy storage technologies have emerged as a critical enabling component for high-penetration renewable energy systems. Grid-scale battery storage, primarily lithium-ion technology adapted from electric vehicle applications, has experienced dramatic cost reductions and performance improvements, making it increasingly viable for load shifting and frequency regulation applications. However, current storage technologies face limitations in duration—most batteries can discharge for only a few hours—which is insufficient for addressing multi-day or seasonal renewable generation deficits. Long-duration energy storage solutions, including advanced battery chemistries, compressed air energy storage, hydrogen production and fuel cells, and thermal energy storage, are under development but remain at various stages of commercial maturity. The scalability and cost-effectiveness of these technologies will be pivotal determinants of how deeply renewable energy can penetrate electricity systems while maintaining reliability and affordability.
The integration of renewable energy also catalyzes systemic changes in electricity grid architecture and operation. Traditional power systems were designed around centralized generation from large fossil fuel and nuclear plants, with electricity flowing unidirectionally from generators to consumers. The proliferation of distributed renewable generation—rooftop solar panels, small wind turbines, and community energy projects—is transforming grids into bidirectional, multi-node networks where consumers can simultaneously function as producers, or “prosumers.” This decentralization offers potential benefits including enhanced resilience, reduced transmission losses, and democratized energy access, but also introduces technical challenges related to voltage regulation, protection system coordination, and grid management complexity. Smart grid technologies, incorporating advanced sensors, communication networks, and automated control systems, are essential for orchestrating these increasingly complex energy systems.
From a policy perspective, the design of regulatory frameworks and market mechanisms profoundly influences the pace and efficiency of green energy transition. Carbon pricing instruments—whether through carbon taxes or cap-and-trade systems—create economic incentives for emissions reduction by internalizing the social cost of carbon into energy prices. However, the political feasibility of carbon pricing varies considerably across jurisdictions, with concerns about competitiveness impacts and distributional effects often constraining the stringency of such policies. Alternative or complementary approaches include renewable energy mandates, feed-in tariffs, tax credits, and direct public investment in clean energy infrastructure. The optimal policy mix depends on specific national circumstances, including energy resource endowments, economic structure, political institutions, and societal preferences regarding environmental protection versus economic growth trade-offs.
The global dimension of the renewable energy transition introduces additional layers of complexity. Climate change is a quintessential global commons problem, where emissions from any source contribute to atmospheric greenhouse gas concentrations regardless of origin, while the benefits of mitigation efforts are shared globally. This creates collective action challenges and free-rider incentives that have historically hampered international cooperation. Moreover, the capacity to invest in and deploy renewable energy technologies is highly uneven across countries, reflecting disparities in economic development, technical capabilities, and access to finance. Climate justice considerations emphasize the historical responsibility of developed nations for cumulative emissions and advocate for financial and technological support to enable developing countries to pursue low-carbon development pathways without sacrificing economic growth and poverty alleviation objectives. Mechanisms such as the Green Climate Fund aim to channel resources toward climate action in developing countries, though funding levels remain contentious and far below estimated needs.
In conclusion, while renewable energy technologies offer immense potential for reducing carbon emissions and mitigating climate change, realizing this potential requires navigating a complex web of technical, economic, political, and social challenges. The transition involves not merely substituting one energy source for another but fundamentally restructuring energy systems, reforming regulatory frameworks, mobilizing unprecedented investment, and addressing equity concerns across multiple scales from local communities to the global system. Success will demand integrated approaches that combine technological innovation with thoughtful policy design, international cooperation, and sustained societal commitment to achieving a sustainable, low-carbon future.
Questions 27-40
Questions 27-31: Multiple Choice
Choose the correct letter, A, B, C, or D.
-
According to the passage, life cycle analysis of solar panels reveals that:
- A) They produce significant emissions throughout their operational lifetime
- B) Manufacturing emissions vary based on the local electricity grid composition
- C) They never achieve net carbon reductions
- D) They have identical carbon footprints regardless of production location
-
The passage suggests that rare earth elements used in wind turbines are primarily controlled by:
- A) European nations
- B) The United States
- C) China
- D) Multiple countries equally
-
The term “carbon lock-in” refers to:
- A) The trapping of carbon dioxide underground
- B) Economic and political barriers to retiring existing fossil fuel infrastructure
- C) A method of storing renewable energy
- D) International agreements on emission limits
-
Current grid-scale battery storage technology is limited primarily by:
- A) High manufacturing costs
- B) Environmental concerns
- C) Short discharge duration
- D) Limited availability of materials
-
According to the passage, the shift to distributed renewable generation transforms electricity grids into:
- A) Less efficient systems
- B) Unidirectional networks
- C) Bidirectional, multi-node networks
- D) Centralized power hubs
Questions 32-36: Matching Features
Match each concept (32-36) with the correct description (A-H) from the list below.
Write the correct letter, A-H, next to questions 32-36.
- Embodied carbon __
- Prosumers __
- Smart grid technologies __
- Carbon pricing instruments __
- Green Climate Fund __
List of Descriptions:
- A) Economic tools that internalize environmental costs into energy prices
- B) Consumers who also produce electricity
- C) Emissions from manufacturing and material extraction
- D) International mechanism for financing climate action in developing nations
- E) Storage systems for excess renewable energy
- F) Advanced systems for managing complex electricity networks
- G) Taxes on renewable energy production
- H) Subsidies for fossil fuel companies
Questions 37-40: Short-answer Questions
Answer the questions below.
Choose NO MORE THAN THREE WORDS AND/OR A NUMBER from the passage for each answer.
- What percentage of global rare earth element supply does China control?
- Within what timeframe do renewable energy technologies typically achieve net carbon reductions?
- What type of fossil fuel plants are commonly used to provide backup capacity for renewable energy?
- What is the term used to describe someone who both consumes and produces energy?
Hệ thống lưới điện thông minh tích hợp năng lượng tái tạo và giảm phát thải carbon
Answer Keys – Đáp Án
PASSAGE 1: Questions 1-13
- B
- C
- D
- B
- C
- NOT GIVEN
- FALSE
- TRUE
- FALSE
- semiconductor materials
- decentralized approach
- research
- perovskite materials
PASSAGE 2: Questions 14-26
- YES
- NO
- NO
- NO
- NOT GIVEN
- ii
- vi
- iv
- v
- i
- geographical distribution
- geographic diversification
- levelized cost
PASSAGE 3: Questions 27-40
- B
- C
- B
- C
- C
- C
- B
- F
- A
- D
- approximately 80% / 80%
- months to years / a few years
- natural gas (facilities/plants)
- prosumers
Giải Thích Đáp Án Chi Tiết
Passage 1 – Giải Thích
Câu 1: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: solar panel technology, originally developed for
- Vị trí trong bài: Đoạn 2, dòng 6-7
- Giải thích: Bài viết nói rõ “The technology, first developed in the 1950s for space applications” – công nghệ được phát triển lần đầu cho các ứng dụng không gian. Đây là paraphrase của “space exploration” trong đáp án B.
Câu 2: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: percentage, cost, decreased, 2010
- Vị trí trong bài: Đoạn 2, dòng 7-8
- Giải thích: Câu “the cost of solar panels has plummeted by more than 90% since 2010” chỉ ra giá đã giảm hơn 90%.
Câu 5: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: major challenge, solar power
- Vị trí trong bài: Đoạn 5, dòng 1-2
- Giải thích: Đoạn 5 bắt đầu với “However, solar power is not without its challenges. The intermittent nature of sunlight…” – chỉ ra rằng tính gián đoạn (intermittent electricity generation) là thách thức chính.
Câu 6: NOT GIVEN
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: Tengger Desert Solar Park, largest
- Vị trí trong bài: Đoạn 3
- Giải thích: Bài viết chỉ nói đây là “one of the largest” (một trong những cái lớn nhất) chứ không khẳng định là lớn nhất thế giới.
Câu 7: FALSE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: solar panels, water, traditional power plants
- Vị trí trong bài: Đoạn 4, dòng 4-5
- Giải thích: Bài viết nói “solar energy production requires minimal water consumption” trong khi các nhà máy truyền thống “consume vast quantities of water” – điều này trái ngược với câu nói trong đề.
Câu 10: semiconductor materials
- Dạng câu hỏi: Sentence Completion
- Từ khóa: photovoltaic systems, convert sunlight
- Vị trí trong bài: Đoạn 2, dòng 1-2
- Giải thích: Câu gốc: “Solar panels, also known as photovoltaic (PV) systems, work by converting sunlight directly into electricity through semiconductor materials.”
Câu 13: perovskite materials
- Dạng câu hỏi: Sentence Completion
- Từ khóa: scientists, developing, solar cells, double efficiency
- Vị trí trong bài: Đoạn 7, dòng 2-4
- Giải thích: Bài viết đề cập “Researchers are developing next-generation solar cells using perovskite materials that could potentially double the efficiency.”
Passage 2 – Giải Thích
Câu 14: YES
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: wind turbines, adjust, changing wind conditions, automatically
- Vị trí trong bài: Đoạn B, dòng 5-7
- Giải thích: Bài viết nói về “sophisticated control systems that allow turbines to adjust their orientation and blade pitch in response to changing wind conditions” – hệ thống điều khiển cho phép tua-bin tự động điều chỉnh theo điều kiện gió.
Câu 15: NO
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: offshore wind farms, cheaper, onshore
- Vị trí trong bài: Đoạn C, dòng 7-8
- Giải thích: Câu “These marine installations, while more expensive to build and maintain than their onshore counterparts” chỉ ra rằng offshore đắt hơn, trái ngược với câu hỏi.
Câu 16: NO
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: wind turbines, recover energy, first year
- Vị trí trong bài: Đoạn D, dòng 3-4
- Giải thích: Bài viết nói “a wind turbine can recoup the energy invested in its production within six to eight months” – trong 6-8 tháng, không phải một năm đầy đủ.
Câu 19: ii (How wind turbines convert air movement to electricity)
- Vị trí: Paragraph B
- Giải thích: Đoạn B mô tả chi tiết cách tua-bin gió hoạt động: “Wind turbines operate on a deceptively simple principle: kinetic energy from moving air rotates turbine blades, which drive a generator to produce electricity.”
Câu 20: vi (Geographic factors influencing wind farm locations)
- Vị trí: Paragraph C
- Giải thích: Đoạn C thảo luận về phân bố địa lý của nguồn gió: “The geographical distribution of wind resources varies considerably” và đề cập đến vị trí ven biển, ngoài khơi.
Câu 24: geographical distribution
- Dạng câu hỏi: Summary Completion
- Từ khóa: wind resources, varies globally
- Vị trí trong bài: Đoạn C, dòng 1
- Giải thích: Câu gốc: “The geographical distribution of wind resources varies considerably.”
Câu 26: levelized cost
- Dạng câu hỏi: Summary Completion
- Từ khóa: decreased, 70%, 2009, economically competitive
- Vị trí trong bài: Đoạn F, dòng 2-3
- Giải thích: Bài viết nói “The levelized cost of electricity (LCOE) from wind… has declined by approximately 70% since 2009.”
Passage 3 – Giải Thích
Câu 27: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: life cycle analysis, solar panels, reveals
- Vị trí trong bài: Đoạn 2, dòng 6-9
- Giải thích: Bài viết chỉ ra “the carbon intensity of solar panel manufacturing varies significantly depending on the energy mix of the production location” – cường độ carbon thay đổi theo nguồn năng lượng tại nơi sản xuất.
Câu 28: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: rare earth elements, wind turbines, controlled by
- Vị trí trong bài: Đoạn 3, dòng 3-4
- Giải thích: Câu “China controlling approximately 80% of global supply” nói rõ Trung Quốc kiểm soát khoảng 80% nguồn cung toàn cầu.
Câu 29: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: carbon lock-in, refers to
- Vị trí trong bài: Đoạn 5, dòng 1-4
- Giải thích: Khái niệm được giải thích là cơ sở hạ tầng nhiên liệu hóa thạch hiện có đại diện cho vốn đầu tư khổng lồ với tuổi thọ còn lại kéo dài hàng thập kỷ, tạo ra chi phí kinh tế và kháng cự chính trị.
Câu 30: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: grid-scale battery storage, limited
- Vị trí trong bài: Đoạn 6, dòng 3-5
- Giải thích: Bài viết nói “current storage technologies face limitations in duration—most batteries can discharge for only a few hours” – giới hạn về thời gian phóng điện.
Câu 32: C (Emissions from manufacturing and material extraction)
- Giải thích: Đoạn 3, dòng cuối đề cập “upstream emissions, often referred to as ’embodied carbon'” – phát thải từ sản xuất và khai thác nguyên liệu.
Câu 33: B (Consumers who also produce electricity)
- Giải thích: Đoạn 7 giải thích “where consumers can simultaneously function as producers, or ‘prosumers.'”
Câu 37: approximately 80% / 80%
- Dạng câu hỏi: Short-answer Question
- Từ khóa: China, global rare earth element supply
- Vị trí trong bài: Đoạn 3, dòng 3-4
- Giải thích: “China controlling approximately 80% of global supply”
Câu 40: prosumers
- Dạng câu hỏi: Short-answer Question
- Từ khóa: consumes and produces energy
- Vị trí trong bài: Đoạn 7, dòng 4-5
- Giải thích: Bài viết định nghĩa “prosumers” là người vừa tiêu thụ vừa sản xuất năng lượng.
Từ Vựng Quan Trọng Theo Passage
Passage 1 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| photovoltaic | adj | /ˌfəʊtəʊvɒlˈteɪɪk/ | quang điện, quang thế | photovoltaic (PV) systems | photovoltaic cells/panels |
| semiconductor | n | /ˌsemikənˈdʌktə(r)/ | chất bán dẫn | semiconductor materials, typically silicon | semiconductor technology/industry |
| plummeted | v | /ˈplʌmɪtɪd/ | giảm mạnh, lao dốc | the cost has plummeted by more than 90% | prices/costs plummet |
| decentralized | adj | /diːˈsentrəlaɪzd/ | phi tập trung | decentralized approach to energy production | decentralized system/network |
| offset | v | /ˈɒfset/ | bù đắp, bù trừ | offset approximately three to four tons of carbon | offset emissions/costs |
| intermittent | adj | /ˌɪntəˈmɪtənt/ | gián đoạn, không liên tục | the intermittent nature of sunlight | intermittent power/supply |
| variability | n | /ˌveəriəˈbɪləti/ | tính biến đổi, không ổn định | their output variability | climate/weather variability |
| insulating | v | /ˈɪnsjuleɪtɪŋ/ | cách ly, bảo vệ | insulating economies from volatile markets | insulate from/against |
| perovskite | n | /pəˈrɒvskaɪt/ | perovskite (vật liệu mới) | perovskite materials | perovskite solar cells |
| imperative | n | /ɪmˈperətɪv/ | điều cấp thiết, bắt buộc | an economic imperative | moral/strategic imperative |
| fossil fuels | n | /ˈfɒsl fjuːəlz/ | nhiên liệu hóa thạch | clean alternative to fossil fuels | burn/use fossil fuels |
| embrace | v | /ɪmˈbreɪs/ | chấp nhận, ủng hộ | countries are embracing solar technology | embrace change/technology |
Passage 2 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| decarbonization | n | /diːˌkɑːbənaɪˈzeɪʃn/ | khử carbon | global decarbonization strategies | decarbonization targets/pathways |
| grapple with | v phrase | /ˈɡræpl wɪð/ | vật lộn, đương đầu với | nations grapple with twin challenges | grapple with problems/issues |
| viable | adj | /ˈvaɪəbl/ | khả thi, có thể thực hiện | economically viable alternative | viable option/solution |
| colossal | adj | /kəˈlɒsl/ | khổng lồ, to lớn | colossal structures | colossal scale/size |
| aerodynamic | adj | /ˌeərəʊdaɪˈnæmɪk/ | khí động học | aerodynamic optimization | aerodynamic design/efficiency |
| credentials | n | /krɪˈdenʃlz/ | uy tín, thành tích | environmental credentials | green/sustainability credentials |
| recoup | v | /rɪˈkuːp/ | thu hồi, hoàn vốn | recoup the energy invested | recoup costs/losses/investment |
| mitigate | v | /ˈmɪtɪɡeɪt/ | giảm nhẹ, làm dịu | mitigate these challenges | mitigate risks/impacts |
| levelized cost | n | /ˈlevəlaɪzd kɒst/ | chi phí cân bằng | levelized cost of electricity (LCOE) | levelized cost analysis |
| feed-in tariffs | n | /fiːd ɪn ˈtærɪfs/ | biểu giá mua điện ưu đãi | feed-in tariffs, tax incentives | feed-in tariff scheme |
| stakeholder | n | /ˈsteɪkhəʊldə(r)/ | bên liên quan | stakeholder engagement | key/major stakeholders |
| poised for | adj phrase | /pɔɪzd fɔː(r)/ | sẵn sàng cho | poised for continued expansion | poised for growth/success |
| deployment | n | /dɪˈplɔɪmənt/ | triển khai, phát triển | responsible site selection and deployment | rapid deployment |
| buffering capacity | n | /ˈbʌfərɪŋ kəˈpæsəti/ | khả năng đệm | provide crucial buffering capacity | buffering system |
| economies of scale | n phrase | /ɪˈkɒnəmiz əv skeɪl/ | lợi thế kinh tế theo quy mô | economies of scale in manufacturing | achieve economies of scale |
Passage 3 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| paradigm shift | n phrase | /ˈpærədaɪm ʃɪft/ | thay đổi mô hình, chuyển dịch cơ bản | paradigm shift toward renewable energy | undergo a paradigm shift |
| consequential | adj | /ˌkɒnsɪˈkwenʃl/ | quan trọng, có hậu quả lớn | most consequential transformations | consequential decision/change |
| geopolitical | adj | /ˌdʒiːəʊpəˈlɪtɪkl/ | địa chính trị | geopolitical configurations | geopolitical tensions/factors |
| fraught with | adj phrase | /frɔːt wɪð/ | đầy rẫy, chứa đựng nhiều | fraught with complexities | fraught with danger/difficulty |
| attenuate | v | /əˈtenjueɪt/ | làm yếu đi, giảm bớt | attenuate or amplify benefits | attenuate the effect/impact |
| embodied carbon | n phrase | /ɪmˈbɒdid ˈkɑːbən/ | carbon nội tại | upstream emissions, or embodied carbon | embodied carbon footprint |
| intermittency | n | /ˌɪntəˈmɪtənsi/ | tính gián đoạn | temporal and spatial intermittency | address intermittency |
| stochastic | adj | /stəˈkæstɪk/ | ngẫu nhiên | stochastic weather fluctuations | stochastic process/model |
| dispatchable | adj | /dɪˈspætʃəbl/ | có thể điều phối | dispatchable fossil fuel plants | dispatchable power/generation |
| stranded assets | n phrase | /ˈstrændɪd ˈæsets/ | tài sản bị mắc kẹt | stranded asset risk | stranded asset problem |
| prosumers | n | /prəʊˈsjuːməz/ | người vừa sản xuất vừa tiêu dùng | consumers function as prosumers | energy prosumers |
| quintessential | adj | /ˌkwɪntɪˈsenʃl/ | tinh túy, điển hình | quintessential global commons problem | quintessential example |
| collective action | n phrase | /kəˈlektɪv ˈækʃn/ | hành động tập thể | collective action challenges | collective action problem |
| free-rider | n | /friː ˈraɪdə(r)/ | kẻ ăn theo, hưởng lợi không đóng góp | free-rider incentives | free-rider problem |
| carbon intensity | n phrase | /ˈkɑːbən ɪnˈtensəti/ | cường độ carbon | carbon intensity of manufacturing | reduce carbon intensity |
| life cycle analysis | n phrase | /laɪf ˈsaɪkl əˈnæləsɪs/ | phân tích vòng đời | life cycle analysis (LCA) | conduct life cycle analysis |
| resilience | n | /rɪˈzɪliəns/ | khả năng phục hồi, tính bền vững | enhanced resilience | build/improve resilience |
| scalability | n | /ˌskeɪləˈbɪləti/ | khả năng mở rộng quy mô | scalability and cost-effectiveness | assess scalability |
Kết bài
Chủ đề “The Role Of Green Energy In Reducing Carbon Emissions” không chỉ là một trong những chủ đề then chốt trong kỳ thi IELTS Reading mà còn phản ánh xu hướng toàn cầu về năng lượng bền vững và bảo vệ môi trường. Qua bộ đề thi mẫu này, bạn đã được trải nghiệm đầy đủ 3 passages với độ khó tăng dần – từ cơ bản đến nâng cao – cùng với 40 câu hỏi đa dạng bao gồm Multiple Choice, True/False/Not Given, Yes/No/Not Given, Matching Headings, Sentence Completion, Summary Completion, Matching Features và Short-answer Questions.
Các passages đã cung cấp kiến thức chuyên sâu về năng lượng mặt trời, năng lượng gió và những phức tạp trong quá trình chuyển đổi năng lượng xanh toàn cầu. Đáp án chi tiết kèm giải thích đã chỉ ra cách xác định thông tin trong bài, kỹ thuật paraphrase, và chiến lược làm bài hiệu quả cho từng dạng câu hỏi. Bộ từ vựng phân loại theo từng passage sẽ giúp bạn xây dựng vốn từ vựng học thuật quan trọng không chỉ cho phần Reading mà còn cho cả Writing và Speaking.
Để đạt hiệu quả tối ưu, hãy luyện tập bộ đề này nhiều lần, phân tích kỹ các câu trả lời sai để hiểu rõ lỗi của mình, và ghi nhớ các từ vựng quan trọng cùng với collocation của chúng. Đối với những học viên đang chuẩn bị về How climate change is impacting weather patterns, bài tập này sẽ cung cấp nền tảng vững chắc. Những khía cạnh chính sách năng lượng được đề cập cũng có liên hệ mật thiết với Impacts of renewable energy on national energy policies, giúp bạn có cái nhìn toàn diện hơn về chủ đề này.
Hãy nhớ rằng, thành công trong IELTS Reading không chỉ đến từ việc biết nhiều từ vựng mà còn từ khả năng quản lý thời gian, kỹ năng scanning-skimming, và sự kiên nhẫn trong việc đối chiếu thông tin giữa câu hỏi và đoạn văn. Chúc bạn ôn tập hiệu quả và đạt được band điểm mong muốn trong kỳ thi IELTS sắp tới!