IELTS Reading: Vai trò của thám hiểm vũ trụ trong nguồn năng lượng tương lai – Đề thi mẫu có đáp án chi tiết

Mở bài

Chủ đề về thám hiểm vũ trụ và năng lượng tương lai là một trong những đề tài khoa học thường xuyên xuất hiện trong bài thi IELTS Reading, đặc biệt tại các phần thi có độ khó từ trung bình đến cao. Với sự phát triển không ngừng của công nghệ không gian và nhu cầu ngày càng lớn về các nguồn năng lượng bền vững, việc hiểu rõ vai trò của thám hiểm vũ trụ trong việc cung cấp năng lượng cho tương lai không chỉ giúp bạn mở rộng kiến thức mà còn là chìa khóa để đạt band điểm cao.

Trong bài viết này, bạn sẽ nhận được một đề thi IELTS Reading hoàn chỉnh với ba passages có độ khó tăng dần (Easy → Medium → Hard), bao gồm 40 câu hỏi đa dạng giống như trong kỳ thi thật. Mỗi passage được thiết kế dựa trên cấu trúc chuẩn Cambridge IELTS, kèm theo đáp án chi tiết và giải thích cụ thể giúp bạn hiểu rõ phương pháp làm bài. Ngoài ra, bạn còn được trang bị bộ từ vựng chuyên ngành quan trọng với phiên âm, ví dụ và cách sử dụng thực tế.

Đề thi này phù hợp cho học viên có trình độ từ band 5.0 trở lên, đặc biệt hữu ích cho những ai đang hướng tới mục tiêu band 6.5-8.0 và cần làm quen với các chủ đề khoa học phức tạp.

1. Hướng dẫn làm bài IELTS Reading

Tổng Quan Về IELTS Reading Test

IELTS Reading test bao gồm 3 passages với tổng cộng 40 câu hỏi cần hoàn thành trong 60 phút. Độ khó của các passages tăng dần từ passage 1 đến passage 3, đòi hỏi kỹ năng đọc hiểu từ cơ bản đến nâng cao.

Phân bổ thời gian khuyến nghị:

  • Passage 1: 15-17 phút (độ khó dễ, giúp bạn khởi động tốt)
  • Passage 2: 18-20 phút (độ khó trung bình, cần tập trung cao hơn)
  • Passage 3: 23-25 phút (độ khó cao nhất, yêu cầu phân tích sâu)

Lưu ý quan trọng: Không có thời gian riêng để chép đáp án vào Answer Sheet, vì vậy bạn nên ghi đáp án trực tiếp trong khi làm bài.

Các Dạng Câu Hỏi Trong Đề Này

Đề thi mẫu này bao gồm các dạng câu hỏi phổ biến nhất trong IELTS Reading:

  1. Multiple Choice – Câu hỏi trắc nghiệm nhiều lựa chọn
  2. True/False/Not Given – Xác định thông tin đúng, sai hoặc không được đề cập
  3. Yes/No/Not Given – Xác định quan điểm của tác giả
  4. Matching Headings – Nối tiêu đề với đoạn văn
  5. Summary Completion – Hoàn thành đoạn tóm tắt
  6. Sentence Completion – Hoàn thành câu
  7. Short-answer Questions – Trả lời câu hỏi ngắn

2. IELTS Reading Practice Test

PASSAGE 1 – The Dawn of Space-Based Solar Power

Độ khó: Easy (Band 5.0-6.5)

Thời gian đề xuất: 15-17 phút

The concept of harnessing solar energy from space has captivated scientists and engineers for decades. Unlike ground-based solar panels, which are affected by weather conditions, nighttime, and atmospheric interference, space-based solar power (SBSP) systems could potentially provide continuous, clean energy to Earth. The idea was first proposed in 1968 by Dr. Peter Glaser, an American engineer who envisioned large satellites equipped with solar panels orbiting Earth and transmitting energy wirelessly to receiving stations on the ground.

The fundamental advantage of space solar power lies in its consistency. In space, solar panels would receive sunlight 24 hours a day without interruption from clouds, rain, or the day-night cycle. This means that a space-based solar array could generate up to ten times more energy than a similar installation on Earth’s surface. Moreover, the intensity of sunlight in space is significantly higher because there is no atmospheric absorption or scattering. Scientists estimate that solar radiation in space is approximately 144% stronger than what reaches Earth’s surface, making space an ideal location for solar energy collection.

The basic architecture of an SBSP system involves three main components. First, there are the solar collectors in space, which could be enormous structures spanning several kilometers. These collectors would use either photovoltaic cells (similar to traditional solar panels) or mirrors to concentrate sunlight. Second, there is a wireless power transmission system that converts the collected solar energy into microwaves or laser beams. Finally, on Earth’s surface, there would be receiving antennas called rectennas, which would convert the transmitted energy back into electricity for distribution through power grids.

Several countries have shown serious interest in developing SBSP technology. Japan has been at the forefront of this research since the early 2000s. The Japan Aerospace Exploration Agency (JAXA) has conducted numerous experiments and aims to have a commercial SBSP system operational by the 2030s. China has also announced ambitious plans, with proposals to launch a small-scale testing station into orbit by 2025 and a larger commercial station by 2050. The United States, despite being the birthplace of the concept, has had intermittent interest, though several private companies are now pursuing SBSP projects with renewed enthusiasm.

One of the most significant advantages of space solar power is its environmental friendliness. Unlike fossil fuels, SBSP produces no greenhouse gas emissions and requires no fuel supply. Once deployed, these systems could operate for decades with minimal maintenance. Additionally, because the energy would be transmitted to Earth via microwave or laser beams, which can pass through clouds, the receiving stations could be located almost anywhere on the planet. This could be particularly beneficial for remote areas or regions with limited access to traditional power infrastructure.

However, SBSP technology faces several substantial challenges. The most obvious is cost. Launching the massive structures required for a functioning SBSP system would be extremely expensive with current rocket technology. Estimates suggest that building and deploying a single commercial-scale space solar power station could cost between 15 and 20 billion dollars. Another challenge is the efficiency of wireless power transmission. Current technology can only achieve transmission efficiencies of around 40-50%, meaning that more than half of the collected energy would be lost during transmission to Earth.

There are also concerns about the safety of transmitting high-powered microwave or laser beams through the atmosphere. While scientists assure that the energy density would be low enough to be safe for birds, aircraft, and people, public perception and regulatory approval might be difficult to obtain. Furthermore, the technology for assembling and maintaining massive structures in space is still in its early stages. Robotic construction and repair systems would need to be developed to make SBSP economically viable.

Despite these obstacles, technological advances are making space solar power more feasible. The dramatic reduction in launch costs, thanks to reusable rockets developed by companies like SpaceX, has made the economics more attractive. Additionally, improvements in solar panel efficiency and wireless power transmission technology continue to narrow the gap between concept and reality. Some experts believe that SBSP could become competitive with terrestrial renewable energy sources within the next two decades if development continues at the current pace.

Questions 1-6

Do the following statements agree with the information given in Passage 1?

Write:

  • TRUE if the statement agrees with the information
  • FALSE if the statement contradicts the information
  • NOT GIVEN if there is no information on this
  1. Space-based solar panels can collect energy continuously without being affected by weather.
  2. Solar radiation in space is more than twice as strong as sunlight on Earth’s surface.
  3. The concept of space-based solar power was first introduced by a Japanese scientist.
  4. China plans to launch a full commercial SBSP station before 2030.
  5. Wireless power transmission currently achieves about 40-50% efficiency.
  6. Most scientists agree that microwave transmission from space poses no risk to wildlife.

Questions 7-10

Complete the sentences below.

Choose NO MORE THAN TWO WORDS from the passage for each answer.

  1. The receiving antennas on Earth that convert transmitted energy back into electricity are called __.
  2. Space solar power produces no __ and needs no fuel supply once it is deployed.
  3. The cost of building one commercial-scale space solar power station is estimated at between 15 and 20 billion __.
  4. The development of __ has significantly reduced the cost of launching materials into space.

Questions 11-13

Choose the correct letter, A, B, C, or D.

  1. According to the passage, space-based solar arrays could generate:

    • A. twice as much energy as Earth-based systems
    • B. five times more energy than ground installations
    • C. up to ten times more energy than similar Earth installations
    • D. exactly ten times more energy than any ground system
  2. What is mentioned as a potential benefit of SBSP for remote areas?

    • A. Lower installation costs
    • B. Energy transmission that can reach almost any location
    • C. No need for receiving equipment
    • D. Immediate implementation
  3. The passage suggests that SBSP technology might become competitive with other renewable energy sources:

    • A. within five years
    • B. by 2025
    • C. within the next two decades
    • D. by the end of the century

PASSAGE 2 – Mining the Moon: Helium-3 and the Future of Fusion Energy

Độ khó: Medium (Band 6.0-7.5)

Thời gian đề xuất: 18-20 phút

As humanity confronts the dual challenges of depleting fossil fuel reserves and escalating climate change, the search for clean, abundant energy sources has intensified dramatically. One of the most promising yet technically challenging solutions lies not on Earth, but on its closest celestial neighbor: the Moon. Scientists have long recognized that the lunar surface contains substantial quantities of helium-3 (³He), an isotope that could potentially fuel fusion reactors and provide virtually limitless clean energy for centuries to come.

Helium-3 is an exceptionally rare element on Earth, with estimates suggesting that the entire planet contains less than 500 kilograms of this valuable isotope. The scarcity exists because Earth’s magnetic field deflects most of the solar wind particles that carry helium-3. The Moon, however, lacks such protection, and over billions of years, solar wind bombardment has implanted an estimated one million metric tons of helium-3 into the lunar regolith – the layer of loose rock and dust covering the Moon’s surface. This concentration, while still measured in parts per billion, is orders of magnitude higher than anything found on Earth and represents an energy reserve of staggering proportions.

The appeal of helium-3 as a fuel source stems from its potential use in nuclear fusion reactions. Unlike current nuclear fission power plants, which split heavy atoms and produce dangerous radioactive waste, fusion reactors would combine light atoms to release energy. The specific fusion reaction involving helium-3 and deuterium (a hydrogen isotope readily available on Earth) produces protons and helium-4, with no neutron radiation – a significant advantage over other fusion reactions. This means that helium-3 fusion would generate minimal radioactive byproducts, making it far cleaner and safer than conventional nuclear power. Theoretically, a single Space Shuttle cargo bay full of helium-3 – approximately 25 tons – could power the entire United States for one year.

However, the vision of lunar helium-3 mining faces formidable obstacles, both technological and economic. First and foremost is the challenge of extraction. The helium-3 is not concentrated in deposits like terrestrial minerals but is dispersed throughout the lunar soil at extremely low concentrations – typically around 10-20 parts per billion. To extract meaningful quantities, enormous volumes of regolith would need to be excavated, heated to temperatures exceeding 800 degrees Celsius, and processed. Scientists estimate that producing one kilogram of helium-3 would require mining and processing approximately 150,000 metric tons of lunar soil, an operation requiring massive infrastructure and energy input on the Moon itself.

The role of green energy in reducing carbon emissions đã chỉ ra rằng việc chuyển đổi sang các nguồn năng lượng sạch đòi hỏi đầu tư công nghệ đáng kể, và điều này cũng đúng với khai thác helium-3.

The second major challenge involves transportation. Even with advances in space launch technology, the cost of transporting mining equipment to the Moon and returning extracted helium-3 to Earth remains prohibitively expensive. Current estimates suggest that establishing a functional lunar mining operation would require an initial investment exceeding 100 billion dollars. Furthermore, the logistics of maintaining a permanent or semi-permanent human presence on the Moon, or alternatively developing fully autonomous mining systems, presents engineering challenges that have yet to be fully resolved.

Perhaps the most significant hurdle, however, is that controlled nuclear fusion itself remains an elusive goal. Despite decades of research and billions of dollars in investment, scientists have not yet created a fusion reactor that produces more energy than it consumes. The International Thermonuclear Experimental Reactor (ITER), currently under construction in France, aims to demonstrate the feasibility of fusion power, but even if successful, commercial fusion reactors are unlikely to exist before the 2050s. Until fusion technology matures, the practical value of lunar helium-3 remains theoretical, making it difficult to justify the enormous expenditure required to begin mining operations.

Nevertheless, several nations are pursuing lunar exploration programs with helium-3 extraction as a long-term objective. China’s lunar exploration program has explicitly mentioned helium-3 mining as a goal, and the country has conducted extensive research into extraction techniques. India’s space agency has also expressed interest, as have several private companies that view the Moon as a potential source of valuable resources. Russia and the United States, both of which have announced plans to establish lunar bases, have included resource extraction in their stated objectives.

Proponents of lunar helium-3 mining argue that the technical challenges, while substantial, are not insurmountable and that the potential rewards justify the investment. They point out that many technologies considered impossible a few decades ago – such as reusable rockets and autonomous vehicles – are now commonplace. They also emphasize that helium-3 mining would create numerous spin-off technologies and industries, potentially revolutionizing space exploration and establishing a permanent human presence beyond Earth. Moreover, the environmental benefits of clean fusion energy could prove invaluable in combating climate change and meeting humanity’s growing energy demands without further damaging the planet.

Critics, however, question whether the resources devoted to lunar mining might be better spent on more immediately viable renewable energy technologies such as advanced solar, wind, and energy storage systems. They note that the timeline for helium-3 fusion power is measured in decades at best, whereas these terrestrial alternatives are already operational and improving rapidly. The debate reflects broader questions about how humanity should allocate resources in addressing the energy and climate crisis: should we invest in revolutionary but distant solutions, or focus on incrementally improving existing technologies?

Mô phỏng khai thác helium-3 trên bề mặt Mặt Trăng cho năng lượng tương laiMô phỏng khai thác helium-3 trên bề mặt Mặt Trăng cho năng lượng tương lai

Questions 14-18

Choose the correct letter, A, B, C, or D.

  1. According to the passage, why is helium-3 rare on Earth?

    • A. It has been completely consumed by fusion reactions
    • B. Earth’s magnetic field blocks most solar wind carrying helium-3
    • C. The Moon has captured most of the helium-3 in the solar system
    • D. It naturally decays into other elements in Earth’s atmosphere
  2. What makes helium-3 fusion particularly attractive compared to other nuclear reactions?

    • A. It requires less energy to initiate
    • B. It produces minimal radioactive byproducts
    • C. It is easier to control than fission
    • D. It uses fuel that is abundant on Earth
  3. The passage indicates that extracting one kilogram of helium-3 would require processing:

    • A. approximately 10-20 tons of lunar soil
    • B. around 25,000 metric tons of regolith
    • C. roughly 150,000 metric tons of lunar material
    • D. over one million metric tons of moon dust
  4. What does the passage suggest about commercial fusion reactors?

    • A. They currently exist but are not economically viable
    • B. They are unlikely to be available before the 2050s
    • C. They will be operational within the next decade
    • D. They have been abandoned in favor of other technologies
  5. Critics of lunar helium-3 mining believe that resources would be better spent on:

    • A. research into different types of fusion reactions
    • B. exploring other celestial bodies for resources
    • C. improving currently available renewable energy technologies
    • D. developing new fossil fuel extraction methods

Questions 19-23

Complete the summary below.

Choose NO MORE THAN TWO WORDS from the passage for each answer.

The Moon contains large amounts of helium-3, which has accumulated in the lunar (19) __ over billions of years. This isotope could potentially be used in (20) __ that would combine light atoms to produce energy. The theoretical yield is impressive: approximately 25 tons could power the entire United States for one year. However, extraction is difficult because helium-3 is (21) __ throughout the lunar soil at very low concentrations. Additionally, (22) __ remains an unachieved goal, making the practical value of helium-3 uncertain. Despite these challenges, several nations are pursuing lunar exploration with resource (23) __ as a long-term objective.

Questions 24-26

Do the following statements agree with the claims of the writer in Passage 2?

Write:

  • YES if the statement agrees with the claims of the writer
  • NO if the statement contradicts the claims of the writer
  • NOT GIVEN if it is impossible to say what the writer thinks about this
  1. The investment required to establish lunar mining operations is currently justifiable given the potential benefits.
  2. Technologies that seemed impossible decades ago are now in common use.
  3. Lunar helium-3 mining will definitely be operational within the next thirty years.

PASSAGE 3 – Cosmic Energy Harvesting: Theoretical Frameworks and Astronomical Possibilities

Độ khó: Hard (Band 7.0-9.0)

Thời gian đề xuất: 23-25 phút

The proposition that space exploration might yield solutions to humanity’s terrestrial energy predicament extends far beyond the relatively prosaic concepts of orbital solar arrays or lunar resource extraction. A growing cadre of theoretical physicists and astro-engineers are contemplating energy harvesting schemes of truly cosmic proportions, drawing upon phenomena that exist at the boundaries of known physics and challenging fundamental assumptions about the limits of technological capability. These concepts, while currently relegated to the realm of theoretical speculation, represent the kind of paradigm-shifting thinking that could ultimately redefine humanity’s relationship with energy and the cosmos itself.

Among the most audacious proposals is the concept of the Dyson sphere, originally formulated by physicist Freeman Dyson in 1960. This theoretical megastructure would encompass an entire star, capturing virtually all of its electromagnetic output. Dyson himself proposed several variants, the most commonly discussed being a “Dyson swarm” – a dense constellation of orbiting solar collectors that would gradually be constructed to intercept an increasing proportion of stellar radiation. The energy captured by such a structure would be measured not in megawatts or gigawatts, but in terms comparable to the star’s entire luminous output, approximately 3.8 × 10²⁶ watts in the case of our Sun. This represents roughly one trillion times current global human energy consumption, effectively rendering energy scarcity obsolete for any Type II civilization on the Kardashev scale – a metric for measuring a civilization’s technological advancement based on energy utilization.

The construction of even a partial Dyson swarm would necessitate material resources far exceeding anything available on Earth. Proponents of this concept typically envision the systematic dismantling of Mercury, the innermost planet, whose material composition and proximity to the Sun make it an ideal candidate for such a project. However, the engineering challenges involved are staggering in their complexity. Beyond the obvious difficulties of autonomous large-scale space construction, there is the problem of heat dissipation. Any structure capable of capturing stellar radiation must also be capable of radiating absorbed heat efficiently to prevent catastrophic thermal failure. The Dyson swarm components would likely need to operate at temperatures where they themselves glow visibly, creating a distinctive infrared signature that astronomers have actually searched for as potential evidence of advanced extraterrestrial civilizations.

An alternative cosmic energy harvesting concept involves exploiting the rotational energy of black holes through a process known as the Penrose mechanism, named after physicist Roger Penrose who first described it in 1969. This theoretical process takes advantage of a region surrounding a rotating black hole called the ergosphere, where spacetime itself is dragged along with the black hole’s rotation. In principle, an object entering the ergosphere could be split such that one fragment falls into the black hole while the other escapes with more energy than the original object possessed. The falling fragment carries negative energy from the perspective of an external observer, effectively extracting rotational energy from the black hole. A technological implementation of this principle, sometimes called a “black hole bomb” or “superradiance engine,” could theoretically extract enormous quantities of energy, potentially accessing up to 29% of a black hole’s rest mass-energy.

What are the challenges of achieving net-zero emissions in transportation? thể hiện những thách thức tương tự trong việc áp dụng công nghệ mới, vì các phương pháp khai thác năng lượng vũ trụ cũng đối mặt với nhiều rào cản kỹ thuật và thực tiễn.

Even more speculative is the notion of harvesting energy from the fabric of spacetime itself. Quantum field theory predicts that what we perceive as empty space is actually filled with quantum fluctuationsephemeral particle-antiparticle pairs constantly appearing and disappearing. The Casimir effect, experimentally verified in laboratory conditions, demonstrates that these fluctuations can produce measurable forces. Some physicists have proposed that sufficiently advanced technology might be able to extract energy from these quantum fluctuations, though this concept remains highly controversial. The thermodynamic implications alone are problematic, as any such extraction would seemingly violate the second law of thermodynamics unless carefully reconciled with quantum mechanics’ more nuanced understanding of entropy and information.

What relegates these cosmic energy concepts to the realm of extreme long-term speculation is not merely their engineering complexity but the fundamental question of whether they are thermodynamically and economically viable even in principle. The concept of Energy Return on Energy Invested (EROEI) – a crucial metric in evaluating terrestrial energy sources – becomes fiendishly complex when applied to projects of cosmic scale. A Dyson swarm, for instance, might require centuries or millennia to construct, during which time enormous quantities of energy would be expended. Whether the eventual energy return would justify this colossal upfront investment depends on factors including the efficiency of energy storage and transmission, the longevity of the infrastructure, and even the trajectory of civilization itself.

Furthermore, these proposals raise profound philosophical and ethical questions about humanity’s role in the cosmos. The construction of a Dyson sphere would fundamentally alter the observable characteristics of a star system, potentially affecting any other planets, ecosystems, or even civilizations that might exist there. Some philosophers argue that pursuing such projects reflects a kind of “cosmic manifest destiny” that extends terrestrial patterns of resource exploitation to a universal scale. Others counter that failing to develop such capabilities would condemn humanity to perpetual energy limitations and the constant threat of resource-driven conflict and environmental collapse.

The relevance of these esoteric concepts to contemporary energy policy might seem negligible, yet they serve important functions in scientific and strategic thinking. First, they represent asymptotic goals that help orient long-term research priorities and technological development. Technologies developed in pursuit of such ambitious objectives often yield unanticipated practical applications – much as space exploration has generated numerous innovations with terrestrial benefits. Second, these concepts expand our conception of what is physically possible, preventing premature closure of potentially fruitful lines of inquiry. Finally, they provide context for evaluating intermediate-scale space energy projects; orbital solar power and lunar mining seem far more achievable and practical when contrasted with the construction of Dyson spheres or black hole energy extraction.

As humanity stands at a critical juncture in its relationship with energy and the environment, the question of whether space-based solutions should play a role in our energy future remains contentious. What are the challenges of achieving global renewable energy adoption? cho thấy việc triển khai năng lượng tái tạo trên quy mô toàn cầu đối mặt với nhiều khó khăn tương tự như các dự án năng lượng không gian. Pragmatists argue that immediate terrestrial needs demand focus on proven technologies rather than speculative space ventures. Visionaries counter that transformative solutions require bold thinking and that today’s science fiction often becomes tomorrow’s engineering reality. What remains certain is that the physics governing energy and the cosmos places no absolute prohibition on these concepts – only our current technological limitations and the test of time will determine which, if any, become reality.

Khái niệm Dyson Sphere và các phương pháp khai thác năng lượng từ ngôi saoKhái niệm Dyson Sphere và các phương pháp khai thác năng lượng từ ngôi sao

Questions 27-31

Choose the correct letter, A, B, C, or D.

  1. According to the passage, the Dyson sphere concept:

    • A. has already been partially implemented in Earth’s orbit
    • B. would capture a significant portion of a star’s total energy output
    • C. was proven impossible by Freeman Dyson
    • D. requires technology that violates known physics
  2. The passage suggests that constructing a Dyson swarm would likely involve:

    • A. using materials exclusively from asteroid belts
    • B. transporting materials from Earth over many centuries
    • C. systematically dismantling the planet Mercury
    • D. creating new elements through nuclear fusion
  3. What is mentioned about the Penrose mechanism?

    • A. It has been successfully demonstrated in laboratory conditions
    • B. It could theoretically extract up to 29% of a black hole’s mass-energy
    • C. It requires the complete destruction of a black hole
    • D. It is currently being used by advanced civilizations
  4. The passage indicates that extracting energy from quantum fluctuations:

    • A. has been definitively proven impossible
    • B. is a well-established technology in physics laboratories
    • C. remains controversial and potentially problematic thermodynamically
    • D. will definitely be achieved within the next century
  5. According to the passage, cosmic energy concepts are relevant to contemporary thinking because they:

    • A. can be implemented within the next decade
    • B. help orient long-term research and expand our understanding of possibilities
    • C. have already generated most modern technologies
    • D. prove that space-based energy is impractical

Questions 32-36

Complete each sentence with the correct ending, A-H, below.

  1. The Kardashev scale
  2. The ergosphere surrounding a black hole
  3. The Casimir effect
  4. The concept of EROEI (Energy Return on Energy Invested)
  5. The construction of a Dyson sphere

Endings:

  • A. demonstrates that quantum fluctuations can produce measurable forces in laboratory settings.
  • B. becomes extremely complex when applied to projects of cosmic scale.
  • C. measures a civilization’s technological advancement based on energy utilization.
  • D. would fundamentally change the observable characteristics of an entire star system.
  • E. has been successfully completed around several nearby stars.
  • F. is a region where spacetime is dragged along with the black hole’s rotation.
  • G. requires materials that do not exist in our universe.
  • H. proves that energy can be created from nothing without limitations.

Questions 37-40

Answer the questions below.

Choose NO MORE THAN THREE WORDS from the passage for each answer.

  1. What distinctive type of signature might a Dyson swarm produce that astronomers have searched for?
  2. What percentage of a black hole’s rest mass-energy could potentially be extracted through the Penrose mechanism?
  3. According to quantum field theory, what fills apparently empty space?
  4. What term describes the philosophical argument that building cosmic structures extends terrestrial resource exploitation to a universal scale?

3. Answer Keys – Đáp Án

PASSAGE 1: Questions 1-13

  1. TRUE
  2. FALSE
  3. FALSE
  4. FALSE
  5. TRUE
  6. NOT GIVEN
  7. rectennas
  8. greenhouse gas emissions
  9. dollars
  10. reusable rockets
  11. C
  12. B
  13. C

PASSAGE 2: Questions 14-26

  1. B
  2. B
  3. C
  4. B
  5. C
  6. regolith
  7. fusion reactors
  8. dispersed
  9. controlled nuclear fusion
  10. extraction
  11. NOT GIVEN
  12. YES
  13. NOT GIVEN

PASSAGE 3: Questions 27-40

  1. B
  2. C
  3. B
  4. C
  5. B
  6. C
  7. F
  8. A
  9. B
  10. D
  11. infrared signature
  12. 29% / twenty-nine percent
  13. quantum fluctuations
  14. cosmic manifest destiny

4. Giải Thích Đáp Án Chi Tiết

Passage 1 – Giải Thích

Câu 1: TRUE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: space-based solar panels, collect energy continuously, not affected by weather
  • Vị trí trong bài: Đoạn 1, câu 2
  • Giải thích: Bài đọc nói rõ “Unlike ground-based solar panels, which are affected by weather conditions, nighttime, and atmospheric interference, space-based solar power systems could potentially provide continuous, clean energy to Earth.” Câu này khẳng định rằng các tấm pin mặt trời trong không gian có thể cung cấp năng lượng liên tục, không bị ảnh hưởng bởi thời tiết, đêm tối hay khí quyển.

Câu 2: FALSE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: solar radiation in space, more than twice as strong
  • Vị trí trong bài: Đoạn 2, câu cuối
  • Giải thích: Bài viết nói “solar radiation in space is approximately 144% stronger than what reaches Earth’s surface.” 144% có nghĩa là gấp 1.44 lần, không phải gấp đôi (200%). Do đó câu này là FALSE.

Câu 3: FALSE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: concept, first introduced, Japanese scientist
  • Vị trí trong bài: Đoạn 1, câu cuối
  • Giải thích: Bài đọc nói rõ “The idea was first proposed in 1968 by Dr. Peter Glaser, an American engineer” – một kỹ sư người Mỹ, không phải nhà khoa học Nhật Bản.

Câu 4: FALSE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: China, full commercial SBSP station, before 2030
  • Vị trí trong bài: Đoạn 4, câu 3-4
  • Giải thích: Bài viết nói “China has also announced ambitious plans, with proposals to launch a small-scale testing station into orbit by 2025 and a larger commercial station by 2050.” Nhà máy thương mại lớn hơn sẽ có vào năm 2050, không phải trước 2030.

Câu 5: TRUE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: wireless power transmission, 40-50% efficiency
  • Vị trí trong bài: Đoạn 6, câu 3-4
  • Giải thích: Bài viết nói rõ “Current technology can only achieve transmission efficiencies of around 40-50%.”

Câu 6: NOT GIVEN

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: most scientists agree, no risk to wildlife
  • Vị trí trong bài: Đoạn 7
  • Giải thích: Bài viết chỉ nói “scientists assure that the energy density would be low enough to be safe for birds, aircraft, and people” nhưng không đề cập đến việc “hầu hết” (most) các nhà khoa học đồng ý hay không.

Câu 7: rectennas

  • Dạng câu hỏi: Sentence Completion
  • Từ khóa: receiving antennas, convert transmitted energy, electricity
  • Vị trí trong bài: Đoạn 3, câu cuối
  • Giải thích: “Finally, on Earth’s surface, there would be receiving antennas called rectennas, which would convert the transmitted energy back into electricity.”

Câu 8: greenhouse gas emissions

  • Dạng câu hỏi: Sentence Completion
  • Từ khóa: space solar power, produces no, needs no fuel
  • Vị trí trong bài: Đoạn 5, câu 2
  • Giải thích: “Unlike fossil fuels, SBSP produces no greenhouse gas emissions and requires no fuel supply.”

Câu 9: dollars

  • Dạng câu hỏi: Sentence Completion
  • Từ khóa: cost, commercial-scale station, 15 and 20 billion
  • Vị trí trong bài: Đoạn 6, câu 3
  • Giải thích: “Estimates suggest that building and deploying a single commercial-scale space solar power station could cost between 15 and 20 billion dollars.”

Câu 10: reusable rockets

  • Dạng câu hỏi: Sentence Completion
  • Từ khóa: reduced launch costs, development of
  • Vị trí trong bài: Đoạn 8, câu 2
  • Giải thích: “The dramatic reduction in launch costs, thanks to reusable rockets developed by companies like SpaceX, has made the economics more attractive.”

Câu 11: C

  • Dạng câu hỏi: Multiple Choice
  • Vị trí trong bài: Đoạn 2, câu 2
  • Giải thích: “This means that a space-based solar array could generate up to ten times more energy than a similar installation on Earth’s surface.” Đáp án chính xác là C.

Câu 12: B

  • Dạng câu hỏi: Multiple Choice
  • Vị trí trong bài: Đoạn 5, câu cuối
  • Giải thích: “Additionally, because the energy would be transmitted to Earth via microwave or laser beams, which can pass through clouds, the receiving stations could be located almost anywhere on the planet.” Đáp án B đúng nhất.

Câu 13: C

  • Dạng câu hỏi: Multiple Choice
  • Vị trí trong bài: Đoạn 8, câu cuối
  • Giải thích: “Some experts believe that SBSP could become competitive with terrestrial renewable energy sources within the next two decades.” Đáp án C chính xác.

Passage 2 – Giải Thích

Câu 14: B

  • Dạng câu hỏi: Multiple Choice
  • Vị trí trong bài: Đoạn 2, câu 2
  • Giải thích: “The scarcity exists because Earth’s magnetic field deflects most of the solar wind particles that carry helium-3.” Từ khóa magnetic field và deflects cho thấy đáp án B đúng.

Câu 15: B

  • Dạng câu hỏi: Multiple Choice
  • Vị trí trong bài: Đoạn 3, câu 3-4
  • Giải thích: “This means that helium-3 fusion would generate minimal radioactive byproducts, making it far cleaner and safer than conventional nuclear power.” Đây là điểm đặc biệt hấp dẫn của helium-3, đáp án B.

Câu 16: C

  • Dạng câu hỏi: Multiple Choice
  • Vị trí trong bài: Đoạn 4, câu cuối
  • Giải thích: “Scientists estimate that producing one kilogram of helium-3 would require mining and processing approximately 150,000 metric tons of lunar soil.” Đáp án C chính xác.

Câu 17: B

  • Dạng câu hỏi: Multiple Choice
  • Vị trí trong bài: Đoạn 7, câu cuối
  • Giải thích: “even if successful, commercial fusion reactors are unlikely to exist before the 2050s.” Đáp án B đúng.

Câu 18: C

  • Dạng câu hỏi: Multiple Choice
  • Vị trí trong bài: Đoạn 10, câu 2
  • Giải thích: “Critics, however, question whether the resources devoted to lunar mining might be better spent on more immediately viable renewable energy technologies such as advanced solar, wind, and energy storage systems.” Đáp án C.

Câu 19: regolith

  • Dạng câu hỏi: Summary Completion
  • Vị trí trong bài: Đoạn 2
  • Giải thích: “solar wind bombardment has implanted an estimated one million metric tons of helium-3 into the lunar regolith.”

Câu 20: fusion reactors

  • Dạng câu hỏi: Summary Completion
  • Vị trí trong bài: Đoạn 3, câu 1
  • Giải thích: “The appeal of helium-3 as a fuel source stems from its potential use in nuclear fusion reactions.”

Câu 21: dispersed

  • Dạng câu hỏi: Summary Completion
  • Vị trí trong bài: Đoạn 4, câu 2
  • Giải thích: “The helium-3 is not concentrated in deposits like terrestrial minerals but is dispersed throughout the lunar soil.”

Câu 22: controlled nuclear fusion

  • Dạng câu hỏi: Summary Completion
  • Vị trí trong bài: Đoạn 7, câu 1
  • Giải thích: “Perhaps the most significant hurdle, however, is that controlled nuclear fusion itself remains an elusive goal.”

Câu 23: extraction

  • Dạng câu hỏi: Summary Completion
  • Vị trí trong bài: Đoạn 8, câu cuối
  • Giải thích: “Russia and the United States, both of which have announced plans to establish lunar bases, have included resource extraction in their stated objectives.”

Câu 24: NOT GIVEN

  • Dạng câu hỏi: Yes/No/Not Given
  • Giải thích: Bài viết nêu ra chi phí đầu tư lớn (exceeding 100 billion dollars) nhưng không có ý kiến rõ ràng của tác giả về việc liệu khoản đầu tư này có hợp lý hay không.

Câu 25: YES

  • Dạng câu hỏi: Yes/No/Not Given
  • Vị trí trong bài: Đoạn 9, câu 2
  • Giải thích: “They point out that many technologies considered impossible a few decades ago – such as reusable rockets and autonomous vehicles – are now commonplace.” Đây là quan điểm của tác giả.

Câu 26: NOT GIVEN

  • Dạng câu hỏi: Yes/No/Not Given
  • Giải thích: Bài viết không đưa ra nhận định chắc chắn về việc khai thác helium-3 sẽ hoạt động trong 30 năm tới. Chỉ đề cập đến khả năng và kế hoạch dài hạn.

Passage 3 – Giải Thích

Câu 27: B

  • Dạng câu hỏi: Multiple Choice
  • Vị trí trong bài: Đoạn 2
  • Giải thích: “This theoretical megastructure would encompass an entire star, capturing virtually all of its electromagnetic output.” Dyson sphere sẽ bắt giữ hầu như toàn bộ năng lượng của một ngôi sao.

Câu 28: C

  • Dạng câu hỏi: Multiple Choice
  • Vị trí trong bài: Đoạn 3, câu 2
  • Giải thích: “Proponents of this concept typically envision the systematic dismantling of Mercury.” Đáp án C chính xác.

Câu 29: B

  • Dạng câu hỏi: Multiple Choice
  • Vị trí trong bài: Đoạn 4, câu cuối
  • Giải thích: “could theoretically extract enormous quantities of energy, potentially accessing up to 29% of a black hole’s rest mass-energy.” Đáp án B.

Câu 30: C

  • Dạng câu hỏi: Multiple Choice
  • Vị trí trong bài: Đoạn 5, câu cuối
  • Giải thích: “Some physicists have proposed that sufficiently advanced technology might be able to extract energy from these quantum fluctuations, though this concept remains highly controversial. The thermodynamic implications alone are problematic.” Đáp án C.

Câu 31: B

  • Dạng câu hỏi: Multiple Choice
  • Vị trí trong bài: Đoạn 8
  • Giải thích: “First, they represent asymptotic goals that help orient long-term research priorities and technological development. Second, these concepts expand our conception of what is physically possible.” Đáp án B.

Câu 32: C

  • Dạng câu hỏi: Matching Sentence Endings
  • Vị trí trong bài: Đoạn 2
  • Giải thích: “Type II civilization on the Kardashev scale – a metric for measuring a civilization’s technological advancement based on energy utilization.”

Câu 33: F

  • Dạng câu hỏi: Matching Sentence Endings
  • Vị trí trong bài: Đoạn 4
  • Giải thích: “This theoretical process takes advantage of a region surrounding a rotating black hole called the ergosphere, where spacetime itself is dragged along with the black hole’s rotation.”

Câu 34: A

  • Dạng câu hỏi: Matching Sentence Endings
  • Vị trí trong bài: Đoạn 5
  • Giải thích: “The Casimir effect, experimentally verified in laboratory conditions, demonstrates that these fluctuations can produce measurable forces.”

Câu 35: B

  • Dạng câu hỏi: Matching Sentence Endings
  • Vị trí trong bài: Đoạn 6
  • Giải thích: “The concept of Energy Return on Energy Invested (EROEI) – a crucial metric in evaluating terrestrial energy sources – becomes fiendishly complex when applied to projects of cosmic scale.”

Câu 36: D

  • Dạng câu hỏi: Matching Sentence Endings
  • Vị trí trong bài: Đoạn 7
  • Giải thích: “The construction of a Dyson sphere would fundamentally alter the observable characteristics of a star system.”

Câu 37: infrared signature

  • Dạng câu hỏi: Short-answer Question
  • Vị trí trong bài: Đoạn 3, câu cuối
  • Giải thích: “creating a distinctive infrared signature that astronomers have actually searched for.”

Câu 38: 29% / twenty-nine percent

  • Dạng câu hỏi: Short-answer Question
  • Vị trí trong bài: Đoạn 4, câu cuối
  • Giải thích: “potentially accessing up to 29% of a black hole’s rest mass-energy.”

Câu 39: quantum fluctuations

  • Dạng câu hỏi: Short-answer Question
  • Vị trí trong bài: Đoạn 5, câu 2
  • Giải thích: “Quantum field theory predicts that what we perceive as empty space is actually filled with quantum fluctuations.”

Câu 40: cosmic manifest destiny

  • Dạng câu hỏi: Short-answer Question
  • Vị trí trong bài: Đoạn 7, câu 3
  • Giải thích: “Some philosophers argue that pursuing such projects reflects a kind of ‘cosmic manifest destiny’ that extends terrestrial patterns of resource exploitation to a universal scale.”

5. Từ Vựng Quan Trọng Theo Passage

Passage 1 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
harness v /ˈhɑːnɪs/ khai thác, tận dụng harnessing solar energy from space harness energy/power
interference n /ˌɪntəˈfɪərəns/ sự can thiệp, sự gây nhiễu atmospheric interference atmospheric/radio interference
consistency n /kənˈsɪstənsi/ tính nhất quán, ổn định lies in its consistency maintain consistency
solar radiation n phrase /ˈsəʊlə ˌreɪdiˈeɪʃn/ bức xạ mặt trời solar radiation in space intense solar radiation
photovoltaic cells n phrase /ˌfəʊtəʊvɒlˈteɪɪk selz/ tế bào quang điện using photovoltaic cells install photovoltaic cells
wireless power transmission n phrase /ˈwaɪələs ˈpaʊə trænzˈmɪʃn/ truyền năng lượng không dây wireless power transmission system efficient wireless transmission
rectenna n /rekˈtenə/ ăng-ten nhận và chuyển đổi năng lượng receiving antennas called rectennas install/deploy rectennas
greenhouse gas emissions n phrase /ˈɡriːnhaʊs ɡæs ɪˈmɪʃnz/ khí thải nhà kính produces no greenhouse gas emissions reduce greenhouse gas emissions
remote areas n phrase /rɪˈməʊt ˈeəriəz/ các vùng xa xôi, hẻo lánh beneficial for remote areas serve remote areas
robotic construction n phrase /rəʊˈbɒtɪk kənˈstrʌkʃn/ xây dựng bằng robot robotic construction and repair systems automated robotic construction
solar panel efficiency n phrase /ˈsəʊlə ˈpænl ɪˈfɪʃnsi/ hiệu suất tấm pin mặt trời improvements in solar panel efficiency increase solar panel efficiency
feasible adj /ˈfiːzəbl/ khả thi, có thể thực hiện making space solar power more feasible economically feasible

Passage 2 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
deplete v /dɪˈpliːt/ cạn kiệt, làm giảm depleting fossil fuel reserves deplete resources/reserves
isotope n /ˈaɪsətəʊp/ đồng vị (nguyên tử) helium-3 is an isotope radioactive isotope
solar wind n phrase /ˈsəʊlə wɪnd/ gió mặt trời solar wind particles solar wind bombardment
regolith n /ˈreɡəlɪθ/ lớp đất đá phủ bề mặt thiên thể the lunar regolith lunar/planetary regolith
staggering adj /ˈstæɡərɪŋ/ đáng kinh ngạc, khổng lồ of staggering proportions staggering amount/cost
nuclear fusion n phrase /ˈnjuːkliə ˈfjuːʒn/ phản ứng nhiệt hạch nuclear fusion reactions controlled nuclear fusion
deuterium n /djuːˈtɪəriəm/ đơteri (đồng vị hydro) helium-3 and deuterium deuterium-tritium fusion
proton n /ˈprəʊtɒn/ proton (hạt mang điện dương) produces protons and helium-4 proton beam/collision
extraction n /ɪkˈstrækʃn/ sự khai thác, chiết xuất the challenge of extraction resource extraction
dispersed adj /dɪˈspɜːst/ phân tán, rải rác is dispersed throughout widely/evenly dispersed
logistics n /ləˈdʒɪstɪks/ hậu cần, logistics the logistics of maintaining complex logistics
elusive adj /ɪˈluːsɪv/ khó nắm bắt, khó đạt được remains an elusive goal elusive target/dream
spin-off technologies n phrase /spɪn ɒf tekˈnɒlədʒiz/ công nghệ phái sinh create spin-off technologies develop spin-off technologies
autonomous vehicles n phrase /ɔːˈtɒnəməs ˈviːɪklz/ phương tiện tự động such as autonomous vehicles deploy autonomous vehicles
revolutionary adj /ˌrevəˈluːʃənəri/ mang tính cách mạng invest in revolutionary solutions revolutionary technology/change

Passage 3 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
prosaic adj /prəˈzeɪɪk/ tầm thường, đơn điệu relatively prosaic concepts prosaic reality/details
cadre n /ˈkɑːdə/ đội ngũ, nhóm người a growing cadre of physicists cadre of experts
relegate v /ˈrelɪɡeɪt/ đẩy xuống, hạ bậc currently relegated to speculation relegate to second place
paradigm-shifting adj /ˈpærədaɪm ˈʃɪftɪŋ/ thay đổi mô hình tư duy paradigm-shifting thinking paradigm-shifting innovation
audacious adj /ɔːˈdeɪʃəs/ táo bạo, gan dạ most audacious proposals audacious plan/move
megastructure n /ˈmeɡəstrʌktʃə/ siêu cấu trúc theoretical megastructure construct a megastructure
constellation n /ˌkɒnstəˈleɪʃn/ chòm sao, cụm dense constellation of collectors constellation of satellites
Kardashev scale n phrase /kɑːdəˈʃev skeɪl/ thang đo Kardashev Type II civilization on the Kardashev scale classify on Kardashev scale
systematic dismantling n phrase /ˌsɪstəˈmætɪk dɪsˈmæntlɪŋ/ việc tháo dỡ có hệ thống systematic dismantling of Mercury systematic dismantling process
staggering adj /ˈstæɡərɪŋ/ choáng váng, khổng lồ staggering in their complexity staggering complexity/scale
heat dissipation n phrase /hiːt ˌdɪsɪˈpeɪʃn/ sự tản nhiệt problem of heat dissipation efficient heat dissipation
infrared signature n phrase /ˌɪnfrəˈred ˈsɪɡnətʃə/ dấu hiệu hồng ngoại distinctive infrared signature detect infrared signature
extraterrestrial civilizations n phrase /ˌekstrətəˈrestriəl ˌsɪvəlaɪˈzeɪʃnz/ các nền văn minh ngoài trái đất advanced extraterrestrial civilizations search for extraterrestrial civilizations
exploit v /ɪkˈsplɔɪt/ khai thác, tận dụng exploiting the rotational energy exploit resources/opportunities
Penrose mechanism n phrase /ˈpenrəʊz ˈmekənɪzəm/ cơ chế Penrose process known as the Penrose mechanism utilize Penrose mechanism
ergosphere n /ˈɜːɡəsfɪə/ vùng ergosphere (quanh lỗ đen) region called the ergosphere within the ergosphere
negative energy n phrase /ˈneɡətɪv ˈenədʒi/ năng lượng âm carries negative energy extract negative energy
superradiance n /ˌsuːpəˈreɪdiəns/ siêu bức xạ superradiance engine superradiance effect
speculative adj /ˈspekjələtɪv/ mang tính suy đoán even more speculative highly speculative
quantum fluctuations n phrase /ˈkwɒntəm ˌflʌktʃuˈeɪʃnz/ dao động lượng tử filled with quantum fluctuations observe quantum fluctuations
ephemeral adj /ɪˈfemərəl/ phù du, thoáng qua ephemeral particle-antiparticle pairs ephemeral nature/existence
Casimir effect n phrase /kəˈzɪmɪər ɪˈfekt/ hiệu ứng Casimir The Casimir effect demonstrates measure Casimir effect
thermodynamic adj /ˌθɜːməʊdaɪˈnæmɪk/ thuộc nhiệt động lực học thermodynamic implications thermodynamic principles/laws
entropy n /ˈentrəpi/ entropy (độ hỗn loạn) understanding of entropy increase entropy
viable adj /ˈvaɪəbl/ khả thi, có thể tồn tại thermodynamically and economically viable economically viable
EROEI n /iː ɑːr əʊ iː aɪ/ tỷ suất hoàn vốn năng lượng Energy Return on Energy Invested calculate EROEI
colossal adj /kəˈlɒsl/ khổng lồ, to lớn colossal upfront investment colossal scale/effort
trajectory n /trəˈdʒektəri/ quỹ đạo, đường đi trajectory of civilization follow a trajectory
manifest destiny n phrase /ˌmænɪfest ˈdestəni/ số phận hiển nhiên cosmic manifest destiny doctrine of manifest destiny
condemn v /kənˈdem/ kết án, buộc phải chịu would condemn humanity condemn to poverty
esoteric adj /ˌesəˈterɪk/ bí truyền, khó hiểu these esoteric concepts esoteric knowledge/philosophy
asymptotic adj /ˌæsɪmˈtɒtɪk/ tiệm cận represent asymptotic goals asymptotic behavior/limit
unanticipated adj /ˌʌnænˈtɪsɪpeɪtɪd/ không lường trước unanticipated practical applications unanticipated consequences
premature adj /ˈpremətʃə/ sớm, quá sớm preventing premature closure premature conclusion/decision
juncture n /ˈdʒʌŋktʃə/ thời điểm quan trọng at a critical juncture critical juncture
contentious adj /kənˈtenʃəs/ gây tranh cãi remains contentious contentious issue/debate

Kết bài

Chủ đề về vai trò của thám hiểm vũ trụ trong việc cung cấp nguồn năng lượng tương lai không chỉ là một đề tài khoa học hấp dẫn mà còn phản ánh những thách thức và cơ hội lớn lao mà nhân loại đang phải đối mặt. Qua ba passages với độ khó tăng dần từ Easy đến Hard, bạn đã được trải nghiệm một bài thi IELTS Reading hoàn chỉnh với 40 câu hỏi đa dạng, bao gồm các dạng từ Multiple Choice, True/False/Not Given, Summary Completion đến Short-answer Questions.

Passage 1 giới thiệu khái niệm cơ bản về năng lượng mặt trời từ không gian với ngôn ngữ dễ tiếp cận, phù hợp để khởi động và xây dựng tự tin. Passage 2 đi sâu hơn vào chủ đề khai thác helium-3 trên Mặt Trăng với từ vựng học thuật và yêu cầu hiểu biết sâu hơn. Passage 3 thách thức bạn với các khái niệm vật lý lý thuyết phức tạp như Dyson sphere và khai thác năng lượng từ lỗ đen, đòi hỏi kỹ năng phân tích và suy luận ở mức độ cao nhất.

Phần đáp án chi tiết không chỉ cung cấp câu trả lời đúng mà còn giải thích rõ ràng vị trí thông tin trong bài, cách paraphrase và lý do tại sao các đáp án khác không phù hợp. Bộ từ vựng được tổng hợp kèm theo phiên âm, nghĩa tiếng Việt, ví dụ và collocations sẽ giúp bạn nâng cao vốn từ vựng chuyên ngành và tự tin hơn khi gặp các chủ đề khoa học trong kỳ thi thật.

Hãy sử dụng đề thi này như một công cụ luyện tập thực chiến, tuân thủ thời gian quy định và tự đánh giá kết quả của mình. Việc lặp lại và phân tích kỹ những câu hỏi bạn làm sai sẽ giúp bạn cải thiện đáng kể kỹ năng Reading và tiến gần hơn đến mục tiêu band điểm mơ ước. Chúc bạn học tập hiệu quả và đạt kết quả cao trong kỳ thi IELTS sắp tới!

Previous Article

IELTS Speaking: Cách Trả Lời "Describe A Time When You Visited A Foreign Country" - Bài Mẫu Band 6-9

Write a Comment

Leave a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Đăng ký nhận thông tin bài mẫu

Để lại địa chỉ email của bạn, chúng tôi sẽ thông báo tới bạn khi có bài mẫu mới được biên tập và xuất bản thành công.
Chúng tôi cam kết không spam email ✨