IELTS Reading: Thách thức của Nông nghiệp Bền vững Thế kỷ 21 – Đề thi mẫu có đáp án chi tiết

Giới thiệu

Chủ đề nông nghiệp bền vững và các thách thức trong thế kỷ 21 là một trong những đề tài xuất hiện thường xuyên trong kỳ thi IELTS Reading, đặc biệt trong các bài thi từ năm 2018 đến nay. Với sự gia tăng quan tâm toàn cầu về an ninh lương thực, biến đổi khí hậu và bảo vệ môi trường, chủ đề này không chỉ mang tính học thuật cao mà còn rất thiết thực.

Trong bài viết này, bạn sẽ được trải nghiệm một bộ đề thi IELTS Reading hoàn chỉnh với 3 passages tăng dần độ khó, từ Band 5.0 đến Band 9.0. Cụ thể, bạn sẽ nhận được:

  • Đề thi đầy đủ 3 passages: Passage 1 (Easy) về các khái niệm cơ bản, Passage 2 (Medium) về thực tiễn áp dụng, và Passage 3 (Hard) về phân tích chuyên sâu các thách thức phức tạp
  • 40 câu hỏi đa dạng: Bao gồm 7-8 dạng câu hỏi phổ biến nhất trong IELTS Reading như True/False/Not Given, Matching Headings, Summary Completion, và Multiple Choice
  • Đáp án chi tiết kèm giải thích: Phân tích vị trí thông tin, kỹ thuật paraphrase và chiến lược làm bài cho từng câu hỏi
  • Bộ từ vựng chuyên ngành: Hơn 40 từ vựng quan trọng với phiên âm, nghĩa và cách sử dụng trong ngữ cảnh

Bộ đề này phù hợp cho học viên từ Band 5.0 trở lên, đặc biệt hữu ích cho những bạn đang nhắm đến Band 6.5-7.5 và muốn làm quen với các chủ đề khoa học môi trường.

Hướng dẫn làm bài IELTS Reading

Tổng Quan Về IELTS Reading Test

IELTS Reading Test kéo dài 60 phút với 3 passages và tổng cộng 40 câu hỏi. Bạn cần tự quản lý thời gian giữa các passages, không có thời gian phụ để chuyển đáp án sang answer sheet.

Phân bổ thời gian khuyến nghị:

  • Passage 1: 15-17 phút (13 câu hỏi, độ khó thấp)
  • Passage 2: 18-20 phút (13 câu hỏi, độ khó trung bình)
  • Passage 3: 23-25 phút (14 câu hỏi, độ khó cao)

Lưu ý: Đây chỉ là gợi ý. Nếu bạn hoàn thành Passage 1 trong 13 phút, bạn có thêm thời gian cho các passage khó hơn.

Các Dạng Câu Hỏi Trong Đề Này

Đề thi mẫu này bao gồm các dạng câu hỏi phổ biến nhất:

  1. True/False/Not Given – Kiểm tra khả năng đối chiếu thông tin
  2. Multiple Choice – Đánh giá khả năng hiểu chi tiết và ý chính
  3. Matching Headings – Xác định ý chính của từng đoạn
  4. Summary Completion – Hoàn thành tóm tắt với từ trong bài
  5. Sentence Completion – Hoàn thành câu với thông tin cụ thể
  6. Matching Features – Nối thông tin với đối tượng tương ứng
  7. Short-answer Questions – Trả lời ngắn gọn với từ trong bài

Mỗi dạng câu hỏi yêu cầu kỹ năng đọc và chiến lược khác nhau, giúp bạn rèn luyện toàn diện.

Học viên đang luyện thi IELTS Reading với chủ đề nông nghiệp bền vững và các thách thức môi trường thế kỷ 21Học viên đang luyện thi IELTS Reading với chủ đề nông nghiệp bền vững và các thách thức môi trường thế kỷ 21

IELTS Reading Practice Test

PASSAGE 1 – The Foundations of Sustainable Agriculture

Độ khó: Easy (Band 5.0-6.5)

Thời gian đề xuất: 15-17 phút

Agriculture has been the backbone of human civilization for thousands of years, providing food, fiber, and fuel for growing populations. However, the methods used in modern conventional farming have raised serious concerns about their long-term sustainability. Sustainable agriculture represents a fundamentally different approach – one that aims to meet current food needs while preserving resources for future generations.

The concept of sustainable agriculture emerged in the late 20th century as scientists and farmers began recognizing the environmental damage caused by intensive farming practices. These practices, which became widespread after World War II, relied heavily on chemical fertilizers, synthetic pesticides, and mechanization to maximize yields. While these methods dramatically increased food production, they also led to soil degradation, water pollution, and loss of biodiversity.

Sustainable farming systems operate on three core principles: environmental health, economic profitability, and social equity. Environmental health means maintaining and improving the quality of soil, water, and air while protecting wildlife and natural habitats. Economic profitability ensures that farms remain financially viable so that farmers can continue their work and support their families. Social equity involves fair treatment of workers, support for local communities, and access to healthy food for all people, regardless of income.

One of the key differences between sustainable and conventional agriculture lies in soil management. Healthy soil is the foundation of sustainable farming. Rather than viewing soil simply as a medium to hold plants, sustainable farmers recognize it as a living ecosystem containing billions of microorganisms that help plants absorb nutrients. To build soil health, they use techniques such as crop rotation, cover cropping, and adding organic matter like compost. These practices improve soil structure, increase water retention, and reduce the need for synthetic fertilizers.

Water conservation is another critical component of sustainable agriculture. Traditional irrigation methods often waste large amounts of water through evaporation and runoff. Sustainable farmers employ more efficient techniques such as drip irrigation, which delivers water directly to plant roots, and rainwater harvesting systems that collect and store precipitation for later use. They also select drought-resistant crop varieties better suited to local climate conditions, reducing overall water requirements.

Integrated Pest Management (IPM) represents the sustainable approach to controlling insects, diseases, and weeds. Instead of automatically spraying chemicals at the first sign of pests, IPM uses a combination of strategies. These include biological controls (using natural predators to eat harmful insects), cultural practices (like planting at times when pests are less active), and mechanical methods (such as traps and barriers). Chemical pesticides are used only as a last resort and in the smallest effective amounts. This approach reduces chemical residues on food and protects beneficial insects like bees and butterflies.

Biodiversity plays a vital role in sustainable agriculture. While conventional farms often grow just one or two crop species over large areas – a practice called monoculture – sustainable farms typically cultivate multiple crops and may also integrate livestock. This diversity creates a more resilient system. If one crop fails due to disease or weather, others may still succeed. Different plants also support various beneficial insects and soil organisms, creating a more balanced ecosystem. Some sustainable farms even maintain wildlife corridors and natural areas that provide habitat for birds, insects, and other animals that help control pests and pollinate crops.

Energy efficiency is an important consideration in sustainable agriculture. Conventional farming consumes large amounts of fossil fuels for machinery, producing and transporting synthetic fertilizers and pesticides, and processing and shipping food products. Sustainable farms work to reduce energy use through practices like minimal tillage (which requires less tractor time), producing their own compost and natural fertilizers, and selling products locally to reduce transportation emissions. Some farms also generate their own renewable energy through solar panels or wind turbines.

The economic aspects of sustainable agriculture extend beyond individual farm profits to benefit entire rural communities. By selling products locally through farmers’ markets, community-supported agriculture (CSA) programs, and farm stands, sustainable farmers keep more money circulating in the local economy. These direct marketing relationships also allow farmers to receive a larger share of the food dollar compared to selling through conventional wholesale channels. Additionally, sustainable farming methods that build soil health and reduce input costs can improve long-term profitability, even if yields are sometimes slightly lower than conventional farms.

Despite its many benefits, transitioning to sustainable agriculture presents challenges. Farmers may need to learn new techniques and make changes to their operations, which requires time and sometimes significant initial investment. There may be a temporary reduction in yields during the transition period as soils recover and new systems are established. However, research has shown that well-managed sustainable farms can achieve yields comparable to conventional farms while providing additional environmental and social benefits.

Questions 1-13

Questions 1-5

Do the following statements agree with the information given in Passage 1?

Write:

  • TRUE if the statement agrees with the information
  • FALSE if the statement contradicts the information
  • NOT GIVEN if there is no information on this
  1. Modern conventional farming methods have caused concerns about environmental sustainability.
  2. Sustainable agriculture concepts first appeared after World War II.
  3. Sustainable farming systems focus on three main principles including environmental health.
  4. Conventional farms always produce higher yields than sustainable farms.
  5. Soil contains living organisms that help plants take in nutrients.

Questions 6-9

Complete the sentences below.

Choose NO MORE THAN TWO WORDS from the passage for each answer.

  1. Sustainable farmers use techniques like crop rotation and cover cropping to improve __.
  2. Drip irrigation delivers water directly to __ of plants.
  3. In Integrated Pest Management, __ are used only when other methods have failed.
  4. Growing just one or two crop species over large areas is called __.

Questions 10-13

Choose the correct letter, A, B, C or D.

  1. According to the passage, what is the main purpose of sustainable agriculture?
  • A. To increase crop yields above conventional methods
  • B. To meet current food needs while protecting resources for the future
  • C. To eliminate all use of machinery in farming
  • D. To return to farming methods used before World War II
  1. Which of the following is NOT mentioned as a technique for water conservation?
  • A. Drip irrigation
  • B. Rainwater harvesting
  • C. Drought-resistant crops
  • D. Underground water storage
  1. What advantage does biodiversity provide to sustainable farms?
  • A. It increases the use of chemical pesticides
  • B. It guarantees higher profits each year
  • C. It makes the farm system more resilient
  • D. It requires more fossil fuels
  1. Why do sustainable farms benefit local economies?
  • A. They export more products internationally
  • B. They employ more seasonal workers
  • C. They keep more money in the local area through direct sales
  • D. They receive larger government subsidies

PASSAGE 2 – Implementing Sustainable Practices: Real-World Applications

Độ khó: Medium (Band 6.0-7.5)

Thời gian đề xuất: 18-20 phút

The transition from conventional agricultural systems to sustainable ones represents one of the most significant challenges facing the global food sector in the 21st century. While the theoretical benefits of sustainable agriculture are well-documented, the practical implementation of these methods varies considerably across different regions, climates, and socioeconomic contexts. Understanding how sustainable practices are actually applied in diverse settings provides crucial insights into both the potential and limitations of this approach.

In developing nations, where smallholder farmers produce a substantial portion of the world’s food, sustainable agriculture takes on particular importance. These farmers often lack access to the expensive chemical inputs that characterize conventional farming, making them natural candidates for sustainable methods. However, they also face unique obstacles, including limited access to markets, inadequate infrastructure, and vulnerability to climate variations. Organizations working in these regions have found that the most successful sustainable agriculture programs combine traditional farming knowledge with modern scientific understanding, rather than imposing entirely new systems.

A compelling example comes from East Africa, where farmers have successfully adopted agroforestry systems – integrating trees with crops and sometimes livestock. These systems provide multiple benefits: trees reduce soil erosion on sloped land, create microclimates that protect crops from extreme temperatures, and produce additional products like fruit, timber, and firewood. The tree roots also help capture nutrients that might otherwise leach away, and their leaves provide organic matter that enriches the soil. Research conducted across several countries demonstrated that farms using agroforestry maintained productivity even during drought years when neighboring conventional farms experienced severe crop failures.

In developed countries, the picture of sustainable agriculture implementation is quite different. Here, the primary challenge is not lack of resources but rather the inertia of established industrial farming systems. Large-scale farms with significant investments in conventional equipment and methods face substantial economic barriers to change. Additionally, farmers in these regions often operate within commodity markets that reward volume and uniformity rather than sustainability or quality. Despite these obstacles, a growing number of farms in North America and Europe are successfully adopting sustainable practices.

Precision agriculture technologies are playing an increasingly important role in making farming more sustainable, even on large conventional farms. These technologies use GPS systems, sensors, and data analytics to optimize the application of water, fertilizers, and pesticides. Rather than treating entire fields uniformly, farmers can now identify specific areas that need attention and apply inputs only where necessary. This targeted approach significantly reduces overall chemical usage and minimizes environmental impact. Some studies have shown reductions in fertilizer use of up to 30% while maintaining or even improving yields. However, the high cost of these technologies means they remain accessible primarily to larger, wealthier operations.

Urban and peri-urban agriculture represents another important dimension of sustainable food production. As cities expand and populations become increasingly urbanized, growing food closer to consumers offers multiple advantages. Transportation distances are minimized, reducing both greenhouse gas emissions and food waste due to spoilage. Urban farms can utilize vacant lots, rooftops, and other underused spaces, contributing to community food security while also providing green spaces that improve urban environments. Techniques such as vertical farming, hydroponics, and aquaponics allow for intensive food production in limited spaces without soil, though these systems require significant energy inputs, raising questions about their overall sustainability.

The role of policy and regulation in facilitating or hindering sustainable agriculture cannot be overstated. Agricultural subsidies in many countries have historically favored conventional farming methods and commodity crops like corn and soybeans, creating economic incentives that work against diversification and sustainable practices. Some governments are beginning to reform these policies. The European Union’s Common Agricultural Policy, for instance, has gradually shifted to reward farmers for environmental stewardship rather than simply maximizing production. Such policy frameworks can accelerate the adoption of sustainable practices by making them economically competitive with conventional methods.

Consumer demand represents another powerful force driving the implementation of sustainable agriculture. As public awareness of food system issues has grown, more consumers actively seek out products grown using sustainable methods. This has created market opportunities for farmers who can command premium prices for certified organic or sustainably produced goods. However, the economic benefits remain unevenly distributed. Farmers in wealthy regions with access to affluent consumers can more easily capitalize on these markets, while those in poorer areas may lack the certification infrastructure and market connections needed to benefit from consumer interest in sustainability.

Knowledge transfer and education pose significant challenges to widespread implementation of sustainable practices. Unlike conventional farming, which relies on standardized approaches promoted through agricultural extension services and input suppliers, sustainable agriculture requires site-specific adaptations based on local conditions. Farmers need deep understanding of ecological processes and must often experiment to find what works best in their particular context. Farmer-to-farmer networks, participatory research programs where farmers work alongside scientists, and innovative educational platforms are proving effective in spreading sustainable agriculture knowledge, but these approaches require time and resources to develop.

Climate change adds another layer of complexity to implementing sustainable agriculture. The practices that work well under current conditions may need modification as temperatures rise, precipitation patterns shift, and extreme weather events become more frequent. Sustainable agriculture methods generally build resilience against climate variability through improved soil health, crop diversity, and water management. However, the rate of climate change may exceed the adaptive capacity of some farming systems, particularly in vulnerable regions already experiencing water stress or temperature extremes. This uncertainty makes long-term planning difficult and increases the perceived risks of transitioning to new farming methods.

Áp dụng thực tế các phương pháp nông nghiệp bền vững với công nghệ hiện đại và hệ thống tưới tiêu thông minhÁp dụng thực tế các phương pháp nông nghiệp bền vững với công nghệ hiện đại và hệ thống tưới tiêu thông minh

Questions 14-26

Questions 14-19

Passage 2 has ten paragraphs, A-J.

Which paragraph contains the following information?

Write the correct letter, A-J.

  1. A description of how government financial support influences farming methods
  2. The use of technology to reduce the amount of chemicals used in farming
  3. Challenges related to spreading knowledge about sustainable farming techniques
  4. Examples of how trees benefit crop production in African farming systems
  5. The impact of city-based food production on reducing environmental harm
  6. How changing weather patterns affect the adoption of sustainable methods

Questions 20-23

Complete the summary below.

Choose NO MORE THAN TWO WORDS from the passage for each answer.

Sustainable agriculture in developing countries often works best when combining 20. __ with modern science. In East Africa, 21. __ that integrate trees with crops have proven successful. These systems help prevent 22. __ and create protective 23. __ for crops, allowing farms to maintain production even during drought conditions.

Questions 24-26

Choose THREE letters, A-G.

Which THREE of the following are mentioned as challenges to implementing sustainable agriculture in developed countries?

A. Lack of available land
B. Resistance to change from established farming systems
C. Insufficient rainfall
D. High investment in conventional equipment
E. Shortage of farm workers
F. Market systems that prioritize quantity over sustainability
G. Excessive government regulation


PASSAGE 3 – Systemic Challenges and Future Trajectories in Sustainable Agriculture

Độ khó: Hard (Band 7.0-9.0)

Thời gian đề xuất: 23-25 phút

The discourse surrounding sustainable agriculture in the 21st century has evolved from a niche concern of environmentalists to a central preoccupation of policymakers, agronomists, and development economists worldwide. This elevation in status reflects growing recognition that the current trajectory of global food systems is fundamentally untenable, threatening not only environmental stability but also long-term food security for a projected population of nearly 10 billion by 2050. However, the challenges confronting the widespread adoption of sustainable agricultural practices are far more multifaceted and intractable than commonly acknowledged in mainstream discourse. These obstacles operate at multiple scales – from molecular and cellular processes to global political economy – and their resolution will require nothing less than a reconfiguration of how societies produce, distribute, and consume food.

At the most fundamental level, sustainable agriculture confronts biological and ecological constraints that resist simple technological solutions. The agronomic performance of sustainable systems, particularly organic production, remains a subject of intense scientific debate. While proponents cite studies showing that organic yields can approach conventional levels, especially in drought conditions where soil organic matter provides crucial water retention capacity, critics point to meta-analyses suggesting that organic agriculture produces, on average, 20-25% lower yields than conventional systems. This yield gap becomes particularly problematic when considered against the imperative to feed a growing global population while simultaneously reducing agriculture’s spatial footprint to preserve biodiversity and natural ecosystems. The challenge is not merely increasing sustainable agriculture’s productivity but doing so without resorting to the intensive external inputs that characterize the conventional systems sustainable agriculture seeks to replace.

The ecological complexity inherent in sustainable agriculture presents both opportunities and challenges for scalability. Unlike conventional agriculture’s reductionist approach – which treats farming as an industrial process where success comes from optimizing individual variables – sustainable agriculture embraces ecosystem complexity, working with natural processes rather than against them. This ecological sophistication can produce remarkable results: enhanced pest suppression through predator diversity, improved nutrient cycling via microbial communities, and greater climate resilience through functional redundancy in diverse systems. However, this complexity also makes sustainable agriculture more knowledge-intensive and context-dependent than conventional farming. The specific practices that succeed in one location may fail in another with different soil types, microclimates, or pest pressures. This site specificity severely complicates the development of standardized protocols that could facilitate rapid, widespread adoption.

Economic dimensions of the sustainability challenge extend far beyond individual farm profitability to encompass the entire food value chain and broader macroeconomic structures. The perverse incentives embedded in current agricultural economics often work directly against sustainability. Commodity market structures that demand standardization and volume disadvantage diversified farms producing multiple crops. Agricultural subsidies in wealthy nations – totaling hundreds of billions of dollars annually – predominantly support conventional production of a narrow range of staple crops, effectively subsidizing the very practices sustainable agriculture aims to transform. The externalization of environmental costs in conventional agriculture – where farmers do not pay for soil degradation, water pollution, or greenhouse gas emissions they generate – creates an unlevel playing field where sustainable farmers bear additional costs for environmental stewardship without commensurate economic reward.

The sociopolitical dimensions of agricultural sustainability intersect with issues of equity, power, and justice in ways that further complicate transition pathways. In developing countries, agricultural sustainability cannot be separated from questions of land tenure, access to credit, and market power. Smallholder farmers who might benefit most from sustainable practices often lack secure land rights, making long-term investments in soil improvement or agroforestry economically irrational. Gender dynamics also play crucial roles; women perform the majority of agricultural labor in many regions yet typically lack decision-making authority and resource access, limiting their ability to adopt new practices. In developed countries, the consolidation of agricultural land into ever-larger farms has created a situation where a shrinking number of farmers control most production, and these large operations have substantial political influence that they often use to resist regulatory changes that might favor sustainable agriculture.

The temporal dimensions of agricultural sustainability present another layer of challenge. Many sustainable practices require years to show their full benefits – soil building through organic matter accumulation, pest-predator balance establishment, or perennial crop system maturation all operate on timescales of 5-10 years or longer. This extended timeframe conflicts with the short-term economic pressures farmers face, particularly those with debt obligations or operating on leased land. The generational transition in farming adds further complexity; as existing farmers age and retire, there is no guarantee their successors will maintain sustainable practices even if established. The challenge of intergenerational knowledge transfer becomes acute when sustainable farming requires deep ecological literacy and experiential learning that cannot be quickly acquired through formal education alone.

Technological innovation offers potential pathways forward but also introduces new dilemmas. Genetic engineering and gene editing technologies like CRISPR could theoretically produce crops with enhanced drought tolerance, pest resistance, or nutrient efficiency, potentially reducing agriculture’s environmental impact. However, these technologies remain highly controversial, particularly in organic and agroecological farming communities that emphasize working with natural genetic diversity rather than laboratory modifications. The intellectual property regimes surrounding agricultural biotechnology concentrate control over genetic resources in a few multinational corporations, raising concerns about farmer autonomy and seed sovereignty. Meanwhile, digital agriculture technologies – using artificial intelligence, remote sensing, and big data analytics to optimize farm management – promise to make even conventional agriculture more efficient and less environmentally damaging. Yet these technologies also require substantial capital investments and technical expertise, potentially exacerbating inequalities between large and small farms, wealthy and poor regions.

Climate change fundamentally alters the context in which sustainable agriculture must operate, creating what some scholars term a “moving target” problem. The climatic conditions to which farming systems must adapt are not static but continuously changing, with increasing temperature volatility, precipitation variability, and extreme weather event frequency. This dynamism undermines the very concept of sustainable practices, which implies stability over time. While sustainable agriculture’s emphasis on resilience through diversity and soil health provides some adaptive capacity, the pace of climate change may exceed adaptation rates, particularly in already-marginal agricultural regions. Moreover, agriculture is not merely affected by climate change but is a significant contributor to it, accounting for approximately 25% of global greenhouse gas emissions when land use changes are included. This creates a complex feedback loop where agricultural practices influence the climate conditions to which they must adapt.

The knowledge systems and research paradigms that dominate agricultural science present more subtle but equally significant barriers to sustainable agriculture’s advancement. The institutional structures of agricultural research – from university departments to government agencies to private sector research facilities – were largely built to support conventional agriculture’s development and remain heavily invested in that paradigm. Funding mechanisms typically favor reductionist research studying individual variables in controlled settings over the holistic, systems-level investigations sustainable agriculture requires. The peer review processes and publication venues that determine career advancement in agricultural science have historically privileged certain types of research and knowledge while marginalizing others. Indigenous knowledge and farmer experimentation, which might offer crucial insights for sustainable agriculture, often receive insufficient attention in formal research systems. This epistemological challenge extends to how agricultural success is defined and measured – productivity metrics that focus narrowly on yield per hectare or output per labor hour fail to capture the multiple ecosystem services and community benefits sustainable agriculture provides.

Looking forward, the transition to sustainable agriculture will require interventions at multiple levels simultaneously. Technological innovations must be accompanied by policy reforms that create genuine economic incentives for sustainable practices while eliminating subsidies for harmful ones. Market structures need reconfiguration to reward environmental stewardship and social responsibility alongside productivity. Educational systems must evolve to train farmers, researchers, and citizens in the ecological literacy sustainable agriculture demands. Most fundamentally, societies may need to reconsider basic assumptions about food systems’ purpose – whether agriculture exists primarily to maximize caloric production and economic efficiency, or whether it should simultaneously pursue multiple goals including environmental regeneration, rural community vitality, cultural preservation, and food system resilience. The challenges of sustainable agriculture in the 21st century ultimately reflect the challenge of building a fundamentally different relationship between human societies and the natural systems that sustain them.

Thách thức phức tạp của hệ thống nông nghiệp bền vững toàn cầu với nhiều yếu tố kinh tế xã hội và môi trườngThách thức phức tạp của hệ thống nông nghiệp bền vững toàn cầu với nhiều yếu tố kinh tế xã hội và môi trường

Questions 27-40

Questions 27-32

Complete the summary below.

Choose NO MORE THAN THREE WORDS from the passage for each answer.

Sustainable agriculture faces challenges at multiple levels. At the biological level, there is debate about 27. __ compared to conventional farming, with some studies suggesting organic methods produce 20-25% less. The 28. __ of sustainable agriculture makes it difficult to develop standardized procedures that work in all locations. Economic challenges include 29. __ in commodity markets that favor conventional farming and the 30. __ where conventional farmers don’t pay for environmental damage they cause. Many sustainable practices also require years to show benefits, creating problems for farmers with 31. __ or those working on leased land. Climate change creates a 32. __ as farming systems must adapt to continuously changing conditions.

Questions 33-37

Classify the following challenges as relating to:

A. Biological/Ecological factors
B. Economic factors
C. Sociopolitical factors
D. Knowledge/Research factors

Write the correct letter, A, B, C or D.

  1. Agricultural subsidies predominantly supporting conventional production
  2. Site specificity making standardized protocols difficult to develop
  3. Smallholder farmers lacking secure land rights
  4. Research funding favoring reductionist studies over holistic investigations
  5. Commodity markets demanding standardization and volume

Questions 38-40

Answer the questions below.

Choose NO MORE THAN THREE WORDS from the passage for each answer.

  1. What two technologies are mentioned that could potentially create crops with better environmental characteristics but remain controversial?
  2. What percentage of global greenhouse gas emissions does agriculture account for when land use changes are included?
  3. According to the passage, what must societies fundamentally reconsider regarding food systems?

Answer Keys – Đáp án

PASSAGE 1: Questions 1-13

  1. TRUE
  2. FALSE
  3. TRUE
  4. NOT GIVEN
  5. TRUE
  6. soil health
  7. plant roots / roots
  8. chemical pesticides / pesticides
  9. monoculture
  10. B
  11. D
  12. C
  13. C

PASSAGE 2: Questions 14-26

  1. G
  2. E
  3. I
  4. C
  5. F
  6. J
  7. traditional (farming) knowledge / traditional knowledge
  8. agroforestry systems / agroforestry
  9. soil erosion
  10. microclimates
  11. B, D, F (in any order)
  12. B, D, F (in any order)
  13. B, D, F (in any order)

PASSAGE 3: Questions 27-40

  1. agronomic performance / organic yields / yield(s)
  2. site specificity / context-dependent (nature) / ecological complexity
  3. perverse incentives / market structures / commodity market structures
  4. externalization (of environmental costs)
  5. debt obligations
  6. moving target (problem)
  7. B
  8. A
  9. C
  10. D
  11. B
  12. genetic engineering and gene editing / CRISPR (and genetic engineering)
  13. (approximately) 25% / 25 percent / twenty-five percent
  14. basic assumptions / food systems’ purpose / agriculture’s purpose

Giải Thích Đáp Án Chi Tiết

Passage 1 – Giải Thích

Câu 1: TRUE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: modern conventional farming methods, concerns, environmental sustainability
  • Vị trí trong bài: Đoạn 1, câu thứ 2-3
  • Giải thích: Bài đọc nói rõ “the methods used in modern conventional farming have raised serious concerns about their long-term sustainability”. Câu hỏi paraphrase “environmental sustainability” từ “long-term sustainability” trong ngữ cảnh về nông nghiệp và môi trường.

Câu 2: FALSE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: sustainable agriculture concepts, first appeared, after World War II
  • Vị trí trong bài: Đoạn 2, câu đầu tiên
  • Giải thích: Bài viết khẳng định “The concept of sustainable agriculture emerged in the late 20th century” (cuối thế kỷ 20), trong khi World War II kết thúc năm 1945 (giữa thế kỷ 20). Intensive farming practices bắt đầu sau WWII, nhưng khái niệm nông nghiệp bền vững xuất hiện sau đó nhiều thập kỷ.

Câu 3: TRUE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: three main principles, environmental health
  • Vị trí trong bài: Đoạn 3, câu đầu
  • Giải thích: Bài viết nêu rõ “Sustainable farming systems operate on three core principles: environmental health, economic profitability, and social equity.” Câu hỏi sử dụng “main principles” thay cho “core principles” và xác nhận environmental health là một trong ba.

Câu 4: NOT GIVEN

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: conventional farms, always, higher yields, sustainable farms
  • Vị trí trong bài: Đoạn cuối cùng đề cập đến yields
  • Giải thích: Bài viết chỉ nói “well-managed sustainable farms can achieve yields comparable to conventional farms” và đề cập “yields are sometimes slightly lower”, nhưng không có thông tin khẳng định conventional farms “always” có năng suất cao hơn.

Câu 5: TRUE

  • Dạng câu hỏi: True/False/Not Given
  • Từ khóa: soil, living organisms, help plants, nutrients
  • Vị trí trong bài: Đoạn 4, câu thứ 3
  • Giải thích: Bài viết nói “sustainable farmers recognize it as a living ecosystem containing billions of microorganisms that help plants absorb nutrients”. Câu hỏi paraphrase “microorganisms” thành “living organisms” và “absorb” thành “take in”.

Câu 6: soil health

  • Dạng câu hỏi: Sentence Completion
  • Từ khóa: crop rotation, cover cropping, improve
  • Vị trí trong bài: Đoạn 4, câu 4-5
  • Giải thích: “To build soil health, they use techniques such as crop rotation, cover cropping…” Các kỹ thuật này được sử dụng để cải thiện soil health (sức khỏe đất).

Câu 7: plant roots / roots

  • Dạng câu hỏi: Sentence Completion
  • Từ khóa: drip irrigation, delivers water directly
  • Vị trí trong bài: Đoạn 5, câu 3
  • Giải thích: “drip irrigation, which delivers water directly to plant roots”. Cả “plant roots” và “roots” đều chấp nhận được vì cả hai đều nằm trong giới hạn hai từ.

Câu 8: chemical pesticides / pesticides

  • Dạng câu hỏi: Sentence Completion
  • Từ khóa: Integrated Pest Management, only, other methods failed
  • Vị trí trong bài: Đoạn 6, câu cuối
  • Giải thích: “Chemical pesticides are used only as a last resort” – nghĩa là chỉ dùng khi các phương pháp khác thất bại. Cả “chemical pesticides” và “pesticides” đều đúng.

Câu 9: monoculture

  • Dạng câu hỏi: Sentence Completion
  • Từ khóa: one or two crop species, large areas
  • Vị trí trong bài: Đoạn 7, câu 2
  • Giải thích: “conventional farms often grow just one or two crop species over large areas – a practice called monoculture”.

Câu 10: B

  • Dạng câu hỏi: Multiple Choice
  • Giải thích: Đoạn 1 nêu rõ sustainable agriculture “aims to meet current food needs while preserving resources for future generations”, khớp hoàn toàn với đáp án B. Đáp án A sai vì không phải mục đích chính; C sai vì không loại bỏ hoàn toàn máy móc; D sai vì không phải quay về quá khứ.

Câu 11: D

  • Dạng câu hỏi: Multiple Choice – NOT mentioned
  • Giải thích: Đoạn 5 đề cập drip irrigation (A), rainwater harvesting (B), và drought-resistant crops (C). Underground water storage không được nhắc đến trong bài.

Câu 12: C

  • Dạng câu hỏi: Multiple Choice
  • Vị trí trong bài: Đoạn 7, câu 4-5
  • Giải thích: “This diversity creates a more resilient system. If one crop fails due to disease or weather, others may still succeed.” Resilient system chính là lợi ích của biodiversity.

Câu 13: C

  • Dạng câu hỏi: Multiple Choice
  • Vị trí trong bài: Đoạn 9, câu 2
  • Giải thích: “sustainable farmers keep more money circulating in the local economy” thông qua direct sales (farmers’ markets, CSA programs). Đây chính là cách họ mang lại lợi ích cho nền kinh tế địa phương.

Phân tích chi tiết đáp án IELTS Reading với kỹ thuật paraphrase và định vị thông tin trong bài đọcPhân tích chi tiết đáp án IELTS Reading với kỹ thuật paraphrase và định vị thông tin trong bài đọc

Passage 2 – Giải Thích

Câu 14: G

  • Dạng câu hỏi: Matching Information to Paragraphs
  • Từ khóa: government financial support, farming methods
  • Giải thích: Đoạn G (đoạn 7) thảo luận về “policy and regulation” và “Agricultural subsidies” ảnh hưởng như thế nào đến việc lựa chọn phương pháp nông nghiệp.

Câu 15: E

  • Dạng câu hỏi: Matching Information to Paragraphs
  • Từ khóa: technology, reduce, chemicals
  • Giải thích: Đoạn E (đoạn 5) nói về “Precision agriculture technologies” giúp “significantly reduces overall chemical usage” thông qua targeted approach.

Câu 16: I

  • Dạng câu hỏi: Matching Information to Paragraphs
  • Từ khóa: spreading knowledge, sustainable farming techniques
  • Giải thích: Đoạn I (đoạn 9) có tiêu đề về “Knowledge transfer and education” và thảo luận các thách thức trong việc lan truyền kiến thức về sustainable practices.

Câu 17: C

  • Dạng câu hỏi: Matching Information to Paragraphs
  • Từ khóa: trees, benefit, crop production, African farming
  • Giải thích: Đoạn C (đoạn 3) mô tả ví dụ từ East Africa về agroforestry systems, liệt kê cụ thể các lợi ích của cây đối với sản xuất nông nghiệp.

Câu 18: F

  • Dạng câu hỏi: Matching Information to Paragraphs
  • Từ khóa: city-based food production, reducing environmental harm
  • Giải thích: Đoạn F (đoạn 6) về “Urban and peri-urban agriculture” đề cập “Transportation distances are minimized, reducing both greenhouse gas emissions and food waste”.

Câu 19: J

  • Dạng câu hỏi: Matching Information to Paragraphs
  • Từ khóa: changing weather patterns, adoption, sustainable methods
  • Giải thích: Đoạn J (đoạn cuối) thảo luận về “Climate change” và cách nó ảnh hưởng đến việc thực hiện sustainable agriculture.

Câu 20: traditional (farming) knowledge / traditional knowledge

  • Dạng câu hỏi: Summary Completion
  • Vị trí trong bài: Đoạn B (đoạn 2), câu cuối
  • Giải thích: “the most successful sustainable agriculture programs combine traditional farming knowledge with modern scientific understanding”

Câu 21: agroforestry systems / agroforestry

  • Dạng câu hỏi: Summary Completion
  • Vị trí trong bài: Đoạn C (đoạn 3), câu đầu
  • Giải thích: “farmers have successfully adopted agroforestry systems – integrating trees with crops”

Câu 22: soil erosion

  • Dạng câu hỏi: Summary Completion
  • Vị trí trong bài: Đoạn C, câu 2
  • Giải thích: “trees reduce soil erosion on sloped land”

Câu 23: microclimates

  • Dạng câu hỏi: Summary Completion
  • Vị trí trong bài: Đoạn C, câu 2
  • Giải thích: “create microclimates that protect crops from extreme temperatures”

Câu 24-26: B, D, F

  • Dạng câu hỏi: Multiple Choice – Choose THREE
  • Vị trí trong bài: Đoạn D (đoạn 4)
  • Giải thích:
    • B: “the inertia of established industrial farming systems”
    • D: “significant investments in conventional equipment and methods face substantial economic barriers”
    • F: “commodity markets that reward volume and uniformity rather than sustainability”
    • Các đáp án A, C, E, G không được đề cập trong ngữ cảnh của developed countries.

Passage 3 – Giải Thích

Câu 27: agronomic performance / organic yields / yield(s)

  • Dạng câu hỏi: Summary Completion
  • Vị trí trong bài: Đoạn 2, câu 2
  • Giải thích: “The agronomic performance of sustainable systems, particularly organic production, remains a subject of intense scientific debate” về năng suất so với conventional farming. Các từ “organic yields” hoặc “yields” cũng chấp nhận được vì đoạn văn thảo luận về yield gap.

Câu 28: site specificity / context-dependent (nature) / ecological complexity

  • Dạng câu hỏi: Summary Completion
  • Vị trí trong bài: Đoạn 3, gần cuối
  • Giải thích: “This site specificity severely complicates the development of standardized protocols”. Cụm “context-dependent” cũng được nhắc đến trong cùng ngữ cảnh.

Câu 29: perverse incentives / market structures / commodity market structures

  • Dạng câu hỏi: Summary Completion
  • Vị trí trong bài: Đoạn 4, câu 2-3
  • Giải thích: “The perverse incentives embedded in current agricultural economics” và “Commodity market structures that demand standardization and volume disadvantage diversified farms”

Câu 30: externalization (of environmental costs)

  • Dạng câu hỏi: Summary Completion
  • Vị trí trong bài: Đoạn 4, câu cuối
  • Giải thích: “The externalization of environmental costs in conventional agriculture – where farmers do not pay for soil degradation, water pollution…”

Câu 31: debt obligations

  • Dạng câu hỏi: Summary Completion
  • Vị trí trong bài: Đoạn 6, câu 2
  • Giải thích: “This extended timeframe conflicts with the short-term economic pressures farmers face, particularly those with debt obligations”

Câu 32: moving target (problem)

  • Dạng câu hỏi: Summary Completion
  • Vị trí trong bài: Đoạn 8, câu đầu
  • Giải thích: “Climate change fundamentally alters the context… creating what some scholars term a ‘moving target’ problem”

Câu 33: B (Economic factors)

  • Giải thích: Agricultural subsidies là công cụ kinh tế của chính phủ, thuộc về economic factors trong đoạn 4.

Câu 34: A (Biological/Ecological factors)

  • Giải thích: Site specificity là kết quả của ecological complexity, được thảo luận trong đoạn 3 về biological/ecological constraints.

Câu 35: C (Sociopolitical factors)

  • Giải thích: Land rights và land tenure được đề cập rõ ràng trong đoạn 5 về sociopolitical dimensions.

Câu 36: D (Knowledge/Research factors)

  • Giải thích: Research funding được thảo luận trong đoạn 9 về knowledge systems and research paradigms.

Câu 37: B (Economic factors)

  • Giải thích: Commodity markets thuộc economic dimensions được phân tích trong đoạn 4.

Câu 38: genetic engineering and gene editing / CRISPR (and genetic engineering)

  • Dạng câu hỏi: Short Answer
  • Vị trí trong bài: Đoạn 7, câu đầu
  • Giải thích: “Genetic engineering and gene editing technologies like CRISPR could theoretically produce crops…” Cả hai công nghệ này đều được đề cập là có tiềm năng nhưng controversial.

Câu 39: (approximately) 25% / 25 percent / twenty-five percent

  • Dạng câu hỏi: Short Answer
  • Vị trí trong bài: Đoạn 8, câu cuối
  • Giải thích: “agriculture is not merely affected by climate change but is a significant contributor to it, accounting for approximately 25% of global greenhouse gas emissions when land use changes are included”

Câu 40: basic assumptions / food systems’ purpose / agriculture’s purpose

  • Dạng câu hỏi: Short Answer
  • Vị trí trong bài: Đoạn 9, câu cuối cùng
  • Giải thích: “Most fundamentally, societies may need to reconsider basic assumptions about food systems’ purpose” – về mục đích của hệ thống lương thực.

Từ Vựng Quan Trọng Theo Passage

Passage 1 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
sustainable adj /səˈsteɪnəbl/ Bền vững, có thể duy trì sustainable agriculture represents a fundamentally different approach sustainable development, sustainable practices
backbone n /ˈbækbəʊn/ Xương sống, nền tảng Agriculture has been the backbone of human civilization backbone of economy, backbone of society
intensive adj /ɪnˈtensɪv/ Chuyên sâu, tập trung intensive farming practices intensive agriculture, intensive care
degradation n /ˌdeɡrəˈdeɪʃn/ Sự thoái hóa, xuống cấp soil degradation environmental degradation, land degradation
biodiversity n /ˌbaɪəʊdaɪˈvɜːsəti/ Đa dạng sinh học loss of biodiversity protect biodiversity, biodiversity conservation
crop rotation n /krɒp rəʊˈteɪʃn/ Luân canh cây trồng they use techniques such as crop rotation practice crop rotation, crop rotation system
microorganisms n /ˌmaɪkrəʊˈɔːɡənɪzəm/ Vi sinh vật containing billions of microorganisms beneficial microorganisms, soil microorganisms
water retention n /ˈwɔːtə rɪˈtenʃn/ Giữ nước, khả năng chứa nước increase water retention improve water retention, water retention capacity
drought-resistant adj /draʊt rɪˈzɪstənt/ Chống hạn, chịu hạn drought-resistant crop varieties drought-resistant plants, drought-resistant species
monoculture n /ˈmɒnəʊkʌltʃə(r)/ Độc canh (trồng một loại) a practice called monoculture monoculture farming, monoculture system
fossil fuels n /ˈfɒsl fjuːəlz/ Nhiên liệu hóa thạch consumes large amounts of fossil fuels burn fossil fuels, fossil fuel consumption
minimal tillage n /ˈmɪnɪməl ˈtɪlɪdʒ/ Cày xới tối thiểu practices like minimal tillage minimal tillage system, adopt minimal tillage

Passage 2 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
socioeconomic adj /ˌsəʊsiəʊˌiːkəˈnɒmɪk/ Kinh tế xã hội different socioeconomic contexts socioeconomic status, socioeconomic factors
smallholder n /ˈsmɔːlhəʊldə(r)/ Người nông dân nhỏ smallholder farmers produce smallholder agriculture, support smallholders
agroforestry n /ˌæɡrəʊˈfɒrɪstri/ Nông lâm kết hợp adopted agroforestry systems practice agroforestry, agroforestry system
soil erosion n /sɔɪl ɪˈrəʊʒn/ Xói mòn đất trees reduce soil erosion prevent soil erosion, soil erosion control
microclimates n /ˈmaɪkrəʊklaɪməts/ Vi khí hậu create microclimates favorable microclimates, microclimates protection
inertia n /ɪˈnɜːʃə/ Sự trì trệ, quán tính the inertia of established systems overcome inertia, institutional inertia
precision agriculture n /prɪˈsɪʒn ˈæɡrɪkʌltʃə(r)/ Nông nghiệp chính xác Precision agriculture technologies adopt precision agriculture, precision agriculture techniques
GPS systems n /ˌdʒiː piː ˈes ˈsɪstəmz/ Hệ thống định vị toàn cầu use GPS systems GPS systems technology, install GPS systems
data analytics n /ˈdeɪtə ˌænəˈlɪtɪks/ Phân tích dữ liệu sensors and data analytics advanced data analytics, data analytics tools
greenhouse gas emissions n /ˈɡriːnhaʊs ɡæs ɪˈmɪʃnz/ Khí thải nhà kính reducing greenhouse gas emissions reduce emissions, emissions reduction
hydroponics n /ˌhaɪdrəˈpɒnɪks/ Trồng cây thủy canh Techniques such as hydroponics hydroponics system, practice hydroponics
aquaponics n /ˌækwəˈpɒnɪks/ Nuôi trồng thủy sinh hydroponics and aquaponics aquaponics system, aquaponics farming
subsidies n /ˈsʌbsədiz/ Trợ cấp, trợ giá Agricultural subsidies government subsidies, subsidies policy
environmental stewardship n /ɪnˌvaɪrənˈmentl ˈstjuːədʃɪp/ Quản lý bảo vệ môi trường reward farmers for environmental stewardship practice environmental stewardship, environmental stewardship programs
premium prices n /ˈpriːmiəm ˈpraɪsɪz/ Giá cao cấp command premium prices fetch premium prices, pay premium prices

Passage 3 – Essential Vocabulary

Từ vựng Loại từ Phiên âm Nghĩa tiếng Việt Ví dụ từ bài Collocation
trajectory n /trəˈdʒektəri/ Quỹ đạo, xu hướng phát triển current trajectory of global food systems development trajectory, growth trajectory
untenable adj /ʌnˈtenəbl/ Không thể duy trì được fundamentally untenable untenable position, untenable situation
multifaceted adj /ˌmʌltiˈfæsɪtɪd/ Đa diện, nhiều khía cạnh far more multifaceted multifaceted problem, multifaceted approach
intractable adj /ɪnˈtræktəbl/ Khó giải quyết, bất trị multifaceted and intractable intractable problems, intractable challenges
reconfiguration n /ˌriːkənˌfɪɡəˈreɪʃn/ Tái cấu hình, sắp xếp lại require reconfiguration system reconfiguration, structural reconfiguration
agronomic adj /ˌæɡrəˈnɒmɪk/ Thuộc nông học agronomic performance agronomic practices, agronomic research
meta-analyses n /ˌmetə əˈnæləsiːz/ Phân tích tổng hợp critics point to meta-analyses conduct meta-analyses, meta-analyses show
yield gap n /jiːld ɡæp/ Khoảng cách năng suất This yield gap becomes problematic close the yield gap, reduce yield gap
spatial footprint n /ˈspeɪʃl ˈfʊtprɪnt/ Dấu chân không gian reducing agriculture’s spatial footprint minimize spatial footprint, spatial footprint reduction
scalability n /ˌskeɪləˈbɪləti/ Khả năng mở rộng quy mô presents challenges for scalability improve scalability, scalability issues
reductionist adj /rɪˈdʌkʃənɪst/ Giản lược, rút gọn reductionist approach reductionist thinking, reductionist method
ecosystem complexity n /ˈiːkəʊsɪstəm kəmˈpleksəti/ Sự phức tạp của hệ sinh thái embraces ecosystem complexity understand ecosystem complexity, ecosystem complexity increases
predator diversity n /ˈpredətə daɪˈvɜːsəti/ Đa dạng động vật ăn thịt enhanced pest suppression through predator diversity maintain predator diversity, predator diversity benefits
functional redundancy n /ˈfʌŋkʃənl rɪˈdʌndənsi/ Dự phòng chức năng greater climate resilience through functional redundancy create functional redundancy, functional redundancy in systems
perverse incentives n /pəˈvɜːs ɪnˈsentɪvz/ Động cơ kích thích sai lệch perverse incentives embedded create perverse incentives, perverse incentives problem
externalization n /ɪkˌstɜːnəlaɪˈzeɪʃn/ Ngoại sinh hóa (chuyển chi phí ra ngoài) externalization of environmental costs externalization of costs, prevent externalization
land tenure n /lænd ˈtenjə(r)/ Quyền sử dụng đất questions of land tenure secure land tenure, land tenure rights
intergenerational adj /ˌɪntədʒenəˈreɪʃənl/ Liên thế hệ intergenerational knowledge transfer intergenerational equity, intergenerational transfer
gene editing n /dʒiːn ˈedɪtɪŋ/ Chỉnh sửa gen gene editing technologies like CRISPR gene editing techniques, gene editing tools
intellectual property n /ˌɪntəˈlektʃuəl ˈprɒpəti/ Sở hữu trí tuệ intellectual property regimes intellectual property rights, protect intellectual property
seed sovereignty n /siːd ˈsɒvrənti/ Chủ quyền hạt giống concerns about seed sovereignty maintain seed sovereignty, seed sovereignty movement
epistemological adj /ɪˌpɪstɪməˈlɒdʒɪkl/ Thuộc nhận thức luận This epistemological challenge epistemological perspective, epistemological questions
ecosystem services n /ˈiːkəʊsɪstəm ˈsɜːvɪsɪz/ Dịch vụ hệ sinh thái multiple ecosystem services provide ecosystem services, value ecosystem services

Bảng từ vựng chuyên ngành IELTS Reading về nông nghiệp bền vững với phiên âm và ví dụ thực tếBảng từ vựng chuyên ngành IELTS Reading về nông nghiệp bền vững với phiên âm và ví dụ thực tế

Kết bài

Chủ đề “What Are The Challenges Of Sustainable Agriculture In The 21st Century?” không chỉ là một đề tài phổ biến trong IELTS Reading mà còn phản ánh những vấn đề cấp thiết của thế giới hiện đại. Qua bộ đề thi mẫu này, bạn đã được trải nghiệm một hành trình học tập toàn diện từ cơ bản đến nâng cao.

Ba passages trong đề thi đã cung cấp đầy đủ các độ khó phù hợp với hầu hết mục tiêu band điểm:

  • Passage 1 giúp bạn làm quen với khái niệm nền tảng và rèn luyện các kỹ năng cơ bản như True/False/Not Given và Sentence Completion
  • Passage 2 nâng cao khả năng phân tích với các dạng câu hỏi phức tạp hơn như Matching Information và Summary Completion
  • Passage 3 thách thức kỹ năng đọc hiểu ở trình độ cao với nội dung học thuật sâu và từ vựng chuyên ngành

Phần đáp án chi tiết không chỉ cho bạn biết câu trả lời đúng mà còn giải thích rõ ràng logic làm bài, kỹ thuật paraphrase và cách định vị thông tin trong bài đọc. Đây chính là những kỹ năng then chốt giúp bạn tự tin chinh phục IELTS Reading trong kỳ thi thực tế.

Bộ từ vựng hơn 40 từ chuyên ngành về nông nghiệp bền vững sẽ không chỉ hữu ích cho chủ đề này mà còn xuất hiện trong nhiều bài đọc khác về môi trường, khoa học và xã hội. Hãy dành thời gian học thuộc và thực hành sử dụng những từ này trong ngữ cảnh.

Để tối ưu hiệu quả luyện tập, bạn nên:

  • Làm bài theo đúng thời gian quy định (60 phút cho 3 passages)
  • Đọc kỹ phần giải thích đáp án để hiểu sâu về chiến lược làm bài
  • Ghi chú và ôn lại từ vựng mới thường xuyên
  • Phân tích các câu hỏi sai để rút kinh nghiệm
  • Thực hành thêm với các đề thi Cambridge IELTS chính thức

Chúc bạn học tốt và đạt được band điểm mong muốn trong kỳ thi IELTS sắp tới!

Previous Article

IELTS Writing Task 2: Should High School Students Choose Subjects – Bài Mẫu Band 5-9 & Phân Tích Chi Tiết

Next Article

IELTS Writing Task 2: Healthcare Systems Public vs Private – Bài Mẫu Band 5-9 & Phân Tích Chi Tiết

Write a Comment

Leave a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Đăng ký nhận thông tin bài mẫu

Để lại địa chỉ email của bạn, chúng tôi sẽ thông báo tới bạn khi có bài mẫu mới được biên tập và xuất bản thành công.
Chúng tôi cam kết không spam email ✨