Mở bài
Chủ đề về vai trò của đô thị hóa trong việc lây lan các bệnh truyền nhiễm từ động vật sang người (zoonotic diseases) ngày càng trở nên quan trọng trong bối cảnh toàn cầu hóa và phát triển đô thị nhanh chóng. Đây là một chủ đề phổ biến trong IELTS Reading, thường xuyên xuất hiện dưới dạng các bài đọc về y tế công cộng, môi trường và phát triển xã hội.
Trong bài viết này, bạn sẽ được thực hành với một đề thi IELTS Reading hoàn chỉnh gồm 3 passages với độ khó tăng dần từ Easy đến Hard. Bạn sẽ học được:
- Bộ đề thi đầy đủ 40 câu hỏi với 3 passages về chủ đề đô thị hóa và bệnh truyền nhiễm
- Đa dạng các dạng câu hỏi giống thi thật: Multiple Choice, True/False/Not Given, Matching, Summary Completion
- Đáp án chi tiết kèm giải thích vị trí và cách paraphrase
- Từ vựng chuyên ngành y tế và đô thị hóa với phiên âm, ví dụ thực tế
- Kỹ thuật làm bài hiệu quả cho từng dạng câu hỏi
Bộ đề này phù hợp cho học viên từ band 5.0 trở lên, giúp bạn làm quen với cấu trúc thi thật và nâng cao khả năng đọc hiểu học thuật.
1. Hướng dẫn làm bài IELTS Reading
Tổng Quan Về IELTS Reading Test
IELTS Reading Test kéo dài 60 phút cho 3 passages với tổng cộng 40 câu hỏi. Mỗi câu trả lời đúng được 1 điểm, và band điểm cuối cùng được quy đổi từ số câu đúng.
Phân bổ thời gian khuyến nghị:
- Passage 1: 15-17 phút (độ khó Easy)
- Passage 2: 18-20 phút (độ khó Medium)
- Passage 3: 23-25 phút (độ khó Hard)
Lưu ý dành 2-3 phút cuối để chuyển đáp án vào Answer Sheet. Không có thời gian bổ sung cho việc này!
Các Dạng Câu Hỏi Trong Đề Này
Đề thi mẫu này bao gồm 7 dạng câu hỏi phổ biến nhất:
- Multiple Choice – Chọn đáp án đúng từ các phương án A, B, C, D
- True/False/Not Given – Xác định thông tin đúng, sai hay không được đề cập
- Matching Information – Nối thông tin với đoạn văn tương ứng
- Summary Completion – Hoàn thành đoạn tóm tắt
- Matching Headings – Chọn tiêu đề phù hợp cho mỗi đoạn
- Sentence Completion – Hoàn thành câu với từ trong bài
- Short-answer Questions – Trả lời câu hỏi ngắn
2. IELTS Reading Practice Test
PASSAGE 1 – Urban Expansion and Disease Transmission
Độ khó: Easy (Band 5.0-6.5)
Thời gian đề xuất: 15-17 phút
The world is experiencing unprecedented urban growth. According to the United Nations, more than 55% of the global population now lives in urban areas, and this figure is projected to reach 68% by 2050. This rapid urbanization brings numerous benefits, including better access to healthcare, education, and employment opportunities. However, it also creates conditions that facilitate the spread of infectious diseases, particularly those transmitted from animals to humans, known as zoonotic diseases.
Zoonotic diseases are caused by pathogens that jump from animals to people. Some well-known examples include rabies, Ebola, and more recently, COVID-19. The process of urban expansion often involves the destruction of natural habitats, forcing wildlife to move closer to human settlements. This increased contact between humans and animals creates more opportunities for disease transmission.
When cities expand into previously undeveloped areas, forests are cleared and wetlands are drained to make way for housing and infrastructure. These activities disrupt ecosystems and displace wild animals. Many species, unable to find food or shelter in their natural habitats, are forced to seek resources in urban environments. Rodents, bats, and birds often become urban dwellers, living in close proximity to humans. This habitat encroachment significantly increases the risk of zoonotic disease outbreaks.
The conditions in rapidly growing cities can further amplify disease transmission. Informal settlements, often called slums, typically lack adequate sanitation, clean water, and waste management systems. In these areas, human waste and garbage accumulate, attracting rats, flies, and other disease-carrying animals. The crowded living conditions mean that once a disease enters a community, it can spread quickly from person to person.
Urban markets, particularly those selling live animals, represent another significant risk factor. In many developing cities, wet markets where live chickens, ducks, and other animals are sold alongside fresh produce are common. These markets provide ideal conditions for pathogens to jump between species. Animals from different regions are kept in close quarters, often in stressful and unhygienic conditions, which can weaken their immune systems and make them more susceptible to infection.
The expansion of urban transportation networks also plays a role in disease spread. Modern cities are connected by extensive road, rail, and air networks. While these connections facilitate economic growth and social interaction, they also enable diseases to spread rapidly across regions and even continents. An infected person can travel from one city to another in a matter of hours, potentially carrying a pathogen to new populations before symptoms appear.
Climate change, driven partly by urbanization and industrialization, adds another layer of complexity. Rising temperatures and changing rainfall patterns can alter the geographic distribution of disease-carrying insects like mosquitoes. Species that previously lived only in tropical regions are now found in more temperate zones. Urban heat islands, where cities are significantly warmer than surrounding rural areas, can create favorable conditions for these disease vectors to thrive year-round.
Despite these challenges, urbanization does not inevitably lead to disease outbreaks. Cities with well-planned infrastructure, effective public health systems, and strong governance can manage these risks effectively. Proper urban planning that preserves green spaces and maintains ecological buffers between urban and wild areas can reduce human-wildlife contact. Investment in public health infrastructure, including disease surveillance systems and rapid response capabilities, is essential for detecting and controlling outbreaks before they become epidemics.
Education also plays a crucial role. When urban residents understand how diseases spread and what behaviors increase risk, they can take steps to protect themselves and their communities. Public health campaigns about proper food handling, avoiding contact with wild animals, and maintaining clean environments can significantly reduce disease transmission.
Questions 1-13
Questions 1-5: Multiple Choice
Choose the correct letter, A, B, C, or D.
-
According to the passage, what percentage of the global population is expected to live in urban areas by 2050?
A. 55%
B. 60%
C. 68%
D. 75% -
What happens to wildlife when forests are cleared for urban development?
A. They move to other forests
B. They become extinct
C. They move closer to human settlements
D. They adapt to urban life immediately -
Why are informal settlements particularly risky for disease transmission?
A. They have too many people
B. They lack proper sanitation systems
C. They are located far from hospitals
D. They have many domestic animals -
What makes urban markets a risk factor for disease?
A. They sell contaminated food
B. They are too crowded
C. Different animal species are kept in close quarters
D. They operate without licenses -
How does urban transportation contribute to disease spread?
A. It creates air pollution
B. It enables rapid movement of people across regions
C. It disturbs wildlife habitats
D. It increases urban density
Questions 6-10: True/False/Not Given
Do the following statements agree with the information in the passage?
Write:
- TRUE if the statement agrees with the information
- FALSE if the statement contradicts the information
- NOT GIVEN if there is no information on this
- More than half of the world’s population currently lives in cities.
- All zoonotic diseases are deadly to humans.
- Urban heat islands can help disease-carrying insects survive throughout the year.
- Cities in developed countries never experience zoonotic disease outbreaks.
- Public education can help reduce disease transmission in urban areas.
Questions 11-13: Sentence Completion
Complete the sentences below.
Choose NO MORE THAN TWO WORDS from the passage for each answer.
- When natural habitats are destroyed, many animal species become __ and must live near humans.
- The process of cities expanding into natural areas is called __.
- Effective __ that includes green spaces can help reduce contact between humans and wildlife.
PASSAGE 2 – The Mechanisms Behind Urban Zoonotic Transmission
Độ khó: Medium (Band 6.0-7.5)
Thời gian đề xuất: 18-20 phút
Understanding the intricate mechanisms through which urbanization promotes zoonotic disease transmission requires examining the complex interplay between ecological disruption, human behavior, and pathogen evolution. The transformation of landscapes from natural to urban environments creates what epidemiologists call “disease emergence hotspots” – locations where the conditions for new infectious diseases to appear are particularly favorable.
The concept of ecological edge effects is central to understanding this phenomenon. When urban development creates boundaries between different types of habitats, these edge zones become areas of intense biological activity. At the interface between urban and wild areas, biodiversity often increases temporarily as species from both environments congregate. However, this biodiversity convergence is unstable and stressful for wildlife, weakening their immune competence and making them more susceptible to infections. Simultaneously, humans living or working near these edges experience greater exposure to wildlife and the pathogens they carry.
Anthropogenic changes to water systems exemplify how urbanization facilitates disease spread. Cities require vast quantities of water, leading to the construction of reservoirs, canals, and drainage systems that alter natural hydrology. These artificial water bodies often create ideal breeding grounds for disease vectors such as mosquitoes. Furthermore, inadequate wastewater treatment in rapidly urbanizing areas means that human sewage contaminates water sources, creating environments where waterborne pathogens flourish. Animals drinking from these contaminated sources can become infected and subsequently transmit diseases to humans through various pathways.
The phenomenon of peridomestic adaptation – where wild animals modify their behavior to exploit urban resources – represents a particularly insidious mechanism of disease transmission. Urban environments offer reliable food sources, often in the form of garbage and agricultural waste, along with shelter in buildings and infrastructure. Species that successfully adapt to these anthropogenic environments tend to be generalists with high reproductive rates, such as rats, pigeons, and certain bat species. These synanthropic animals (those that benefit from human presence) can maintain and amplify pathogens in urban settings, creating persistent disease reservoirs within cities themselves.
Socioeconomic factors significantly influence urban disease dynamics. Poverty concentrates risk, as economically disadvantaged communities typically inhabit areas with the greatest environmental hazards. These neighborhoods often lie in floodplains, near waste disposal sites, or on cleared forest edges – precisely the locations where human-wildlife contact is most intense. Moreover, economic necessity may drive residents to engage in high-risk behaviors such as hunting urban wildlife for food or keeping livestock in unsuitable conditions, further increasing exposure to zoonotic pathogens.
The livestock-wildlife-human interface in peri-urban areas (zones surrounding cities where urban and rural characteristics mix) creates particularly complex transmission pathways. Small-scale animal husbandry is common in these areas, with farmers raising chickens, pigs, and other animals in close proximity to human dwellings. When wild animals attracted to agricultural feed come into contact with domestic livestock, they can introduce novel pathogens. These pathogens may then undergo genetic reassortment in domestic animals before spreading to humans. The 2009 H1N1 influenza pandemic, which involved genetic material from swine, avian, and human influenza viruses, illustrates this multi-host spillover process.
Urban food supply chains introduce additional complexity. Cities depend on intricate networks that transport food from diverse sources, sometimes across continents. While this system provides urban populations with varied diets, it also creates opportunities for pathogen spread. Animals and animal products may carry diseases that can be transmitted during transport, at wholesale markets, or during food preparation. The cold chain (refrigerated storage and transport) is often inadequate in developing cities, allowing pathogens to multiply during transit.
Recent research has identified urban microbiome alterations as a potentially significant but poorly understood factor in zoonotic disease emergence. The urban environment selects for certain microbial communities in soil, water, and air that differ substantially from those in natural environments. These alterations may affect how pathogens survive and transmit in urban settings. For instance, antibiotic residues in urban wastewater can promote antimicrobial resistance in environmental bacteria, which may transfer resistance genes to pathogens, making infections harder to treat.
The role of domestic pets as potential bridging hosts between wildlife and humans deserves particular attention. Dogs and cats often have access to both indoor human spaces and outdoor environments where they may encounter wildlife. These pets can become infected with zoonotic pathogens and subsequently transmit them to their owners. In some regions, free-roaming dogs form feral populations that hunt wildlife and scavenge garbage, potentially maintaining disease cycles that periodically spill over into human populations.
Climate interactions with urban infrastructure create microclimatic conditions that can favor disease transmission. Urban heat islands affect temperature and humidity, potentially extending the breeding season for insect vectors or allowing tropical species to establish populations in temperate cities. Meanwhile, urban flooding – increasingly common due to inadequate drainage systems and extreme weather events – displaces both humans and animals, creating temporary crowding and stress that facilitate disease transmission.
Questions 14-26
Questions 14-19: Yes/No/Not Given
Do the following statements agree with the views of the writer in the passage?
Write:
- YES if the statement agrees with the views of the writer
- NO if the statement contradicts the views of the writer
- NOT GIVEN if it is impossible to say what the writer thinks about this
- Edge zones between urban and wild areas have reduced biological activity compared to other areas.
- Animals living near the boundary of urban areas have weakened immune systems.
- All cities in developing countries have inadequate wastewater treatment systems.
- Synanthropic animals are those that thrive in urban environments.
- The H1N1 pandemic demonstrated how pathogens can involve multiple host species.
- Domestic pets never play a role in transmitting diseases from wildlife to humans.
Questions 20-23: Matching Information
Which paragraph contains the following information?
Write the correct letter, A-J (paragraphs are labeled in order from the first to the tenth).
- A description of how urban water systems create breeding sites for disease carriers
- An explanation of why poor communities face greater disease risks
- Information about how urban environments select specific types of microorganisms
- Details about animals that modify their behavior to live near humans
Questions 24-26: Summary Completion
Complete the summary below.
Choose NO MORE THAN TWO WORDS from the passage for each answer.
Urban areas create what researchers call “disease emergence hotspots” where conditions favor new infections. The boundaries between urban and natural areas, known as 24. __, show increased biological activity. Animals in these zones experience reduced 25. __, making them more vulnerable to disease. Additionally, animals that have undergone 26. __ to live near humans can maintain diseases within cities permanently.
PASSAGE 3 – Urbanization, Zoonotic Disease Dynamics, and Global Health Security
Độ khó: Hard (Band 7.0-9.0)
Thời gian đề xuất: 23-25 phút
The accelerating pace of urbanization in the twenty-first century represents an unprecedented socioecological transformation with profound implications for global health security. While the concentration of human populations in cities has historically been associated with both disease risk and improved health outcomes through economies of scale in public health delivery, contemporary urban expansion in low- and middle-income countries (LMICs) occurs under fundamentally different conditions than the urbanization that characterized industrialized nations in previous centuries. The confluence of rapid, unplanned urban growth, ecological degradation, climate change, and increasing global connectivity has created a novel epidemiological landscape in which zoonotic disease emergence has become more frequent and potentially more consequential.
The theoretical framework for understanding urban zoonotic disease dynamics draws upon multiple disciplines, including landscape ecology, disease ecology, urban planning, and social epidemiology. Central to this framework is the concept of the “dilution effect” and its inverse, the “amplification effect.” The dilution effect hypothesis suggests that high biodiversity in intact ecosystems reduces disease transmission because pathogen hosts are distributed among many species, some of which may be poor hosts or “dead-end” hosts that do not efficiently transmit pathogens. Conversely, ecosystem simplification through urbanization may lead to biodiversity loss that paradoxically increases disease risk by concentrating susceptible species and eliminating ecological checks on pathogen transmission.
However, the relationship between biodiversity and disease risk is considerably more nuanced than simple linear models suggest. Recent meta-analyses of zoonotic disease systems have revealed substantial heterogeneity in outcomes, with some urbanized landscapes showing reduced disease risk compared to less disturbed environments. This variation appears to be mediated by complex factors including the identity of remaining species, the spatial configuration of urban development, and the phylogenetic diversity of host communities. Species-specific responses to urbanization create “winner and loser” dynamics, where certain taxa thrive in modified environments while others decline. Significantly, many of the “winner” species are competent hosts for zoonotic pathogens, including rodents in the genera Rattus and Mus, certain bat species, and peridomestic birds such as pigeons and sparrows.
The spatial architecture of urban expansion exerts powerful influence over disease dynamics. Sprawling development patterns that create extensive urban-rural interfaces maximize edge habitats where human-wildlife contact occurs. In contrast, compact urban development with clearly delineated boundaries and preserved natural corridors may reduce contact while maintaining ecological connectivity for wildlife. However, compact development increases human population density, which can facilitate human-to-human transmission once a pathogen achieves spillover. This creates a fundamental tension in urban planning: strategies that reduce zoonotic spillover risk may increase risk of subsequent epidemic spread, and vice versa. Optimal urban configurations for disease risk minimization likely vary depending on local ecological, social, and epidemiological contexts, resisting one-size-fits-all prescriptions.
Pathogen characteristics themselves evolve in response to urban environments. The concept of urban pathogen evolution recognizes that the selective pressures in cities differ substantially from those in natural environments. High host density, frequent transmission opportunities, and anthropogenic environmental stressors (including antibiotic exposure, pollution, and altered temperature regimes) may select for pathogens with increased transmissibility, altered virulence, or antimicrobial resistance. Mathematical models suggest that urban environments characterized by high contact rates and short generation times could accelerate pathogen evolution, potentially producing variants with enhanced pandemic potential. Empirical evidence supporting this theoretical concern remains limited, however, representing a critical knowledge gap in urban disease ecology.
The social determinants of urban zoonotic disease risk demonstrate marked spatial and socioeconomic patterning. Environmental justice research has documented how marginalized populations disproportionately inhabit urban zones with elevated environmental health hazards, including proximity to waste facilities, industrial sites, and degraded ecosystems. These communities simultaneously face reduced access to healthcare, poorer nutrition, and higher prevalence of comorbidities that increase susceptibility to severe outcomes from infectious diseases. This syndemic framework – recognizing the interaction of multiple, co-occurring health conditions – is essential for understanding why zoonotic disease impacts are rarely evenly distributed within urban populations.
The governance dimensions of urban zoonotic disease control present formidable challenges, particularly in rapidly urbanizing regions where institutional capacity may lag behind urban growth. Effective disease risk management requires cross-sectoral coordination among agencies responsible for human health, animal health, environmental management, and urban planning – the essence of the One Health approach. However, these agencies often operate with separate mandates, budgets, and political constituencies, creating institutional fragmentation that impedes coordinated action. Moreover, many peri-urban areas exist in governance voids, neither fully urban nor rural, falling between jurisdictional boundaries and receiving inadequate services from any governmental level.
Surveillance systems capable of detecting zoonotic disease emergence in urban contexts face significant technical and logistical hurdles. Ideal surveillance would integrate monitoring of wildlife populations, domestic animals, environmental samples, and human health, creating an early warning network that identifies unusual disease patterns before major outbreaks occur. Advances in genomic sequencing, digital epidemiology, and artificial intelligence offer promising tools for such integrated surveillance. However, implementing these technologies requires substantial investment in laboratory infrastructure, trained personnel, and information systems – resources that are often scarce in precisely those cities where zoonotic disease risk is highest.
The COVID-19 pandemic has starkly illustrated how urban environments facilitate both disease emergence and rapid global spread. While the precise origins of SARS-CoV-2 remain debated, the role of urban wet markets or peri-urban wildlife trade in creating opportunities for coronavirus spillover is widely acknowledged. Subsequently, urban centers became epicenters of transmission, with dense populations, extensive transportation networks, and high-contact occupations enabling explosive outbreak growth. Paradoxically, urban areas also demonstrated potential for effective disease control through coordinated public health interventions, suggesting that urbanization’s relationship with pandemic risk is fundamentally bidirectional: cities concentrate risk but also concentrate resources and organizational capacity for response.
Looking forward, projections suggest that by 2050, an additional 2.5 billion people will be added to urban populations, with nearly 90% of this increase occurring in Asia and Africa. This demographic shift will occur against a backdrop of continued climate change, which is expected to alter disease vector distributions, modify seasonal transmission patterns, and increase the frequency of extreme weather events that disrupt urban infrastructure and displace populations. The intersection of urbanization and climate change thus represents a critical frontier for global health security, demanding proactive interventions that integrate urban planning, ecosystem conservation, and public health infrastructure in holistic, evidence-based strategies.
Questions 27-40
Questions 27-31: Multiple Choice
Choose the correct letter, A, B, C, or D.
-
According to the passage, how does urbanization in developing countries differ from historical urbanization in industrialized nations?
A. It happens more slowly
B. It occurs under different conditions
C. It affects fewer people
D. It causes fewer health problems -
What does the “dilution effect” hypothesis suggest?
A. Urban areas have more diseases
B. High biodiversity increases disease transmission
C. Ecosystem diversity reduces disease spread
D. Simple ecosystems are healthier -
According to the passage, what is the main challenge with compact urban development?
A. It destroys more natural habitats
B. It increases human-to-human disease transmission
C. It costs too much money
D. It eliminates all wildlife contact -
What does the passage say about urban pathogen evolution?
A. It has strong empirical evidence
B. It only occurs in developed cities
C. It remains a critical knowledge gap
D. It reduces pandemic risk -
What does the passage identify as essential for effective disease risk management?
A. More hospitals
B. Cross-sectoral coordination
C. Larger urban populations
D. Advanced technology alone
Questions 32-36: Matching Features
Match each statement (32-36) with the correct concept (A-H) from the passage.
A. Dilution effect
B. Amplification effect
C. Syndemic framework
D. One Health approach
E. Environmental justice
F. Urban pathogen evolution
G. Governance voids
H. Integrated surveillance
- The idea that multiple health conditions interact to worsen disease outcomes
- Areas that receive inadequate services because they fall between jurisdictional boundaries
- The concept that ecosystem diversity can reduce disease transmission
- Monitoring systems that combine data from wildlife, animals, environment, and humans
- The principle that human, animal, and environmental health agencies should coordinate
Questions 37-40: Short-answer Questions
Answer the questions below.
Choose NO MORE THAN THREE WORDS from the passage for each answer.
- What type of development pattern creates extensive contact zones between urban and wild areas?
- What three fields have shown promise for improving disease detection systems?
- What did urban areas become during the COVID-19 pandemic?
- By 2050, which two continents will see nearly 90% of urban population increase?
3. Answer Keys – Đáp Án
PASSAGE 1: Questions 1-13
- C
- C
- B
- C
- B
- TRUE
- NOT GIVEN
- TRUE
- NOT GIVEN
- TRUE
- urban dwellers
- habitat encroachment
- urban planning / proper urban planning
PASSAGE 2: Questions 14-26
- NO
- YES
- NOT GIVEN
- YES
- YES
- NO
- C (paragraph 3)
- E (paragraph 5)
- H (paragraph 8)
- D (paragraph 4)
- edge zones / ecological edges
- immune competence
- peridomestic adaptation
PASSAGE 3: Questions 27-40
- B
- C
- B
- C
- B
- C
- G
- A
- H
- D
- sprawling development (patterns)
- genomic sequencing, digital epidemiology, artificial intelligence (any three)
- epicenters of transmission
- Asia and Africa
4. Giải Thích Đáp Án Chi Tiết
Passage 1 – Giải Thích
Câu 1: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: percentage, global population, 2050
- Vị trí trong bài: Đoạn 1, dòng 2-3
- Giải thích: Bài đọc nói rõ “this figure is projected to reach 68% by 2050”, khớp chính xác với đáp án C.
Câu 2: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: wildlife, forests cleared, urban development
- Vị trí trong bài: Đoạn 2, dòng cuối
- Giải thích: Bài viết nói “forcing wildlife to move closer to human settlements” khi môi trường sống tự nhiên bị phá hủy.
Câu 3: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: informal settlements, risky, disease transmission
- Vị trí trong bài: Đoạn 4, dòng 2-3
- Giải thích: Đoạn văn chỉ rõ “typically lack adequate sanitation, clean water, and waste management systems” là lý do chính gây nguy hiểm.
Câu 6: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: more than half, world’s population, cities
- Vị trí trong bài: Đoạn 1, dòng 2
- Giải thích: “more than 55% of the global population now lives in urban areas” xác nhận hơn một nửa dân số sống ở thành phố.
Câu 7: NOT GIVEN
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: all zoonotic diseases, deadly
- Giải thích: Bài đọc chỉ đưa ra ví dụ về một số bệnh nhưng không khẳng định tất cả đều gây tử vong.
Câu 8: TRUE
- Dạng câu hỏi: True/False/Not Given
- Từ khóa: urban heat islands, disease-carrying insects, year-round
- Vị trí trong bài: Đoạn 7, dòng cuối
- Giải thích: Bài viết nói “can create favorable conditions for these disease vectors to thrive year-round” về đảo nhiệt đô thị.
Câu 11: urban dwellers
- Dạng câu hỏi: Sentence Completion
- Từ khóa: animal species, live near humans
- Vị trí trong bài: Đoạn 3, câu cuối
- Giải thích: “often become urban dwellers, living in close proximity to humans” chính xác mô tả việc động vật trở thành cư dân đô thị.
Câu 12: habitat encroachment
- Dạng câu hỏi: Sentence Completion
- Từ khóa: cities expanding, natural areas
- Vị trí trong bài: Đoạn 3
- Giải thích: Thuật ngữ “habitat encroachment” được sử dụng để mô tả quá trình lấn chiếm môi trường sống.
Câu 13: urban planning / proper urban planning
- Dạng câu hỏi: Sentence Completion
- Từ khóa: green spaces, reduce contact, humans, wildlife
- Vị trí trong bài: Đoạn 8
- Giải thích: “Proper urban planning that preserves green spaces” là cụm từ chính xác từ bài đọc.
Hình ảnh minh họa đô thị hóa và sự lây lan bệnh truyền nhiễm từ động vật sang người qua các khu vực tiếp giáp
Passage 2 – Giải Thích
Câu 14: NO
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: edge zones, reduced biological activity
- Vị trí trong bài: Đoạn 2, giữa đoạn
- Giải thích: Bài viết nói “biodiversity often increases temporarily” tại các vùng edge, trái ngược với việc giảm hoạt động sinh học.
Câu 15: YES
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: animals, boundary, urban areas, weakened immune systems
- Vị trí trong bài: Đoạn 2
- Giải thích: “weakening their immune competence” được nói rõ về động vật sống gần ranh giới đô thị.
Câu 17: YES
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: synanthropic animals, thrive, urban environments
- Vị trí trong bài: Đoạn 4
- Giải thích: Bài viết định nghĩa “synanthropic animals (those that benefit from human presence)” khớp với ý kiến của tác giả.
Câu 18: YES
- Dạng câu hỏi: Yes/No/Not Given
- Từ khóa: H1N1 pandemic, multiple host species
- Vị trí trong bài: Đoạn 6
- Giải thích: “involved genetic material from swine, avian, and human influenza viruses” chứng minh sự liên quan đa vật chủ.
Câu 20: C (paragraph 3)
- Dạng câu hỏi: Matching Information
- Từ khóa: urban water systems, breeding sites, disease carriers
- Giải thích: Đoạn 3 mô tả chi tiết về “artificial water bodies often create ideal breeding grounds for disease vectors such as mosquitoes.”
Câu 21: E (paragraph 5)
- Dạng câu hỏi: Matching Information
- Từ khóa: poor communities, greater disease risks
- Giải thích: Đoạn 5 giải thích “Poverty concentrates risk” và lý do tại sao cộng đồng nghèo đối mặt nguy cơ cao hơn.
Câu 24: edge zones / ecological edges
- Dạng câu hỏi: Summary Completion
- Từ khóa: boundaries, urban and natural areas
- Vị trí trong bài: Đoạn 2
- Giải thích: “ecological edge effects” và “edge zones” là thuật ngữ chính xác trong bài.
Câu 25: immune competence
- Dạng câu hỏi: Summary Completion
- Từ khóa: animals, reduced, vulnerable to disease
- Vị trí trong bài: Đoạn 2
- Giải thích: “weakening their immune competence” là cụm từ chính xác mô tả sự suy giảm khả năng miễn dịch.
Câu 26: peridomestic adaptation
- Dạng câu hỏi: Summary Completion
- Từ khóa: animals, live near humans, maintain diseases
- Vị trí trong bài: Đoạn 4
- Giải thích: “peridomestic adaptation – where wild animals modify their behavior to exploit urban resources” là khái niệm chính xác.
Passage 3 – Giải Thích
Câu 27: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: urbanization, developing countries, differ, industrialized nations
- Vị trí trong bài: Đoạn 1
- Giải thích: “contemporary urban expansion in low- and middle-income countries occurs under fundamentally different conditions” khẳng định sự khác biệt về điều kiện.
Câu 28: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: dilution effect hypothesis, suggest
- Vị trí trong bài: Đoạn 2
- Giải thích: “high biodiversity in intact ecosystems reduces disease transmission” là định nghĩa chính xác của hiệu ứng pha loãng.
Câu 29: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: compact urban development, main challenge
- Vị trí trong bài: Đoạn 4
- Giải thích: “compact development increases human population density, which can facilitate human-to-human transmission” chỉ ra thách thức chính.
Câu 30: C
- Dạng câu hỏi: Multiple Choice
- Từ khóa: urban pathogen evolution, passage say
- Vị trí trong bài: Đoạn 5, câu cuối
- Giải thích: “representing a critical knowledge gap in urban disease ecology” khẳng định đây vẫn là khoảng trống kiến thức quan trọng.
Câu 31: B
- Dạng câu hỏi: Multiple Choice
- Từ khóa: effective disease risk management, essential
- Vị trí trong bài: Đoạn 7
- Giải thích: “requires cross-sectoral coordination among agencies” là yếu tố thiết yếu được nhấn mạnh.
Câu 32: C
- Dạng câu hỏi: Matching Features
- Từ khóa: multiple health conditions, interact, worsen
- Vị trí trong bài: Đoạn 6
- Giải thích: “syndemic framework – recognizing the interaction of multiple, co-occurring health conditions” khớp chính xác.
Câu 33: G
- Dạng câu hỏi: Matching Features
- Từ khóa: inadequate services, jurisdictional boundaries
- Vị trí trong bài: Đoạn 7, cuối
- Giải thích: “governance voids” được mô tả như “falling between jurisdictional boundaries.”
Câu 34: A
- Dạng câu hỏi: Matching Features
- Từ khóa: ecosystem diversity, reduce disease transmission
- Vị trí trong bài: Đoạn 2
- Giải thích: Đây là định nghĩa của “dilution effect.”
Câu 37: sprawling development (patterns)
- Dạng câu hỏi: Short-answer Questions
- Từ khóa: development pattern, extensive contact zones
- Vị trí trong bài: Đoạn 4
- Giải thích: “Sprawling development patterns that create extensive urban-rural interfaces” là mô tả chính xác.
Câu 38: genomic sequencing, digital epidemiology, artificial intelligence
- Dạng câu hỏi: Short-answer Questions
- Từ khóa: fields, promise, disease detection
- Vị trí trong bài: Đoạn 8
- Giải thích: Ba công nghệ này được liệt kê rõ ràng trong đoạn về hệ thống giám sát.
Câu 39: epicenters of transmission
- Dạng câu hỏi: Short-answer Questions
- Từ khóa: urban areas, COVID-19 pandemic
- Vị trí trong bài: Đoạn 9
- Giải thích: “urban centers became epicenters of transmission” mô tả vai trò của thành phố.
Câu 40: Asia and Africa
- Dạng câu hỏi: Short-answer Questions
- Từ khóa: 2050, continents, 90%, urban population increase
- Vị trí trong bài: Đoạn 10
- Giải thích: “nearly 90% of this increase occurring in Asia and Africa” chỉ rõ hai châu lục.
Sơ đồ minh họa các cơ chế phức tạp của việc truyền bệnh từ động vật sang người trong môi trường đô thị
5. Từ Vựng Quan Trọng Theo Passage
Passage 1 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| unprecedented | adj | /ʌnˈpresɪdentɪd/ | Chưa từng có, chưa có tiền lệ | unprecedented urban growth | unprecedented scale/rate |
| urbanization | n | /ˌɜːbənaɪˈzeɪʃn/ | Sự đô thị hóa | rapid urbanization | rapid/accelerating urbanization |
| facilitate | v | /fəˈsɪlɪteɪt/ | Tạo điều kiện, hỗ trợ | facilitate the spread of diseases | facilitate growth/transmission |
| zoonotic diseases | n | /ˌzuːəˈnɒtɪk dɪˈziːzɪz/ | Bệnh truyền từ động vật sang người | examples include rabies, Ebola | zoonotic disease outbreak |
| disease transmission | n | /dɪˈziːz trænzˈmɪʃn/ | Sự lây truyền bệnh | increased disease transmission | prevent/reduce disease transmission |
| disrupt ecosystems | v + n | /dɪsˈrʌpt ˈiːkəʊˌsɪstəmz/ | Phá vỡ hệ sinh thái | activities disrupt ecosystems | severely disrupt ecosystems |
| habitat encroachment | n | /ˈhæbɪtæt ɪnˈkrəʊtʃmənt/ | Sự lấn chiếm môi trường sống | habitat encroachment increases risk | urban habitat encroachment |
| amplify | v | /ˈæmplɪfaɪ/ | Khuếch đại, tăng cường | amplify disease transmission | amplify the effects/impact |
| informal settlements | n | /ɪnˈfɔːməl ˈsetlmənts/ | Khu ổ chuột, khu định cư tự phát | informal settlements lack sanitation | sprawling informal settlements |
| disease vectors | n | /dɪˈziːz ˈvektəz/ | Vật trung gian truyền bệnh | mosquitoes are disease vectors | control disease vectors |
| urban planning | n | /ˈɜːbən ˈplænɪŋ/ | Quy hoạch đô thị | proper urban planning | sustainable urban planning |
| crowded living conditions | n | /ˈkraʊdɪd ˈlɪvɪŋ kənˈdɪʃnz/ | Điều kiện sống chật chội | crowded living conditions spread disease | densely crowded living conditions |
Passage 2 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| intricate mechanisms | adj + n | /ˈɪntrɪkət ˈmekənɪzmz/ | Cơ chế phức tạp | intricate mechanisms of transmission | complex/intricate mechanisms |
| ecological edge effects | adj + n | /ˌiːkəˈlɒdʒɪkl edʒ ɪˈfekts/ | Hiệu ứng rìa sinh thái | concept of ecological edge effects | significant edge effects |
| immune competence | n | /ɪˈmjuːn ˈkɒmpɪtəns/ | Khả năng miễn dịch | weakening immune competence | reduced/enhanced immune competence |
| anthropogenic changes | adj + n | /ˌænθrəpəˈdʒenɪk ˈtʃeɪndʒɪz/ | Những thay đổi do con người | anthropogenic changes to water | anthropogenic environmental changes |
| peridomestic adaptation | adj + n | /ˌperɪdəˈmestɪk ˌædæpˈteɪʃn/ | Sự thích nghi quanh nhà ở | phenomenon of peridomestic adaptation | successful peridomestic adaptation |
| synanthropic animals | adj + n | /ˌsɪnænˈθrɒpɪk ˈænɪməlz/ | Động vật cộng sinh với người | synanthropic animals benefit | common synanthropic animals |
| disease reservoirs | n | /dɪˈziːz ˈrezəvwɑːz/ | Bể chứa bệnh | creating disease reservoirs | maintain disease reservoirs |
| genetic reassortment | adj + n | /dʒəˈnetɪk ˌriːəˈsɔːtmənt/ | Sự tái tổ hợp gen | undergo genetic reassortment | viral genetic reassortment |
| multi-host spillover | adj + n | /ˈmʌltɪ həʊst ˈspɪləʊvə/ | Sự lây lan qua nhiều vật chủ | multi-host spillover process | complex multi-host spillover |
| antimicrobial resistance | adj + n | /ˌæntɪmaɪkrəʊˈbaɪəl rɪˈzɪstəns/ | Sự kháng kháng sinh | promote antimicrobial resistance | growing antimicrobial resistance |
| bridging hosts | n | /ˈbrɪdʒɪŋ həʊsts/ | Vật chủ cầu nối | pets as bridging hosts | important bridging hosts |
| microclimatic conditions | adj + n | /ˌmaɪkrəʊklaɪˈmætɪk kənˈdɪʃnz/ | Điều kiện vi khí hậu | create microclimatic conditions | favorable microclimatic conditions |
| feral populations | adj + n | /ˈferəl ˌpɒpjuˈleɪʃnz/ | Quần thể hoang dại | dogs form feral populations | established feral populations |
| cold chain | n | /kəʊld tʃeɪn/ | Chuỗi lạnh | adequate cold chain | maintain cold chain |
| socioeconomic factors | adj + n | /ˌsəʊsiəʊˌiːkəˈnɒmɪk ˈfæktəz/ | Yếu tố kinh tế xã hội | socioeconomic factors influence | various socioeconomic factors |
Passage 3 – Essential Vocabulary
| Từ vựng | Loại từ | Phiên âm | Nghĩa tiếng Việt | Ví dụ từ bài | Collocation |
|---|---|---|---|---|---|
| socioecological transformation | adj + n | /ˌsəʊsiəʊˌiːkəˈlɒdʒɪkl ˌtrænsfəˈmeɪʃn/ | Sự chuyển đổi xã hội-sinh thái | unprecedented socioecological transformation | major socioecological transformation |
| confluence | n | /ˈkɒnfluəns/ | Sự hội tụ, giao thoa | confluence of rapid growth | confluence of factors/forces |
| epidemiological landscape | adj + n | /ˌepɪˌdiːmiəˈlɒdʒɪkl ˈlændskeɪp/ | Bối cảnh dịch tễ học | novel epidemiological landscape | changing epidemiological landscape |
| dilution effect | n | /daɪˈluːʃn ɪˈfekt/ | Hiệu ứng pha loãng | concept of dilution effect | dilution effect hypothesis |
| amplification effect | n | /ˌæmplɪfɪˈkeɪʃn ɪˈfekt/ | Hiệu ứng khuếch đại | inverse amplification effect | disease amplification effect |
| biodiversity loss | n | /ˌbaɪəʊdaɪˈvɜːsəti lɒs/ | Sự mất đa dạng sinh học | biodiversity loss increases risk | severe biodiversity loss |
| meta-analyses | n | /ˌmetə əˈnæləsiːz/ | Phân tích tổng hợp | recent meta-analyses | comprehensive meta-analyses |
| heterogeneity | n | /ˌhetərəʊdʒəˈniːəti/ | Sự không đồng nhất | substantial heterogeneity | significant heterogeneity |
| phylogenetic diversity | adj + n | /ˌfaɪləʊdʒəˈnetɪk daɪˈvɜːsəti/ | Đa dạng phả hệ | phylogenetic diversity of hosts | maintain phylogenetic diversity |
| sprawling development | adj + n | /ˈsprɔːlɪŋ dɪˈveləpmənt/ | Phát triển tràn lan | sprawling development patterns | uncontrolled sprawling development |
| compact urban development | adj + n | /ˈkɒmpækt ˈɜːbən dɪˈveləpmənt/ | Phát triển đô thị tập trung | compact urban development | promote compact development |
| syndemic framework | adj + n | /sɪnˈdemɪk ˈfreɪmwɜːk/ | Khung lý thuyết đa dịch | syndemic framework recognizes | apply syndemic framework |
| institutional fragmentation | adj + n | /ˌɪnstɪˈtjuːʃənl ˌfræɡmenˈteɪʃn/ | Sự phân mảnh thể chế | creating institutional fragmentation | reduce institutional fragmentation |
| governance voids | n | /ˈɡʌvənəns vɔɪdz/ | Khoảng trống quản trị | exist in governance voids | fill governance voids |
| integrated surveillance | adj + n | /ˈɪntɪɡreɪtɪd səˈveɪləns/ | Giám sát tích hợp | tools for integrated surveillance | establish integrated surveillance |
| genomic sequencing | adj + n | /dʒɪˈnəʊmɪk ˈsiːkwənsɪŋ/ | Giải trình tự gen | advances in genomic sequencing | rapid genomic sequencing |
| digital epidemiology | adj + n | /ˈdɪdʒɪtl ˌepɪˌdiːmiˈɒlədʒi/ | Dịch tễ học số | digital epidemiology offers tools | emerging digital epidemiology |
| epicenters of transmission | n | /ˈepɪsentəz əv trænzˈmɪʃn/ | Tâm dịch truyền nhiễm | became epicenters of transmission | major epicenters of transmission |
Minh họa chiến lược giám sát và phòng ngừa bệnh từ động vật trong môi trường đô thị theo hướng One Health
Kết bài
Chủ đề về vai trò của đô thị hóa trong việc lây lan các bệnh truyền nhiễm từ động vật sang người (Urbanization’s Role In Spreading Zoonotic Diseases) không chỉ là một chủ đề học thuật quan trọng mà còn phản ánh những thách thức sức khỏe toàn cầu thực tế mà chúng ta đang đối mặt. Qua bộ đề thi IELTS Reading mẫu này, bạn đã được thực hành với ba passages có độ khó tăng dần, từ Easy đến Hard, phản ánh chính xác cấu trúc và yêu cầu của kỳ thi IELTS thực tế.
Ba passages trong đề thi này đã cung cấp đầy đủ các độ khó và dạng câu hỏi đa dạng mà bạn sẽ gặp trong ngày thi. Passage 1 giới thiệu các khái niệm cơ bản về đô thị hóa và bệnh truyền nhiễm với ngôn ngữ dễ tiếp cận. Passage 2 đi sâu vào các cơ chế phức tạp của sự lây truyền bệnh với từ vựng học thuật và cấu trúc câu nâng cao hơn. Passage 3 phân tích mối quan hệ phức tạp giữa đô thị hóa, động lực bệnh truyền nhiễm và an ninh y tế toàn cầu ở mức độ chuyên sâu nhất.
Phần đáp án chi tiết kèm giải thích vị trí và phương pháp paraphrase sẽ giúp bạn tự đánh giá chính xác khả năng của mình và hiểu rõ cách thức làm bài hiệu quả. Đặc biệt, bảng từ vựng phân loại theo từng passage với phiên âm, nghĩa tiếng Việt, ví dụ thực tế và collocations sẽ giúp bạn tích lũy vốn từ vựng học thuật quan trọng không chỉ cho phần Reading mà còn cho cả Writing và Speaking.
Để đạt kết quả tốt nhất, hãy làm bài trong điều kiện giống thi thật: đặt thời gian 60 phút, không tra từ điển, và tập trung cao độ. Sau khi hoàn thành, hãy dành thời gian phân tích kỹ lưỡng các câu trả lời sai để rút kinh nghiệm và cải thiện kỹ năng làm bài. Luyện tập thường xuyên với các đề thi chất lượng như thế này sẽ giúp bạn tự tin hơn và đạt được band điểm mong muốn trong kỳ thi IELTS Reading.