IELTS Reading: Thách Thức Đạt Mức Phát Thải Ròng Bằng Không Trong Giao Thông – Đề Thi Mẫu Có Đáp Án Chi Tiết

Mở Bài

Chủ đề về môi trường và năng lượng bền vững, đặc biệt là vấn đề đạt mức phát thải ròng bằng không (net-zero emissions) trong lĩnh vực giao thông vận tải, đang trở thành một trong những chủ đề nóng hổi và thường xuyên xuất hiện trong các đề thi IELTS Reading gần đây. Với sự quan tâm ngày càng tăng của cộng đồng quốc tế về biến đổi khí hậu, các bài đọc liên quan đến công nghệ xanh, giao thông bền vững và chính sách môi trường đã trở thành nội dung phổ biến trong Cambridge IELTS từ tập 14 trở đi.

Trong bài viết này, bạn sẽ được trải nghiệm một bộ đề thi IELTS Reading hoàn chỉnh với 3 passages từ dễ đến khó, bao gồm 40 câu hỏi đa dạng giống như thi thật. Mỗi passage được thiết kế theo đúng chuẩn IELTS chính thức, kèm theo đáp án chi tiết và giải thích cặn kẽ. Bạn cũng sẽ học được hàng chục từ vựng quan trọng về chủ đề giao thông xanh và các kỹ thuật làm bài hiệu quả. Bộ đề này phù hợp cho học viên từ band 5.0 trở lên, giúp bạn làm quen với format thi thật và nâng cao kỹ năng đọc hiểu học thuật.

Hướng Dẫn Làm Bài IELTS Reading

Tổng Quan Về IELTS Reading Test

IELTS Reading Test là phần thi kéo dài 60 phút với 3 passages và tổng cộng 40 câu hỏi. Mỗi câu trả lời đúng được tính 1 điểm, và không bị trừ điểm khi trả lời sai. Độ khó của các passages tăng dần, với Passage 1 thường dễ nhất và Passage 3 khó nhất.

Phân bổ thời gian khuyến nghị:

  • Passage 1: 15-17 phút (13 câu hỏi)
  • Passage 2: 18-20 phút (13 câu hỏi)
  • Passage 3: 23-25 phút (14 câu hỏi)

Lưu ý quan trọng là bạn phải chuyển đáp án sang Answer Sheet trong vòng 60 phút này, không có thời gian bổ sung. Do đó, hãy quản lý thời gian thật chặt chẽ và không nên dành quá nhiều thời gian cho một câu hỏi.

Các Dạng Câu Hỏi Trong Đề Này

Bộ đề thi mẫu này bao gồm đầy đủ các dạng câu hỏi phổ biến nhất trong IELTS Reading:

  • Multiple Choice (Trắc nghiệm): Chọn đáp án đúng nhất từ các phương án cho sẵn
  • True/False/Not Given: Xác định thông tin đúng, sai hoặc không được đề cập
  • Matching Headings: Nối tiêu đề phù hợp với các đoạn văn
  • Sentence Completion: Hoàn thành câu với từ trong bài đọc
  • Summary Completion: Điền từ vào đoạn tóm tắt
  • Matching Features: Nối thông tin với các đặc điểm tương ứng
  • Short-answer Questions: Trả lời câu hỏi ngắn dựa trên thông tin trong bài

IELTS Reading Practice Test

PASSAGE 1 – The Rise of Electric Vehicles

Độ khó: Easy (Band 5.0-6.5)

Thời gian đề xuất: 15-17 phút

The transportation sector has long been recognized as one of the largest contributors to global greenhouse gas emissions, accounting for approximately 24% of direct carbon dioxide emissions from fossil fuel combustion worldwide. As concerns about climate change intensify, governments and automotive manufacturers are increasingly looking toward electric vehicles (EVs) as a potential solution to reduce the environmental impact of personal transportation.

Electric vehicles are not a new invention. In fact, the first practical electric car was developed in the 1880s, even before gasoline-powered vehicles became dominant. However, early electric cars faced significant challenges, primarily related to battery technology and charging infrastructure. These limitations led to the dominance of internal combustion engine vehicles throughout most of the 20th century. It was only in the early 2000s that electric vehicles began to experience a renaissance, driven by advances in lithium-ion battery technology and growing environmental awareness.

Today’s electric vehicles offer several advantages over their gasoline-powered counterparts. First and foremost, they produce zero direct emissions while driving, meaning they don’t release harmful pollutants into the air at the point of use. This is particularly beneficial in urban areas where air quality is a major concern. Additionally, electric motors are significantly more energy-efficient than internal combustion engines, converting approximately 77% of electrical energy into motion compared to only 12-30% for gasoline engines.

However, the environmental benefits of electric vehicles depend heavily on the source of electricity used to charge them. In regions where electricity is generated primarily from renewable sources such as wind, solar, or hydroelectric power, EVs can be truly clean. But in areas still reliant on coal-fired power plants, the overall carbon footprint of electric vehicles may be only marginally better than efficient gasoline cars when considering the full lifecycle emissions. This has led experts to emphasize that transitioning to electric vehicles must go hand-in-hand with decarbonizing the electricity grid.

The cost of electric vehicles has been a significant barrier to widespread adoption. Although operational costs are generally lower than gasoline vehicles due to cheaper electricity and less maintenance, the upfront purchase price has traditionally been higher. This is primarily because of expensive battery packs, which can account for up to 40% of an EV’s total cost. Nevertheless, battery prices have been falling dramatically – by approximately 89% between 2010 and 2020 – making electric vehicles increasingly competitive with conventional cars.

Government incentives have played a crucial role in accelerating EV adoption. Many countries offer substantial tax credits, rebates, or other financial benefits to consumers who purchase electric vehicles. Norway, for instance, has implemented aggressive policies including exemption from purchase taxes and access to bus lanes, resulting in electric vehicles accounting for over 54% of new car sales in 2020. China, the world’s largest automotive market, has also introduced significant subsidies and preferential policies, helping it become the global leader in EV sales.

Charging infrastructure remains one of the most significant challenges facing electric vehicle adoption. While owners with private garages can install home charging stations, those living in apartments or without dedicated parking face difficulties. Public charging networks are expanding rapidly, but charging speed and availability remain concerns. The latest fast-charging technology can replenish 80% of battery capacity in approximately 30 minutes, but this is still considerably longer than the few minutes required to refuel a gasoline vehicle. Moreover, the distribution of charging stations is uneven, with urban areas generally better served than rural regions.

Range anxiety – the fear of running out of battery power before reaching a charging station – has been another psychological barrier to EV adoption. Early electric vehicles often had ranges of less than 100 kilometers on a single charge, making them impractical for long-distance travel. Modern EVs, however, have made substantial progress. Many current models offer ranges exceeding 400 kilometers, with some premium vehicles capable of traveling over 600 kilometers between charges. As battery technology continues to improve, this concern is gradually diminishing.

The automotive industry has responded to growing demand with an unprecedented expansion of electric vehicle offerings. Traditional manufacturers like Volkswagen, General Motors, and Toyota have announced plans to electrify their entire vehicle lineups over the coming decades. Meanwhile, new entrants such as Tesla have demonstrated that electric vehicles can be desirable, high-performance products rather than merely utilitarian environmental alternatives. This competition has spurred innovation and helped bring down costs, creating a virtuous cycle that benefits consumers and the environment alike.

Questions 1-6: Multiple Choice

Choose the correct letter, A, B, C, or D.

1. According to the passage, what percentage of direct CO2 emissions from fossil fuels comes from transportation?
A. 12%
B. 24%
C. 30%
D. 54%

2. When were the first practical electric cars developed?
A. 1880s
B. Early 1900s
C. Early 2000s
D. 2010

3. What percentage of electrical energy do electric motors convert into motion?
A. 12-30%
B. 40%
C. 54%
D. 77%

4. By how much did battery prices fall between 2010 and 2020?
A. 24%
B. 40%
C. 54%
D. 89%

5. What percentage of new car sales in Norway in 2020 were electric vehicles?
A. Over 24%
B. Over 40%
C. Over 54%
D. Over 77%

6. How long does the latest fast-charging technology typically take to charge a battery to 80%?
A. A few minutes
B. Approximately 30 minutes
C. 100 minutes
D. 400 minutes

Questions 7-10: True/False/Not Given

Do the following statements agree with the information given in the passage? Write:

  • TRUE if the statement agrees with the information
  • FALSE if the statement contradicts the information
  • NOT GIVEN if there is no information on this

7. Electric vehicles always have a smaller carbon footprint than gasoline vehicles regardless of electricity source.

8. Battery packs can represent up to 40% of an electric vehicle’s total cost.

9. All new electric vehicles manufactured after 2020 must have a minimum range of 400 kilometers.

10. Tesla proved that electric vehicles could be attractive, high-performance products.

Questions 11-13: Sentence Completion

Complete the sentences below. Choose NO MORE THAN THREE WORDS from the passage for each answer.

11. The fear of running out of battery power before finding a charging station is called __.

12. People living in apartments often face difficulties because they lack access to __.

13. In urban areas, a major benefit of electric vehicles is the improvement of __.

Xe điện đang sạc tại trạm sạc công cộng hiện đại với công nghệ sạc nhanhXe điện đang sạc tại trạm sạc công cộng hiện đại với công nghệ sạc nhanh


PASSAGE 2 – Infrastructure and Investment Challenges

Độ khó: Medium (Band 6.0-7.5)

Thời gian đề xuất: 18-20 phút

The transition toward net-zero emissions in transportation requires far more than simply replacing internal combustion engines with electric motors. It demands a comprehensive transformation of the entire transportation infrastructure, involving billions of dollars in investment and complex coordination among governments, private companies, and consumers. While electric vehicles have captured public attention, the challenges of building the necessary supporting infrastructure represent a formidable obstacle that could determine the success or failure of decarbonization efforts.

Charging infrastructure stands at the forefront of these challenges. Unlike gasoline stations, which were established over more than a century through incremental development, the electric vehicle charging network must be built relatively quickly to keep pace with accelerating EV adoption. Estimates suggest that the United States alone will need approximately 500,000 public charging stations by 2030 to support projected EV adoption rates – a dramatic expansion from the roughly 100,000 chargers available in 2021. This infrastructure buildout requires not only substantial financial investment but also careful planning to ensure chargers are located where they’re needed most.

The economics of charging infrastructure present a complex chicken-and-egg dilemma. Private companies are hesitant to invest heavily in charging stations when there are relatively few electric vehicles on the road, as the return on investment may take years to materialize. Conversely, consumers are reluctant to purchase EVs without confidence in widespread, convenient charging availability. This has led to calls for government intervention to provide initial funding and de-risk private investment. Several countries have responded with ambitious public investment programs, but the scale required still exceeds current commitments by a considerable margin.

Technical standardization represents another critical challenge. Currently, multiple charging standards coexist, including CCS (Combined Charging System), CHAdeMO, and Tesla’s proprietary connector. This fragmentation creates confusion for consumers and inefficiency for infrastructure providers who may need to install multiple types of chargers at each location. The situation is analogous to the early days of railroad development when different companies used incompatible track gauges, creating logistical nightmares at connection points. Industry leaders are working toward universal standards, but progress has been slow due to competing commercial interests and regional variations in adoption.

Grid capacity and management pose equally significant challenges. Electric vehicles represent a substantial new source of electricity demand, and widespread adoption could strain existing power grids, particularly during peak charging periods. If millions of EV owners plug in their vehicles simultaneously when returning home from work in the evening, the resulting demand spike could overwhelm local distribution networks. This concern has prompted research into smart charging systems that distribute charging across off-peak hours and vehicle-to-grid (V2G) technologies that allow EVs to feed electricity back into the grid during high-demand periods.

The intermittency of renewable energy sources adds another layer of complexity. Wind and solar power generation fluctuate based on weather conditions and time of day, creating mismatches between electricity supply and demand. Electric vehicles could actually help address this challenge through load balancing – charging primarily when renewable energy production is high and demand is otherwise low. However, realizing this potential requires sophisticated coordination systems and price signals that incentivize consumers to charge at optimal times. Implementing such systems involves significant technical challenges and potential privacy concerns regarding data about individual driving and charging patterns.

Investment in electricity generation capacity must parallel the buildout of charging infrastructure. While transitioning from gasoline to electric vehicles doesn’t necessarily increase total energy consumption substantially (due to the higher efficiency of electric motors), it shifts that consumption from petroleum to the electrical system. Meeting this new demand with clean energy sources is essential to achieving genuine emissions reductions. This requires massive investment in wind farms, solar installations, and potentially new nuclear power plants, along with the transmission infrastructure to deliver that electricity where it’s needed.

The financial burden of this infrastructure transformation raises important questions about equity and access. Wealthier individuals and communities often have greater access to home charging, newer vehicles, and the financial resources to adopt new technology early. Meanwhile, lower-income communities may lack access to charging infrastructure and face affordability barriers to purchasing electric vehicles, even as used models become available. Some advocates warn of a potential two-tier system where affluent areas benefit from clean transportation while disadvantaged communities remain dependent on polluting vehicles and suffer from poor air quality.

Public transit electrification represents another significant investment requirement that receives less attention than private vehicles. Buses, trains, and other mass transit systems are crucial for sustainable urban transportation, particularly in densely populated areas. Converting these fleets to electric or hydrogen power requires substantial capital investment in vehicles, charging or fueling infrastructure, and maintenance facilities. Many transit agencies operate on tight budgets and struggle to fund even routine maintenance, let alone expensive fleet replacements. Without adequate funding mechanisms, public transit electrification could lag behind private vehicle adoption, undermining broader sustainability goals.

The timeline for infrastructure development presents a final critical challenge. Building out comprehensive charging networks, upgrading electricity grids, and expanding clean energy generation are all time-intensive processes involving regulatory approvals, land acquisition, and complex construction projects. Meanwhile, climate scientists warn that emissions must be reduced rapidly within the next decade to avoid the most severe consequences of climate change. This creates tremendous pressure to accelerate normally slow-moving infrastructure development processes, potentially requiring streamlined regulations and unprecedented levels of cooperation between public and private sectors.

Questions 14-18: Yes/No/Not Given

Do the following statements agree with the views of the writer in the passage? Write:

  • YES if the statement agrees with the views of the writer
  • NO if the statement contradicts the views of the writer
  • NOT GIVEN if it is impossible to say what the writer thinks about this

14. The United States currently has sufficient charging infrastructure to support projected electric vehicle adoption by 2030.

15. Private companies are generally eager to invest in charging infrastructure even when there are few electric vehicles on the road.

16. Multiple charging standards create similar problems to those faced during early railroad development.

17. Electric vehicles will definitely increase total energy consumption substantially.

18. Wealthier communities typically have better access to electric vehicle charging infrastructure than lower-income communities.

Questions 19-23: Matching Headings

Choose the correct heading for paragraphs C-G from the list of headings below.

List of Headings:
i. The problem of incompatible charging technologies
ii. Financial challenges facing public transportation systems
iii. The need for rapid infrastructure development
iv. Concerns about fairness in the transition to electric vehicles
v. Economic barriers to charging station construction
vi. Managing electricity supply and demand effectively
vii. The hidden costs of battery production
viii. International cooperation on emissions standards

19. Paragraph C

20. Paragraph D

21. Paragraph F

22. Paragraph H

23. Paragraph J

Questions 24-26: Summary Completion

Complete the summary below. Choose NO MORE THAN TWO WORDS from the passage for each answer.

Electric vehicles create new demands on electricity systems, particularly during (24) __ when many people charge their vehicles simultaneously. To address this, researchers are developing (25) __ that can distribute charging across different times. Additionally, (26) __ technologies would allow electric vehicles to return electricity to the grid when demand is high, helping to balance supply and demand.

Cơ sở hạ tầng sạc xe điện với nhiều trạm sạc và lưới điện thông minhCơ sở hạ tầng sạc xe điện với nhiều trạm sạc và lưới điện thông minh


PASSAGE 3 – Systemic Barriers and Alternative Technologies

Độ khó: Hard (Band 7.0-9.0)

Thời gian đề xuất: 23-25 phút

The discourse surrounding net-zero emissions in transportation has been dominated by electric vehicles, yet this narrow focus risks overlooking both the multifaceted nature of the challenge and the potential of alternative technological pathways. Achieving genuine carbon neutrality in transportation requires addressing not merely tailpipe emissions but the entire lifecycle environmental impact of vehicles, from raw material extraction through manufacturing, operation, and eventual disposal. Moreover, several categories of transportation present unique challenges that current battery-electric technology may be ill-suited to address, necessitating exploration of alternative approaches such as hydrogen fuel cells, sustainable biofuels, and even synthetic fuels produced using captured carbon.

The embedded carbon in vehicle manufacturing represents a substantial portion of total lifecycle emissions that is frequently underestimated in public discussions. Battery production, in particular, is energy-intensive and relies on materials with significant environmental footprints. Lithium extraction consumes enormous quantities of water and can cause environmental degradation in mining regions, predominantly located in developing countries such as Chile, Argentina, and Bolivia. Cobalt mining, primarily concentrated in the Democratic Republic of Congo, is associated with not only environmental concerns but also serious human rights issues, including child labor and dangerous working conditions. The ethical dimensions of the transition to electric mobility thus extend far beyond simple emissions accounting, raising uncomfortable questions about whether wealthy nations are merely offshoring the environmental and social costs of their clean energy transition.

Recycling infrastructure for lithium-ion batteries remains woefully underdeveloped, creating potential for significant future waste problems. While batteries retain approximately 70-80% of their capacity after their useful life in vehicles, establishing effective second-life applications and eventually recovering valuable materials requires sophisticated recycling systems that barely exist today. The chemistry of modern batteries is complex, and different manufacturers use varying formulations, making standardized recycling processes difficult to establish. Without robust recycling systems, the electric vehicle revolution could generate millions of tons of hazardous waste by mid-century, partially negating the environmental benefits these vehicles are supposed to deliver.

Long-haul trucking and freight transportation present particular challenges for battery-electric technology due to the weight penalties and charging time requirements associated with current battery systems. A long-haul truck might need battery packs weighing several thousand kilograms to achieve adequate range, reducing payload capacity and economic viability. Hydrogen fuel cells offer a potential alternative, providing longer range and faster refueling comparable to diesel trucks. However, hydrogen production currently relies predominantly on steam methane reforming of natural gas – a process that generates substantial carbon emissions. “Green hydrogen,” produced through electrolysis using renewable electricity, could solve this problem but remains expensive and requires significant infrastructure investment in production facilities, pipelines, and refueling stations. The technological maturity and cost-competitiveness of hydrogen systems lag considerably behind battery-electric vehicles, creating uncertainty about their future viability.

Aviation and maritime shipping represent the most intractable challenges for transportation decarbonization. Aircraft require extremely high energy density fuels, and the weight-to-power ratio of current batteries makes them unsuitable for long-distance flight. While small electric aircraft may become viable for short regional routes, large commercial airliners crossing oceans are likely to require alternative solutions. Sustainable aviation fuels (SAFs) produced from agricultural waste, algae, or synthesized using captured carbon and renewable electricity offer one pathway, though current production volumes are minimal and costs are prohibitively high. Hydrogen-powered aircraft remain in early research stages with formidable technical challenges related to storage and safety. Maritime shipping faces similar constraints, with additional complications from the scale of vessels and the need for international regulatory coordination. The International Maritime Organization has established ambitious targets for reducing shipping emissions, but the pathway to achieving them remains unclear, and progress has been disappointingly slow.

Behavioral and societal factors constitute underappreciated barriers to achieving net-zero transportation emissions that transcend purely technological considerations. The dominant paradigm of personal vehicle ownership, particularly in nations like the United States where cars carry powerful cultural symbolism, may fundamentally conflict with optimal sustainability outcomes. Even zero-emission vehicles require substantial resources to manufacture, occupy space when parked, and contribute to traffic congestion. Alternative models emphasizing shared mobility, enhanced public transportation, active transportation modes (walking and cycling), and transit-oriented development could potentially deliver greater emissions reductions than simply electrifying existing private vehicles. However, transforming entrenched patterns of land use, urban design, and transportation behavior faces formidable political and cultural resistance. Automobile manufacturers and fossil fuel companies wield substantial political influence and may actively oppose policies that threaten their business models, even when such policies would benefit climate objectives.

The regulatory landscape for advancing net-zero transportation is fragmented and often incoherent, with policies varying dramatically across jurisdictions and sometimes working at cross-purposes. While some governments offer generous incentives for electric vehicle purchases, they may simultaneously maintain policies that indirectly subsidize fossil fuels or promote sprawling development patterns that necessitate automobile dependence. Carbon pricing mechanisms that would internalize the climate costs of transportation emissions remain politically contentious and have been implemented only partially and inconsistently. The absence of comprehensive, economy-wide carbon pricing creates market distortions that favor incumbent technologies and slow the transition to cleaner alternatives. Moreover, international coordination on transportation emissions remains weak, particularly for cross-border freight, aviation, and shipping, where jurisdictional complexity creates opportunities for regulatory arbitrage and carbon leakage.

Technological path dependency and lock-in effects pose additional risks to optimal decarbonization strategies. As governments and industries commit massive investments to particular technological approaches – predominantly battery-electric vehicles – alternative pathways may be prematurely foreclosed even if they might ultimately prove superior for certain applications. The sunk costs in existing infrastructure and political momentum behind current strategies can make course correction difficult even in the face of new information. History offers cautionary tales of technological monocultures that initially appeared promising but later revealed unforeseen drawbacks. Maintaining technological pluralism and avoiding premature standardization on solutions that may not scale globally or address all use cases requires intentional policy design and resistance to simplistic narratives about silver bullet solutions.

The temporal dimension of the net-zero transition creates particularly vexing challenges. The long operational lifetimes of vehicles – typically 10-15 years for passenger cars and much longer for aircraft and ships – mean that vehicles sold today will remain in operation for years or decades, continuing to generate emissions. This creates an urgency paradox: we must accelerate the transition to zero-emission vehicles rapidly, yet the vehicle stock turnover rate is inherently slow. Policies focused solely on new vehicle sales, while important, will take considerable time to reduce fleet-wide emissions. This has prompted discussion of more aggressive interventions such as accelerated retirement programs for fossil-fuel vehicles, though such policies raise concerns about economic waste and equity implications for lower-income individuals who rely on used vehicles.

Finally, the geopolitical implications of the transportation energy transition deserve serious consideration. The current global energy system, dominated by petroleum, has shaped international relations, driven conflicts, and created dependencies that define much of modern geopolitics. A shift to electricity and potentially hydrogen would fundamentally reshape these dynamics, creating new dependencies on countries that control critical battery materials or dominate renewable energy technology manufacturing. China’s commanding position in lithium-ion battery production and control over rare earth minerals needed for electric motors has already raised strategic concerns in Western nations. The transition may thus create new forms of energy geopolitics with uncertain implications for international stability and national security. Anticipating and managing these geopolitical shifts should be an integral component of transportation decarbonization strategies, yet they receive insufficient attention in current policy discussions.

Questions 27-31: Multiple Choice

Choose the correct letter, A, B, C, or D.

27. According to the passage, what percentage of capacity do batteries typically retain after their useful life in vehicles?
A. 50-60%
B. 70-80%
C. 80-90%
D. 90-100%

28. What process is currently the predominant method for producing hydrogen?
A. Electrolysis using renewable electricity
B. Steam methane reforming of natural gas
C. Algae cultivation
D. Carbon capture and synthesis

29. How long do passenger cars typically remain in operation?
A. 5-10 years
B. 10-15 years
C. 15-20 years
D. 20-25 years

30. According to the passage, which region primarily supplies cobalt for battery production?
A. Chile and Argentina
B. Bolivia
C. The Democratic Republic of Congo
D. China

31. What does the passage suggest about China’s position in the battery industry?
A. It has minor involvement in battery production
B. It dominates lithium-ion battery production
C. It relies entirely on imported battery materials
D. It produces primarily hydrogen fuel cells

Questions 32-36: Matching Features

Match each challenge (32-36) with the correct transportation sector (A-E). You may use any letter more than once.

Transportation Sectors:
A. Long-haul trucking
B. Aviation
C. Maritime shipping
D. Personal vehicles
E. Public transportation

32. Requires extremely high energy density fuels

33. Faces weight penalties with current battery technology that reduce payload capacity

34. Needs international regulatory coordination

35. Carries powerful cultural symbolism that may conflict with sustainability goals

36. Has targets set by the International Maritime Organization

Questions 37-40: Short-answer Questions

Answer the questions below. Choose NO MORE THAN THREE WORDS from the passage for each answer.

37. What type of fuel can be produced from agricultural waste or algae for aircraft?

38. What mechanism would help internalize the climate costs of transportation that remains politically contentious?

39. What does the passage describe as a risk when governments commit massive investments to one particular technology?

40. What type of programs have been discussed as a way to reduce fleet-wide emissions more quickly by removing fossil-fuel vehicles?

Công nghệ giao thông tương lai với nhiều phương tiện thay thế và hệ thống thông minhCông nghệ giao thông tương lai với nhiều phương tiện thay thế và hệ thống thông minh


Answer Keys – Đáp Án

PASSAGE 1: Questions 1-13

  1. B
  2. A
  3. D
  4. D
  5. C
  6. B
  7. FALSE
  8. TRUE
  9. NOT GIVEN
  10. TRUE
  11. range anxiety
  12. private garages / home charging (stations)
  13. air quality

PASSAGE 2: Questions 14-26

  1. NO
  2. NO
  3. YES
  4. NO
  5. YES
  6. v
  7. i
  8. vi
  9. iv
  10. iii
  11. peak charging periods / peak periods
  12. smart charging systems
  13. vehicle-to-grid / V2G

PASSAGE 3: Questions 27-40

  1. B
  2. B
  3. B
  4. C
  5. B
  6. B
  7. A
  8. C
  9. D
  10. C
  11. sustainable aviation fuels / SAFs
  12. carbon pricing mechanisms / carbon pricing
  13. technological lock-in / lock-in effects / path dependency
  14. accelerated retirement programs

Giải Thích Đáp Án Chi Tiết

Passage 1 – Giải Thích

Câu 1: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: percentage, direct CO2 emissions, fossil fuels, transportation
  • Vị trí trong bài: Đoạn 1, dòng 1-3
  • Giải thích: Bài đọc nói rõ “accounting for approximately 24% of direct carbon dioxide emissions from fossil fuel combustion worldwide.” Đây là paraphrase trực tiếp từ câu hỏi, cho thấy đáp án là 24%.

Câu 2: A

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: first practical electric cars, developed
  • Vị trí trong bài: Đoạn 2, dòng 2-3
  • Giải thích: Câu “In fact, the first practical electric car was developed in the 1880s” chỉ rõ thời điểm là những năm 1880, tương ứng với đáp án A.

Câu 3: D

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: percentage, electrical energy, electric motors, convert, motion
  • Vị trí trong bài: Đoạn 3, dòng 3-5
  • Giải thích: Bài viết nêu “converting approximately 77% of electrical energy into motion” khi nói về electric motors, vì vậy đáp án đúng là 77%.

Câu 7: FALSE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: always, smaller carbon footprint, regardless of electricity source
  • Vị trí trong bài: Đoạn 4, toàn đoạn
  • Giải thích: Đoạn văn giải thích rằng lợi ích môi trường của xe điện “depend heavily on the source of electricity” và ở những khu vực dựa vào nhà máy điện than, carbon footprint chỉ “marginally better” hơn xe xăng. Điều này mâu thuẫn với từ “always” trong câu hỏi, nên đáp án là FALSE.

Câu 8: TRUE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: battery packs, up to 40%, total cost
  • Vị trí trong bài: Đoạn 5, dòng 3-4
  • Giải thích: Bài đọc nói “expensive battery packs, which can account for up to 40% of an EV’s total cost” – khớp chính xác với thông tin trong câu hỏi.

Câu 10: TRUE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: Tesla, proved, attractive, high-performance products
  • Vị trí trong bài: Đoạn 9, dòng 2-4
  • Giải thích: Câu “new entrants such as Tesla have demonstrated that electric vehicles can be desirable, high-performance products” thể hiện ý tưởng tương tự, trong đó “demonstrated” được paraphrase thành “proved” và “desirable” thành “attractive”.

Câu 11: range anxiety

  • Dạng câu hỏi: Sentence Completion
  • Từ khóa: fear, running out of battery power, charging station
  • Vị trí trong bài: Đoạn 8, dòng 1
  • Giải thích: Câu đầu đoạn 8 định nghĩa rõ ràng: “Range anxiety – the fear of running out of battery power before reaching a charging station”

Câu 12: private garages / home charging (stations)

  • Dạng câu hỏi: Sentence Completion
  • Từ khóa: living in apartments, difficulties
  • Vị trí trong bài: Đoạn 7, dòng 2-3
  • Giải thích: Bài đọc nói “owners with private garages can install home charging stations” nhưng “those living in apartments or without dedicated parking face difficulties” – chỉ ra rằng thiếu private garages là vấn đề.

Câu 13: air quality

  • Dạng câu hỏi: Sentence Completion
  • Từ khóa: urban areas, major benefit, improvement
  • Vị trí trong bài: Đoạn 3, dòng 2-4
  • Giải thích: “This is particularly beneficial in urban areas where air quality is a major concern” cho thấy lợi ích chính ở đô thị là cải thiện chất lượng không khí.

Passage 2 – Giải Thích

Câu 14: NO

  • Dạng câu hỏi: Yes/No/Not Given
  • Từ khóa: United States, sufficient charging infrastructure, 2030
  • Vị trí trong bài: Đoạn 2, dòng 3-6
  • Giải thích: Bài viết nói rằng Hoa Kỳ “will need approximately 500,000 public charging stations by 2030” nhưng chỉ có “roughly 100,000 chargers available in 2021”. Rõ ràng cơ sở hạ tầng hiện tại không đủ, mâu thuẫn với quan điểm trong câu hỏi.

Câu 15: NO

  • Dạng câu hỏi: Yes/No/Not Given
  • Từ khóa: private companies, eager to invest, few electric vehicles
  • Vị trí trong bài: Đoạn 3, dòng 1-3
  • Giải thích: “Private companies are hesitant to invest heavily in charging stations when there are relatively few electric vehicles on the road” – từ “hesitant” (do dự) hoàn toàn trái ngược với “eager” (háo hức).

Câu 16: YES

  • Dạng câu hỏi: Yes/No/Not Given
  • Từ khóa: multiple charging standards, similar problems, early railroad development
  • Vị trí trong bài: Đoạn 4, dòng 3-6
  • Giải thích: Tác giả so sánh trực tiếp: “The situation is analogous to the early days of railroad development when different companies used incompatible track gauges, creating logistical nightmares” – đây là sự so sánh rõ ràng với vấn đề của nhiều tiêu chuẩn sạc.

Câu 17: NO

  • Dạng câu hỏi: Yes/No/Not Given
  • Từ khóa: definitely increase, total energy consumption, substantially
  • Vị trí trong bài: Đoạn 7, dòng 1-3
  • Giải thích: Bài viết nói “transitioning from gasoline to electric vehicles doesn’t necessarily increase total energy consumption substantially (due to the higher efficiency of electric motors)” – từ “doesn’t necessarily increase” và “substantially” mâu thuẫn với “definitely increase substantially”.

Câu 18: YES

  • Dạng câu hỏi: Yes/No/Not Given
  • Từ khóa: wealthier communities, better access, charging infrastructure
  • Vị trí trong bài: Đoạn 8, dòng 1-3
  • Giải thích: “Wealthier individuals and communities often have greater access to home charging” trong khi “lower-income communities may lack access to charging infrastructure” – thể hiện rõ quan điểm của tác giả về sự bất bình đẳng này.

Câu 19: v (Economic barriers to charging station construction)

  • Dạng câu hỏi: Matching Headings
  • Vị trí: Đoạn C
  • Giải thích: Đoạn C tập trung vào “economics of charging infrastructure” và “chicken-and-egg dilemma” giữa đầu tư vào trạm sạc và số lượng xe điện, cùng với việc thiếu “return on investment” – tất cả là các rào cản kinh tế.

Câu 20: i (The problem of incompatible charging technologies)

  • Dạng câu hỏi: Matching Headings
  • Vị trí: Đoạn D
  • Giải thích: Đoạn D bàn về “multiple charging standards” như CCS, CHAdeMO và Tesla, cùng vấn đề “fragmentation” và nhu cầu về “universal standards” – đây đều là vấn đề về công nghệ không tương thích.

Câu 21: vi (Managing electricity supply and demand effectively)

  • Dạng câu hỏi: Matching Headings
  • Vị trí: Đoạn F
  • Giải thích: Đoạn F thảo luận về “intermittency” của năng lượng tái tạo, “mismatches” giữa cung và cầu điện, và giải pháp “load balancing” thông qua xe điện – tất cả liên quan đến quản lý cung cầu điện.

Câu 24: peak charging periods / peak periods

  • Dạng câu hỏi: Summary Completion
  • Từ khóa: many people charge simultaneously
  • Vị trí trong bài: Đoạn 5, dòng 3-5
  • Giải thích: “If millions of EV owners plug in their vehicles simultaneously… during peak charging periods” – đây chính là thời điểm nhiều người sạc cùng lúc.

Câu 25: smart charging systems

  • Dạng câu hỏi: Summary Completion
  • Từ khóa: distribute charging across different times
  • Vị trí trong bài: Đoạn 5, dòng 6-8
  • Giải thích: “This concern has prompted research into smart charging systems that distribute charging across off-peak hours” – khớp chính xác với mô tả trong tóm tắt.

Câu 26: vehicle-to-grid / V2G

  • Dạng câu hỏi: Summary Completion
  • Từ khóa: return electricity to the grid
  • Vị trí trong bài: Đoạn 5, dòng 8-9
  • Giải thích: “vehicle-to-grid (V2G) technologies that allow EVs to feed electricity back into the grid during high-demand periods” – mô tả chính xác công nghệ cho phép xe trả điện lại lưới điện.

Thách thức cơ sở hạ tầng xe điện với biểu đồ đầu tư và phát triển mạng lướiThách thức cơ sở hạ tầng xe điện với biểu đồ đầu tư và phát triển mạng lưới

Passage 3 – Giải Thích

Câu 27: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: percentage, capacity, batteries retain, useful life in vehicles
  • Vị trí trong bài: Đoạn 3, dòng 1-2
  • Giải thích: “While batteries retain approximately 70-80% of their capacity after their useful life in vehicles” – câu này đưa ra con số chính xác là 70-80%.

Câu 28: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: predominant method, producing hydrogen
  • Vị trí trong bài: Đoạn 4, dòng 5-6
  • Giải thích: “However, hydrogen production currently relies predominantly on steam methane reforming of natural gas” – chỉ rõ phương pháp chủ yếu hiện nay.

Câu 29: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: passenger cars, remain in operation
  • Vị trí trong bài: Đoạn 9, dòng 1-2
  • Giải thích: “The long operational lifetimes of vehicles – typically 10-15 years for passenger cars” – đưa ra khoảng thời gian rõ ràng.

Câu 30: C

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: region, supplies cobalt, battery production
  • Vị trí trong bài: Đoạn 2, dòng 4-5
  • Giải thích: “Cobalt mining, primarily concentrated in the Democratic Republic of Congo” – chỉ rõ nguồn cung cấp chính của cobalt.

Câu 31: B

  • Dạng câu hỏi: Multiple Choice
  • Từ khóa: China’s position, battery industry
  • Vị trí trong bài: Đoạn 10, dòng 5-7
  • Giải thích: “China’s commanding position in lithium-ion battery production and control over rare earth minerals” – cho thấy Trung Quốc thống trị sản xuất pin lithium-ion.

Câu 32: B (Aviation)

  • Dạng câu hỏi: Matching Features
  • Từ khóa: extremely high energy density fuels
  • Vị trí trong bài: Đoạn 5, dòng 1-2
  • Giải thích: “Aircraft require extremely high energy density fuels” – câu này liên kết trực tiếp yêu cầu với ngành hàng không.

Câu 33: A (Long-haul trucking)

  • Dạng câu hỏi: Matching Features
  • Từ khóa: weight penalties, reduce payload capacity
  • Vị trí trong bài: Đoạn 4, dòng 1-3
  • Giải thích: “Long-haul trucking… due to the weight penalties” và “reducing payload capacity” – cả hai đều được đề cập cụ thể cho xe tải đường dài.

Câu 34: C (Maritime shipping)

  • Dạng câu hỏi: Matching Features
  • Từ khóa: international regulatory coordination
  • Vị trí trong bài: Đoạn 5, dòng 9-10
  • Giải thích: “Maritime shipping faces similar constraints, with additional complications from… the need for international regulatory coordination.”

Câu 35: D (Personal vehicles)

  • Dạng câu hỏi: Matching Features
  • Từ khóa: cultural symbolism, conflict with sustainability
  • Vị trí trong bài: Đoạn 6, dòng 1-3
  • Giải thích: “The dominant paradigm of personal vehicle ownership… where cars carry powerful cultural symbolism, may fundamentally conflict with optimal sustainability outcomes.”

Câu 36: C (Maritime shipping)

  • Dạng câu hỏi: Matching Features
  • Từ khóa: targets, International Maritime Organization
  • Vị trí trong bài: Đoạn 5, dòng 10-12
  • Giải thích: “The International Maritime Organization has established ambitious targets for reducing shipping emissions” – chỉ rõ IMO đặt mục tiêu cho vận tải biển.

Câu 37: sustainable aviation fuels / SAFs

  • Dạng câu hỏi: Short-answer Questions
  • Từ khóa: fuel, agricultural waste, algae, aircraft
  • Vị trí trong bài: Đoạn 5, dòng 5-6
  • Giải thích: “Sustainable aviation fuels (SAFs) produced from agricultural waste, algae, or synthesized using captured carbon” – câu này liệt kê rõ ràng loại nhiên liệu và nguồn sản xuất.

Câu 38: carbon pricing mechanisms / carbon pricing

  • Dạng câu hỏi: Short-answer Questions
  • Từ khóa: internalize climate costs, politically contentious
  • Vị trí trong bài: Đoạn 7, dòng 4-6
  • Giải thích: “Carbon pricing mechanisms that would internalize the climate costs of transportation emissions remain politically contentious” – đây là cơ chế giúp tính đúng chi phí khí hậu nhưng gây tranh cãi về mặt chính trị.

Câu 39: technological lock-in / lock-in effects / path dependency

  • Dạng câu hỏi: Short-answer Questions
  • Từ khóa: governments commit massive investments, one particular technology
  • Vị trí trong bài: Đoạn 8, dòng 1-3
  • Giải thích: “Technological path dependency and lock-in effects pose additional risks” khi “governments and industries commit massive investments to particular technological approaches” – điều này có thể dẫn đến việc loại trừ sớm các công nghệ thay thế.

Câu 40: accelerated retirement programs

  • Dạng câu hỏi: Short-answer Questions
  • Từ khóa: reduce fleet-wide emissions quickly, removing fossil-fuel vehicles
  • Vị trí trong bài: Đoạn 9, dòng 7-8
  • Giải thích: “This has prompted discussion of more aggressive interventions such as accelerated retirement programs for fossil-fuel vehicles” – đây là chương trình loại bỏ xe nhiên liệu hóa thạch sớm hơn để giảm phát thải nhanh hơn.

Từ Vựng Quan Trọng Theo Passage

Passage 1 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
greenhouse gas emissions noun phrase /ˈɡriːnhaʊs ɡæs ɪˈmɪʃənz/ khí thải nhà kính largest contributors to global greenhouse gas emissions reduce greenhouse gas emissions
fossil fuel combustion noun phrase /ˈfɒsəl fjuːəl kəmˈbʌstʃən/ đốt nhiên liệu hóa thạch emissions from fossil fuel combustion fossil fuel combustion process
battery technology noun phrase /ˈbætəri tekˈnɒlədʒi/ công nghệ pin advances in lithium-ion battery technology improve battery technology
charging infrastructure noun phrase /ˈtʃɑːdʒɪŋ ˈɪnfrəstrʌktʃə/ cơ sở hạ tầng sạc lack of charging infrastructure build charging infrastructure
energy-efficient adjective /ˈenədʒi ɪˈfɪʃənt/ tiết kiệm năng lượng electric motors are significantly more energy-efficient energy-efficient technology
renewable sources noun phrase /rɪˈnjuːəbəl ˈsɔːsɪz/ nguồn năng lượng tái tạo electricity generated from renewable sources renewable sources of energy
lifecycle emissions noun phrase /ˈlaɪfsaɪkəl ɪˈmɪʃənz/ phát thải trong toàn bộ vòng đời considering the full lifecycle emissions calculate lifecycle emissions
upfront purchase price noun phrase /ˈʌpfrʌnt ˈpɜːtʃəs praɪs/ giá mua ban đầu the upfront purchase price has traditionally been higher high upfront purchase price
government incentives noun phrase /ˈɡʌvənmənt ɪnˈsentɪvz/ khuyến khích của chính phủ government incentives have played a crucial role provide government incentives
range anxiety noun phrase /reɪndʒ æŋˈzaɪəti/ lo lắng về phạm vi hoạt động range anxiety has been a psychological barrier overcome range anxiety
fast-charging technology noun phrase /fɑːst ˈtʃɑːdʒɪŋ tekˈnɒlədʒi/ công nghệ sạc nhanh the latest fast-charging technology develop fast-charging technology
virtuous cycle noun phrase /ˈvɜːtʃuəs ˈsaɪkəl/ chu trình thuận lợi creating a virtuous cycle create a virtuous cycle

Passage 2 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
comprehensive transformation noun phrase /ˌkɒmprɪˈhensɪv ˌtrænsfəˈmeɪʃən/ chuyển đổi toàn diện demands a comprehensive transformation undergo comprehensive transformation
formidable obstacle noun phrase /ˈfɔːmɪdəbəl ˈɒbstəkəl/ trпрепятствие lớn, khó khăn đáng kể represent a formidable obstacle face formidable obstacles
incremental development noun phrase /ˌɪŋkrəˈmentəl dɪˈveləpmənt/ phát triển từng bước established through incremental development incremental development approach
chicken-and-egg dilemma noun phrase /ˈtʃɪkɪn ənd eɡ dɪˈlemə/ tình thế tiến thoái lưỡng nan present a complex chicken-and-egg dilemma face chicken-and-egg dilemma
return on investment noun phrase /rɪˈtɜːn ɒn ɪnˈvestmənt/ lợi tức đầu tư the return on investment may take years maximize return on investment
technical standardization noun phrase /ˈteknɪkəl ˌstændədaɪˈzeɪʃən/ tiêu chuẩn hóa kỹ thuật technical standardization represents a critical challenge achieve technical standardization
grid capacity noun phrase /ɡrɪd kəˈpæsəti/ công suất lưới điện could strain existing grid capacity increase grid capacity
peak charging periods noun phrase /piːk ˈtʃɑːdʒɪŋ ˈpɪəriədz/ thời gian sạc cao điểm particularly during peak charging periods avoid peak charging periods
smart charging systems noun phrase /smɑːt ˈtʃɑːdʒɪŋ ˈsɪstəmz/ hệ thống sạc thông minh research into smart charging systems implement smart charging systems
vehicle-to-grid technology noun phrase /ˈviːɪkəl tə ɡrɪd tekˈnɒlədʒi/ công nghệ xe-tới-lưới điện vehicle-to-grid technologies allow EVs to feed electricity develop vehicle-to-grid technology
load balancing noun phrase /ləʊd ˈbælənsɪŋ/ cân bằng tải help address this challenge through load balancing perform load balancing
transmission infrastructure noun phrase /trænzˈmɪʃən ˈɪnfrəstrʌktʃə/ cơ sở hạ tầng truyền tải along with the transmission infrastructure build transmission infrastructure
affordability barriers noun phrase /əˌfɔːdəˈbɪləti ˈbæriəz/ rào cản về khả năng chi trả face affordability barriers overcome affordability barriers
two-tier system noun phrase /tuː tɪə ˈsɪstəm/ hệ thống hai cấp warn of a potential two-tier system create a two-tier system
streamlined regulations noun phrase /ˈstriːmlaɪnd ˌreɡjʊˈleɪʃənz/ quy định được đơn giản hóa potentially requiring streamlined regulations introduce streamlined regulations

Passage 3 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
net-zero emissions noun phrase /net ˈzɪərəʊ ɪˈmɪʃənz/ phát thải ròng bằng không achieving net-zero emissions reach net-zero emissions
multifaceted nature noun phrase /ˌmʌltiˈfæsɪtɪd ˈneɪtʃə/ bản chất đa diện overlook the multifaceted nature understand the multifaceted nature
carbon neutrality noun phrase /ˈkɑːbən njuːˈtræləti/ trung hòa carbon achieving genuine carbon neutrality achieve carbon neutrality
tailpipe emissions noun phrase /ˈteɪlpaɪp ɪˈmɪʃənz/ khí thải từ ống xả addressing not merely tailpipe emissions reduce tailpipe emissions
hydrogen fuel cells noun phrase /ˈhaɪdrədʒən fjuːəl selz/ pin nhiên liệu hydro alternative approaches such as hydrogen fuel cells develop hydrogen fuel cells
embedded carbon noun phrase /ɪmˈbedɪd ˈkɑːbən/ carbon nhúng, carbon ẩn the embedded carbon in vehicle manufacturing calculate embedded carbon
energy-intensive adjective /ˈenədʒi ɪnˈtensɪv/ tốn nhiều năng lượng battery production is energy-intensive energy-intensive process
lithium extraction noun phrase /ˈlɪθiəm ɪkˈstrækʃən/ khai thác lithium lithium extraction consumes enormous quantities lithium extraction industry
human rights issues noun phrase /ˈhjuːmən raɪts ˈɪʃuːz/ vấn đề nhân quyền associated with serious human rights issues address human rights issues
recycling infrastructure noun phrase /riːˈsaɪklɪŋ ˈɪnfrəstrʌktʃə/ cơ sở hạ tầng tái chế recycling infrastructure remains underdeveloped build recycling infrastructure
weight penalties noun phrase /weɪt ˈpenəltiz/ hạn chế về trọng lượng due to the weight penalties suffer weight penalties
payload capacity noun phrase /ˈpeɪləʊd kəˈpæsəti/ khả năng chở hàng reducing payload capacity maximize payload capacity
green hydrogen noun phrase /ɡriːn ˈhaɪdrədʒən/ hydro xanh green hydrogen produced through electrolysis produce green hydrogen
electrolysis noun /ɪˌlekˈtrɒləsɪs/ điện phân produced through electrolysis using renewable electricity water electrolysis
technological maturity noun phrase /ˌteknəˈlɒdʒɪkəl məˈtʃʊərəti/ độ trưởng thành công nghệ the technological maturity lags considerably achieve technological maturity
sustainable aviation fuels noun phrase /səˈsteɪnəbəl ˌeɪviˈeɪʃən ˈfjuːəlz/ nhiên liệu hàng không bền vững sustainable aviation fuels produced from agricultural waste develop sustainable aviation fuels
prohibitively high adjective phrase /prəˈhɪbɪtɪvli haɪ/ cao một cách cấm đoán, quá cao costs are prohibitively high prohibitively high costs
path dependency noun phrase /pɑːθ dɪˈpendənsi/ sự phụ thuộc lộ trình technological path dependency poses risks overcome path dependency
lock-in effects noun phrase /lɒk ɪn ɪˈfekts/ hiệu ứng khóa chặt lock-in effects pose additional risks avoid lock-in effects
regulatory arbitrage noun phrase /ˈreɡjʊlətəri ˈɑːbɪtrɑːʒ/ chênh lệch quy định creates opportunities for regulatory arbitrage exploit regulatory arbitrage
carbon leakage noun phrase /ˈkɑːbən ˈliːkɪdʒ/ rò rỉ carbon opportunities for carbon leakage prevent carbon leakage
geopolitical implications noun phrase /ˌdʒiːəʊpəˈlɪtɪkəl ˌɪmplɪˈkeɪʃənz/ hàm ý địa chính trị the geopolitical implications deserve consideration understand geopolitical implications

Từ vựng IELTS về giao thông xanh và phát thải ròng bằng khôngTừ vựng IELTS về giao thông xanh và phát thải ròng bằng không


Kết Bài

Chủ đề về những thách thức đạt mức phát thải ròng bằng không trong giao thông vận tải không chỉ là một vấn đề môi trường cấp bách mà còn là chủ đề xuất hiện ngày càng thường xuyên trong kỳ thi IELTS Reading. Qua bộ đề thi mẫu này, bạn đã được trải nghiệm một bài thi hoàn chỉnh với 3 passages tăng dần độ khó, từ giới thiệu cơ bản về xe điện (Easy), đến phân tích sâu về cơ sở hạ tầng và đầu tư (Medium), cho đến những rào cản hệ thống và công nghệ thay thế (Hard).

Bộ đề này cung cấp đầy đủ 40 câu hỏi với 7 dạng bài khác nhau – tất cả đều tuân theo format IELTS chính thức. Phần đáp án chi tiết không chỉ cho bạn biết câu trả lời đúng mà còn giải thích tại sao đúng, vị trí thông tin trong bài đọc, và cách paraphrase được sử dụng. Đây là kỹ năng quan trọng giúp bạn cải thiện khả năng làm bài Reading hiệu quả.

Hơn 50 từ vựng quan trọng được tổng hợp theo từng passage, kèm phiên âm, nghĩa tiếng Việt, ví dụ và collocation, sẽ giúp bạn xây dựng vốn từ học thuật vững chắc – không chỉ cho phần Reading mà còn cho cả Writing và Speaking. Hãy dành thời gian học kỹ những từ này và thực hành sử dụng chúng trong ngữ cảnh thực tế.

Để đạt kết quả tốt nhất, hãy luyện tập bộ đề này nhiều lần với thời gian giới hạn, phân tích kỹ những câu sai, và học từ vựng một cách bài bản. Chúc bạn đạt được band điểm mục tiêu trong kỳ thi IELTS sắp tới!

Previous Article

Cách Sử Dụng Within Limits Restricted Trong IELTS - Công Thức & Ví Dụ Band 8.0

Next Article

IELTS Reading: Chiến Lược Thúc Đẩy Thói Quen Ăn Uống Lành Mạnh - Đề Thi Mẫu Có Đáp Án Chi Tiết

Write a Comment

Leave a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Đăng ký nhận thông tin bài mẫu

Để lại địa chỉ email của bạn, chúng tôi sẽ thông báo tới bạn khi có bài mẫu mới được biên tập và xuất bản thành công.
Chúng tôi cam kết không spam email ✨